• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The big data challenge – and how polypharmacology supports the translation from pre-clinical research into clinical use against neurodegenerative diseases and beyond

    2024-02-13 20:17:49SvenMarcelStefanMuhammadRafehi
    關(guān)鍵詞:項目前期細化基礎(chǔ)

    Sven Marcel Stefan, Muhammad Rafehi

    Introductory comments: The identification and validation of disease-modifying proteins are fundamental aspects in drug development.However, the multifactority of neurodegenerative diseases poses a real challenge for targeted therapies.Furthermore, the behavior of individually (over-)expressed target proteinsin vitrois likely to differ from their actual functional behavior when embedded in cascades and pathwaysin vivo.Increased compartmentalization,e.g., in the brain, adds to the complexity.

    More fundamental problems arise from the use of historical data acquired by others years or even decades before with, back then, different perspectives and assumptions.Researchers from different parts of the world of varying disciplines and educational backgrounds investigate different aspects of the same neurodegenerative disease using different techniques.Despite the unambiguous importance of data diversity, this decentralized and competing research gives rise to numerous obstacles that fundamentally impact the quality and quantity of shared heterogeneous scientific data that we would like to address in this perspective, and how we envision polypharmacology as a solution for many obstacles in the field of neurodegenerative diseases.

    The data bias:experimental obstacles: The analysis of individual proteins is an important cornerstone of drug development.However, as no standardized procedures or language in any field of biotechnology, molecular pharmacology,or medicinal chemistry exist, experimental setups may differ in many assay parameters (Stefan et al., 2022).Greater complexity occurs inin vivoexperiments, which are more commonly applied in neurodegeneration research (M?hle and Stefan et al., 2023; Wu et al., 2022).Here, data depends additionally on the disease model, treatment window, way of application, endpoints, or manner and quality of histological data to support hypotheses and (neuro-) pathological observations[e.g., amyloid-beta in Alzheimer’s disease models(Wu et al., 2022) or muHTT in Huntington’s disease models (M?hle and Stefam et al., 2023) in organspecific tissues].

    Mostin vivoexperiments are conducted in species other than humans.If not “humanized”,all data generated is basically connected to the protein ortholog (and associated, potentially species-specific cascades and pathways) only.Surprisingly, in neurodegeneration research,evenin vitroapproaches are based on the use of non-human cell lines (e.g., cortical/striatal neurons or astrocytes) from animal disease models (Wu et al., 2022).Eventually, (speciesspecific) polymorphisms may challenge the overall outcome and interpretation of data (Matthaei et al., 2021) as may also the individual personality of the species.

    Journalistic obstacles – a researcher’s perspective:Even if standardized assay procedures existed, results would vary due to the (in)voluntary personal input of the conducting researchers.Personal circumstances and the (in part) toxic work culture in science add to the pressure(Kucirkova, 2023).Language barriers may impede correct conveyance of scientific content and reproducibility by inaccurately described assay procedures.Author services exist, however, they require a fee that may be unaffordable for many groups.

    For data analysis, sophisticated software exists,however, license restrictions may cause research groups to use outdated versions of programs or revert to less suitable alternatives that negatively impact the published outcome.Additionally, a thorough understanding of statistics is important,specifically inin vivoneurodegeneration research.Regarding data interpretation, researchers are often enticed to explainin vivoeffects by the relatively simple, single-targeted mode of action from previousin vitroexperiments.However, as multi-target drugs are a large fraction of drugs passing clinical trials (Anighoro et al., 2014), which is particularly true for central nervous system drugs, the speculation about single-targeted modes-of-action also adds to the publication bias.Finally, researchers’ intentions are of high importance.A pressured researcher who desperately needs “good data” to attract funding will likely be more “optimistic” in data interpretation.Assay procedures may not entirely be described to actively prevent others from repeating experiments.Data falsification,fabrication, and plagiarism distort the “big picture”of published data.However, the awareness of such data through paper retraction and punishment is almost invisible until today (Hesselmann et al.,2017).

    Journalistic obstacles – a reviewer’s perspective:One major assignment of journals is the evaluation of the goodness of data, which is acknowledged by the peer review process.The reviewers should be experts in that particular field who take their time to evaluate the goodness with utmost objectiveness.However, this system faces problems today: (i) as reviewers are themselves researchers under constant pressure to publish high-quality and -quantity, the willingness to review has decreased; (ii) in response, the journals consider reviewers whose research field may not suitably match; (iii) although security mechanisms exist (e.g., double-blind peer review), it is often still possible to identify authors from, for example,the research topic, funding statement, or the cited references, and a reviewer may not declare a conflict of interest and review the respective manuscript with personal intentions; or (iv)reviewers may be chosen by the editorial office to favor or discriminate against authors.

    Journalistic obstacles – a journal’s perspective:The vast majority of journals are owned by publishers with commercial interests that compete with other journals for publicity, reputation, and impact, which is associated with “best”, state-ofthe-art, and ground-breaking research.To ensure scientific quality, many journals define scientific standards that go along with critical, field-specific aspects that need to be met before publication of an article.However, these standards must not be confounded with general scientific standards,which do not exist, resulting in (i) contradicting experimental requirements; (ii) unconsidered,but actually required standards.Both aspects are selectors for “preferential” data.

    The strong demand for journals for originality is understandable.However, the confirmation of published data by other groups increases the overall confidence of the data generated(and potentially used later on).Particularly inin vivoneurodegeneration research, statistical significance is harder to obtain.The strong discouragement of redundancy by journals as well as the widespread lack of interest in negative data are major impediments to the trustworthiness of publicly available data.

    The big data generation,storage,extraction,and usage problems:The list of obstacles in data generation is very long and the individual errors add up to a distorted picture that can barely be corrected afterwards, as the original parameters of generation are unknown to the public readership.In light of technical advancement, it became easier to generate more datain vitroorin silicoin shorter time frames (e.g., proteomics; Halder and Drummond, 2024).This fact is in principle favorable, as more valuable data can be generated saving precious resources.However, “big blocks”of more or less homogeneous data supersede the current pool of historical and heterogeneous data compiled over decades.The homogeneity of new data conveys a feeling of confidence but threatens the overall data diversity.

    The next obstacle is how data is presented and made accessible to the public.The journals’ web pages hinder large-scale searches for key terms to gather published knowledge.Repositories like PubMed or Google Scholar and the use of standardized medical subject headings (MeSH)may help to condense the desired information.However, MeSH and keywords are solely at librarians’ and authors’ discretion and searches still require manual collection, interpretation,and curation of data – processes that are prone to human errors, distorting the resulting “big picture” from the very start.Big databases exist which provide large datasets (e.g., PubChem).However, these databases work in principle on a one target-one compound basis, meaning they associate one molecule of interest with one particular target of interest only.Smaller web pages with interconnected data emerged recently,but these are at a very early stage (tiny amounts of data stored and searchable), mostly unknown to the public, and thus, not used on a broad scale.The format in which data should be stored is undefined, and even false data will inevitably be stored forever, contributing to “data pollution”.

    Through trained algorithms (e.g., machine learning, neural networks, artificial intelligence,etc.), ultra-large datasets can be analyzed,interpreted, and novel, ultra-large amounts of data can be generated.Journals favor publications including these techniques, which led not only(i) to the development and evolution of these techniques; but also (ii) to discrimination of other publications with similar or even greater importance.Trained algorithms and computeraided data extraction and analyses are of great support to handle vastly growing, heterogeneous,and in large parts noisy data.However, particularly artificial intelligence is also a threat as the way data is extracted, analyzed, and generated remains a black box.Thus, (i) novel data could be completely incorrect; or (ii) data could intentionally be falsified on a large scale.The creation of smart algorithms entirely depends on the skills and intentions of the programmers and the (also noisy) input data,and thus, its use strongly affects general scientific credibility and public acceptance.

    二是加強項目支出管理和預(yù)算執(zhí)行,做好資金管理基礎(chǔ)工作,落實項目前期工作和項目支出預(yù)算細化工作,保證資金安全、規(guī)范、高效使用。

    Nevertheless, it should also be acknowledged that computational workflows have been demonstrated to correctly predict outcomes by the use of heterogeneous and noisy data – proving that the “data barrier” can indeed be overcome by thorough curation, interpretation, and evaluation of big data (Namasivayam et al., 2022).In summary, big data generation, storage, extraction,and usage determine the applicability domain of the very same data itself.

    Compromised and prevented data: Recently,an article claimed that “diversity of workforce”,particularly of “preferential” researchers,negatively impacted scientific output.The article has meanwhile been retracted, however, it has caused strong indignation in the scientific communities.Although data heterogeneity indeed poses an obstacle in data evaluation as stated above, and different people will inevitably produce different, sometimes inconsistent data,the widespread discrimination of minorities based on their cultural, religious, racial, social, marital,familial, health, political or any other kind of“status” leads to a bad work environment and negative impact on the quality of data output(“compromised data”), adding to the data bias.Moreover, the systematic exclusion of these people and disrespect of current challenges in gender equality, inclusion, diversity, and discrimination will essentially prevent the generation of potentially very good data.This “prevented data”fails to rectify historical data, and thus, indirectly contributes to the data bias.

    The translation problem – Why are so many drug candidates unsuccessful? The historical data on shortlisted (pre-)clinical candidates is disillusioning.In Huntington’s disease, for example,hundreds of small molecules that showed promising resultsin vitrohave failedin vivo(Wu et al., 2022).The reasons could be (i) incorrect/incomplete assumptions deduced from biased data; (ii) a discrepancy between the setups ofin vitroandin vivoexperiments, in which the first do not mirror the physiological reality of the latter(Stefan, 2019); and (iii) false emphasis on singletargeted approaches in a multifactorial concert of sophisticated feedback mechanisms of (redundant)cascades and pathways.

    Polypharmacology – One solution to multiple problems: Large-scale, poly-targetedin vitroassessment of drug candidates, even at an early stage in the drug development pipeline, would tremendously boost our understanding of the network of targets they addressin vivoand additionally add valuable, new information to data space.Polypharmacology will extend opportunity space for the druggability of yet undruggable,orphan targets embedded in (redundant) cascades,pathways, and networks in neurodegeneration and beyond (Stefan et al., 2020, 2023).In addition,the intentional engagement of multiple targets as a therapeutic strategy emerged over the last two decades, which has special implications in neural regeneration and neurodegenerative diseases (Al-Ali et al., 2016).Considering the multi-targeted central nervous system drugs approved on health markets (e.g., neuroleptics or antidepressants),polypharmacology seems suitable to tackle (yet untreatable) neurodegenerative diseases.A wide acceptance of polypharmacology as a valid strategy including multiple-track approaches and diversity-based data generation will project its positive impact toward the current obstacles of biased, big, compromised, and prevented data,creating a supportive, inclusive, and open-minded research environment.

    Concluding remarks: The largest part of this perspective has been dedicated to the big data challenge and the multifactority of publicly available data upon which all assumptions and knowledge of neurodegenerative diseases relies on.Polypharmacology is a new strategy to gain more, diverse data to complement the “big picture” of health and disease in both humans and other species.We suggest a change in research culture and politics to overcome information barriers and propose the following aspects to be widely implemented in global research groups:(i) Redundant data.Originality is important,but cross-validation by independently repeated(alternative) experiments and confirmation (or refutation) of existing results is vital as it increases the overall confidence of the respective data and rectifies historical data.Journals could implement such reports in a novel format (e.g., “data validation” or “data correction”), which could tackle the problem of “data pollution” by simply incorrect data that otherwise will be stored forever without correction or opposition.

    (ii) Negative data.Data that does not prove a hypothesis is widely rejected, which causes one of the largest biases there are.However, particularly computational models and their applicability domain rely on negative references (Namasivayam et al., 2022).Allowing negative (and redundant)data to be published could create a counter-weight to the today easily produced (digital) “big data”that supersedes historical data.

    (iii) Diverse data.Concentrating the focus of limited funds on specific aspects of diseases is important.However, it will inevitably lead to a narrow view of the “big picture”.Journals should encourage additional and supplementary data even if it may not be in line with the golden thread of the main publication.Reviewers should not criticize such data as being “too much” or “too different”, as it may become an important puzzle piece in future science.Furthermore, diverse data is the prerequisite for drug (and target)repurposing strategies.

    (iv) Promoted data.The exclusion of minorities and people with personal constraints from scientific participation adds to the “compromised data” and“prevented data” biases.Gaining these people in scientific communities as a positive workforce by support adapted to their individual needs will ultimately promote the generation of additional high-quality data that may rectify historical data.(v) Joint data.Not only poly-targeted data within one group is important, but also between groups.Assessment of the entire proteome is yet impossible as (i) over 98% of the diseasemodifying proteome cannot be targeted to this date; (ii) establishing and maintenance of diverse protocols to various targets is very costly and requires advanced laboratory logistics; and (iii)trained personnel embedded in these logistics will be hard to retain as their great diversity of skills will attract other groups and drive their career.Implementing a diverse (and redundant)research culture in international collaboration with interdisciplinary expertise is vital and needs to be globally supported without objections, addressing not only the biological activity of compounds,but also associated physicochemistry, which is particularly important in neurodegeneration research (Namasivayam and Stefan et al., 2022).

    Open-mindedness toward redundant, negative,diverse, promoted, and joint data in combination with historical data could generate novel annotations of drugs with various biological effects and targets that could be harnessed to cure neurodegenerative (and other) diseases with real clinical breakthroughs.

    Sven Marcel Stefan*, #Muhammad Rafehi*, #

    Drug Development and Chemical Biology, Lübeck Institute of Experimental Dermatology (LIED),University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Department of Pathology, Section of Neuropathology,Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway; School of Medical Sciences, Faculty of Medicine and Health,University of Sydney, Sydney, NSW, Australia(Stefan SM)Institute of Clinical Pharmacology, University Medical Center G?ttingen, G?ttingen, Germany;Department of Medical Education, Augsburg University Medicine, Augsburg, Germany (Rafehi M)

    *Correspondence to:Sven Marcel Stefan, PhD,svenmarcel.stefan@uksh.de; Muhammad Rafehi,PhD, muhammad.rafehi@med.uni-goettingen.de.https://orcid.org/0000-0002-2048-8598(Sven Marcel Stefan)

    https://orcid.org/0000-0002-4314-4800(Muhammad Rafehi)#Both authors contributed equally to this work.

    Date of submission:July 31, 2023

    Date of decision:September 6, 2023

    Date of acceptance:September 23, 2023

    Date of web publication:November 8, 2023

    https://doi.org/10.4103/1673-5374.387984 How to cite this article:Stefan SM,Rafehi M(2024)The big data challenge – and how polypharmacology supports the translation from pre-clinical research into clinical use against neurodegenerative diseases and beyond.Neural Regen Res 19(8):1647-1648.

    Open access statement:This is an open access journal,and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License,which allows others to remix,tweak,and build upon the work non-commercially,as long as appropriate credit is given and the new creations are licensed under the identical terms.

    猜你喜歡
    項目前期細化基礎(chǔ)
    “不等式”基礎(chǔ)鞏固
    “整式”基礎(chǔ)鞏固
    中小企業(yè)重在責任細化
    勞動保護(2018年5期)2018-06-05 02:12:06
    “防”“治”并舉 筑牢基礎(chǔ)
    勞動保護(2018年5期)2018-06-05 02:12:02
    “細化”市場,賺取百萬財富
    華人時刊(2018年23期)2018-03-21 06:26:16
    “住宅全裝修”政策亟需細化完善
    從建筑策劃入手,做好項目前期工作
    基于數(shù)據(jù)分析的大氣腐蝕等級細化研究
    淺談工程項目前期報建管理
    “五抓五促”夯基礎(chǔ)
    中國火炬(2013年9期)2013-07-24 14:19:47
    国产精品一区二区三区四区久久| 午夜激情欧美在线| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线观看免费| 1000部很黄的大片| 亚洲av成人一区二区三| 久久人妻av系列| 国产亚洲精品一区二区www| 真实男女啪啪啪动态图| 韩国av一区二区三区四区| 亚洲人成网站在线播放欧美日韩| 欧美日韩黄片免| 国产精品av视频在线免费观看| 黄色视频,在线免费观看| 一边摸一边抽搐一进一小说| 日本黄色片子视频| 蜜桃久久精品国产亚洲av| 国产成人啪精品午夜网站| 日韩大尺度精品在线看网址| 亚洲av片天天在线观看| 国产免费男女视频| 亚洲 欧美 日韩 在线 免费| 成人国产一区最新在线观看| 日本 av在线| 他把我摸到了高潮在线观看| 91字幕亚洲| 亚洲,欧美精品.| 国产欧美日韩一区二区三| 亚洲精品国产精品久久久不卡| 欧美黄色片欧美黄色片| 九九热线精品视视频播放| 日韩 欧美 亚洲 中文字幕| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av香蕉五月| 国产一区二区在线av高清观看| 深夜精品福利| 一个人免费在线观看的高清视频| 俄罗斯特黄特色一大片| 给我免费播放毛片高清在线观看| 亚洲欧美激情综合另类| 色尼玛亚洲综合影院| av女优亚洲男人天堂 | 在线观看免费视频日本深夜| 午夜福利在线在线| 国产精品久久久人人做人人爽| 九九热线精品视视频播放| 黄频高清免费视频| 国产成人影院久久av| 成人无遮挡网站| 成人特级av手机在线观看| 国产伦人伦偷精品视频| 1024手机看黄色片| 欧美日韩亚洲国产一区二区在线观看| 精品国内亚洲2022精品成人| netflix在线观看网站| 91老司机精品| 三级毛片av免费| 欧美中文日本在线观看视频| 亚洲第一电影网av| 真实男女啪啪啪动态图| 美女被艹到高潮喷水动态| 国产精品99久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 一本综合久久免费| 日本成人三级电影网站| 精品国产亚洲在线| 97碰自拍视频| 9191精品国产免费久久| 波多野结衣巨乳人妻| 成人永久免费在线观看视频| 看黄色毛片网站| 成人精品一区二区免费| 一个人看的www免费观看视频| 亚洲电影在线观看av| 国产一区在线观看成人免费| 亚洲国产精品成人综合色| 亚洲男人的天堂狠狠| 老司机深夜福利视频在线观看| 少妇人妻一区二区三区视频| 久久精品91无色码中文字幕| 最新美女视频免费是黄的| 久久精品91蜜桃| 亚洲激情在线av| 十八禁人妻一区二区| 国产精品一区二区免费欧美| 老司机在亚洲福利影院| av欧美777| a级毛片在线看网站| 国产高清videossex| 午夜两性在线视频| 99精品欧美一区二区三区四区| 又大又爽又粗| 亚洲在线观看片| 成年女人看的毛片在线观看| 久久久水蜜桃国产精品网| 18禁美女被吸乳视频| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 国产高清视频在线观看网站| 国产视频内射| 变态另类成人亚洲欧美熟女| 在线免费观看的www视频| 后天国语完整版免费观看| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 久久久久久久精品吃奶| 午夜精品一区二区三区免费看| 久久久久久人人人人人| 国产黄色小视频在线观看| 又爽又黄无遮挡网站| 搞女人的毛片| 在线免费观看的www视频| 国产淫片久久久久久久久 | 麻豆av在线久日| 丝袜人妻中文字幕| 性欧美人与动物交配| 激情在线观看视频在线高清| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 免费在线观看亚洲国产| 一二三四在线观看免费中文在| 亚洲,欧美精品.| av女优亚洲男人天堂 | 91久久精品国产一区二区成人 | 国产探花在线观看一区二区| 欧美+亚洲+日韩+国产| 91av网站免费观看| 国产成人啪精品午夜网站| 搞女人的毛片| 午夜免费观看网址| 99精品久久久久人妻精品| 亚洲成av人片在线播放无| 五月伊人婷婷丁香| www.www免费av| 国产 一区 欧美 日韩| 亚洲国产高清在线一区二区三| 亚洲精品美女久久av网站| 国内精品久久久久久久电影| 一级黄色大片毛片| 成年女人永久免费观看视频| 亚洲男人的天堂狠狠| 国产精品久久久久久久电影 | 国产真实乱freesex| 亚洲午夜理论影院| 亚洲美女视频黄频| 久久久色成人| 成人高潮视频无遮挡免费网站| 久久这里只有精品中国| 美女cb高潮喷水在线观看 | 最近最新中文字幕大全免费视频| 怎么达到女性高潮| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 亚洲午夜理论影院| 18禁国产床啪视频网站| 成年免费大片在线观看| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 中文字幕最新亚洲高清| 人人妻,人人澡人人爽秒播| 两个人视频免费观看高清| 天堂影院成人在线观看| 久久久久亚洲av毛片大全| 琪琪午夜伦伦电影理论片6080| 在线免费观看不下载黄p国产 | 日韩高清综合在线| 亚洲一区二区三区不卡视频| 久久99热这里只有精品18| 国产欧美日韩一区二区精品| 757午夜福利合集在线观看| 黄片小视频在线播放| 午夜激情欧美在线| 国语自产精品视频在线第100页| 波多野结衣高清作品| 国产视频内射| 日本黄大片高清| 床上黄色一级片| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 九九热线精品视视频播放| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 国产精品自产拍在线观看55亚洲| 国产高清videossex| 国产熟女xx| 全区人妻精品视频| 国产精品98久久久久久宅男小说| 欧洲精品卡2卡3卡4卡5卡区| 成熟少妇高潮喷水视频| 手机成人av网站| 嫩草影视91久久| 成在线人永久免费视频| 麻豆国产av国片精品| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 18禁美女被吸乳视频| 嫩草影院入口| 亚洲精品456在线播放app | 99国产精品99久久久久| 夜夜看夜夜爽夜夜摸| av在线蜜桃| 色吧在线观看| 亚洲av电影在线进入| 国产亚洲精品久久久com| 香蕉国产在线看| 成人18禁在线播放| 99久久精品一区二区三区| 怎么达到女性高潮| 亚洲人成网站在线播放欧美日韩| 亚洲精品在线观看二区| 国产一区二区在线av高清观看| 国产亚洲欧美98| www日本在线高清视频| 97碰自拍视频| a在线观看视频网站| 亚洲国产日韩欧美精品在线观看 | 一边摸一边抽搐一进一小说| 不卡av一区二区三区| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 好男人电影高清在线观看| 老鸭窝网址在线观看| 成人精品一区二区免费| 1024香蕉在线观看| 久久久国产成人精品二区| 午夜福利在线观看免费完整高清在 | 美女被艹到高潮喷水动态| 夜夜爽天天搞| 亚洲天堂国产精品一区在线| e午夜精品久久久久久久| 可以在线观看毛片的网站| 久久久久免费精品人妻一区二区| 黄色 视频免费看| 欧美日韩中文字幕国产精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲av电影不卡..在线观看| 熟妇人妻久久中文字幕3abv| 99热这里只有精品一区 | 国产视频内射| 人人妻人人看人人澡| 少妇的逼水好多| 999久久久精品免费观看国产| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 国产激情偷乱视频一区二区| 欧美一区二区精品小视频在线| 国产精品,欧美在线| 一夜夜www| 欧美中文日本在线观看视频| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 日本 av在线| 嫩草影院精品99| 亚洲欧美日韩卡通动漫| 精品欧美国产一区二区三| 一级毛片女人18水好多| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 男女之事视频高清在线观看| av视频在线观看入口| 成年免费大片在线观看| 欧美乱码精品一区二区三区| 欧美日韩综合久久久久久 | 日韩欧美一区二区三区在线观看| 男插女下体视频免费在线播放| 丁香六月欧美| 色吧在线观看| 国产av一区在线观看免费| 亚洲美女黄片视频| 熟女人妻精品中文字幕| av天堂中文字幕网| 狠狠狠狠99中文字幕| 麻豆一二三区av精品| 亚洲激情在线av| 中出人妻视频一区二区| 久久人人精品亚洲av| 日本一二三区视频观看| 亚洲av成人精品一区久久| 免费看光身美女| 一级a爱片免费观看的视频| 人妻丰满熟妇av一区二区三区| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 男人舔奶头视频| 一个人观看的视频www高清免费观看 | 国产精品女同一区二区软件 | 五月玫瑰六月丁香| 欧美性猛交黑人性爽| 国产精品久久久久久人妻精品电影| www.精华液| 国产一区二区三区视频了| 国产一区二区激情短视频| 最近最新免费中文字幕在线| 成人特级av手机在线观看| 欧美丝袜亚洲另类 | 99久久综合精品五月天人人| 99热精品在线国产| 色老头精品视频在线观看| 好看av亚洲va欧美ⅴa在| 亚洲片人在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品久久久久久人妻精品电影| 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 丰满的人妻完整版| 嫁个100分男人电影在线观看| 高清在线国产一区| 亚洲电影在线观看av| 天堂动漫精品| 精品一区二区三区四区五区乱码| 美女被艹到高潮喷水动态| 少妇的逼水好多| 五月伊人婷婷丁香| 在线观看午夜福利视频| 亚洲av第一区精品v没综合| 亚洲人成电影免费在线| 天堂影院成人在线观看| 夜夜躁狠狠躁天天躁| 国产极品精品免费视频能看的| 美女大奶头视频| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 成人午夜高清在线视频| 成人永久免费在线观看视频| 日韩欧美免费精品| 天堂av国产一区二区熟女人妻| www.999成人在线观看| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 国产精品亚洲av一区麻豆| 国产精品久久久久久亚洲av鲁大| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线| 成人av在线播放网站| 亚洲欧美精品综合一区二区三区| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 搞女人的毛片| 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 免费电影在线观看免费观看| 国产精品永久免费网站| 久久天堂一区二区三区四区| 日本三级黄在线观看| 男女下面进入的视频免费午夜| 夜夜夜夜夜久久久久| 久久久久亚洲av毛片大全| 女警被强在线播放| 久久久久亚洲av毛片大全| 一进一出抽搐动态| 身体一侧抽搐| 男人和女人高潮做爰伦理| 亚洲av五月六月丁香网| 最近最新免费中文字幕在线| 国产乱人伦免费视频| 亚洲国产精品成人综合色| 欧美日韩瑟瑟在线播放| 黄频高清免费视频| 国产毛片a区久久久久| 成在线人永久免费视频| 无限看片的www在线观看| 99国产综合亚洲精品| netflix在线观看网站| 欧美一区二区国产精品久久精品| 亚洲国产欧美网| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 欧美一区二区国产精品久久精品| 色综合婷婷激情| 精品久久久久久久毛片微露脸| 日韩欧美在线乱码| 日韩欧美免费精品| 99国产精品一区二区三区| 一个人免费在线观看电影 | 18美女黄网站色大片免费观看| 婷婷精品国产亚洲av| 亚洲五月天丁香| 亚洲精品一卡2卡三卡4卡5卡| 母亲3免费完整高清在线观看| 网址你懂的国产日韩在线| 91av网站免费观看| 日韩大尺度精品在线看网址| 亚洲片人在线观看| 国产午夜精品论理片| 2021天堂中文幕一二区在线观| 精品国产乱码久久久久久男人| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 亚洲中文av在线| 中出人妻视频一区二区| 亚洲在线观看片| 久久人人精品亚洲av| 亚洲七黄色美女视频| 天堂网av新在线| 成年女人看的毛片在线观看| 一个人免费在线观看电影 | 久久久久久人人人人人| 51午夜福利影视在线观看| 亚洲一区高清亚洲精品| 熟女电影av网| 成人特级av手机在线观看| 在线观看免费午夜福利视频| 国产亚洲精品av在线| 亚洲国产精品999在线| 夜夜夜夜夜久久久久| 国产成人系列免费观看| 日本三级黄在线观看| 午夜免费观看网址| 啦啦啦韩国在线观看视频| 亚洲,欧美精品.| 亚洲天堂国产精品一区在线| 88av欧美| 成人精品一区二区免费| 午夜亚洲福利在线播放| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 不卡一级毛片| 国产精品美女特级片免费视频播放器 | 午夜亚洲福利在线播放| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 午夜视频精品福利| 亚洲人成伊人成综合网2020| 99re在线观看精品视频| 制服人妻中文乱码| 久久久久久久午夜电影| 久久久精品大字幕| 九九热线精品视视频播放| 黑人操中国人逼视频| 国产精品女同一区二区软件 | 国产精品 国内视频| 一个人看的www免费观看视频| 国产成人影院久久av| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 久久精品人妻少妇| 精品久久蜜臀av无| 热99在线观看视频| 国内精品久久久久精免费| 欧美一区二区国产精品久久精品| 国产精品99久久久久久久久| 老鸭窝网址在线观看| 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 少妇人妻一区二区三区视频| 国产精品 欧美亚洲| 男女床上黄色一级片免费看| 亚洲av成人一区二区三| 色播亚洲综合网| 一区二区三区激情视频| 久久这里只有精品19| 人人妻人人澡欧美一区二区| 法律面前人人平等表现在哪些方面| 国产精品久久久久久精品电影| 国产人伦9x9x在线观看| 久久久久久国产a免费观看| 欧美日韩国产亚洲二区| 精品久久久久久久末码| 国产高清视频在线播放一区| 国产单亲对白刺激| 婷婷六月久久综合丁香| 日日夜夜操网爽| 亚洲狠狠婷婷综合久久图片| 精品福利观看| 一级作爱视频免费观看| 丁香欧美五月| 久久热在线av| 舔av片在线| 欧美精品啪啪一区二区三区| 黄片大片在线免费观看| 人人妻,人人澡人人爽秒播| 亚洲av电影不卡..在线观看| 国产高清视频在线观看网站| 91九色精品人成在线观看| 99久久无色码亚洲精品果冻| 国产一级毛片七仙女欲春2| 99热6这里只有精品| 午夜福利欧美成人| 夜夜躁狠狠躁天天躁| 舔av片在线| h日本视频在线播放| 亚洲欧美日韩高清专用| 日韩欧美精品v在线| 国产高清videossex| 国产一区二区在线av高清观看| 国产精品99久久久久久久久| 黄片大片在线免费观看| 亚洲真实伦在线观看| 国产精品 欧美亚洲| 久久久水蜜桃国产精品网| 特级一级黄色大片| 亚洲五月婷婷丁香| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 成年女人永久免费观看视频| 国产精品国产高清国产av| 俺也久久电影网| 日韩精品青青久久久久久| 91麻豆av在线| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 最近最新免费中文字幕在线| 好男人电影高清在线观看| 亚洲av电影不卡..在线观看| 天堂√8在线中文| 一个人看视频在线观看www免费 | xxx96com| 嫩草影院精品99| 亚洲专区国产一区二区| 操出白浆在线播放| avwww免费| 99精品在免费线老司机午夜| 日本免费a在线| 国产精品久久久久久久电影 | 好看av亚洲va欧美ⅴa在| 18美女黄网站色大片免费观看| 91字幕亚洲| www.精华液| 亚洲国产欧美人成| 免费无遮挡裸体视频| 成人av在线播放网站| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看| 黄色视频,在线免费观看| 精品不卡国产一区二区三区| 三级毛片av免费| 男女做爰动态图高潮gif福利片| 免费一级毛片在线播放高清视频| 日韩av在线大香蕉| 999久久久国产精品视频| 精品99又大又爽又粗少妇毛片 | 中文字幕av在线有码专区| 两个人视频免费观看高清| 色哟哟哟哟哟哟| 首页视频小说图片口味搜索| 男女床上黄色一级片免费看| 免费看光身美女| 99在线视频只有这里精品首页| 五月伊人婷婷丁香| 成人一区二区视频在线观看| 免费人成视频x8x8入口观看| 日韩人妻高清精品专区| 99热这里只有精品一区 | 真实男女啪啪啪动态图| 日韩欧美免费精品| 熟女电影av网| 欧美中文日本在线观看视频| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 国产成人aa在线观看| 一a级毛片在线观看| 丁香六月欧美| 中亚洲国语对白在线视频| 久久久久亚洲av毛片大全| 亚洲天堂国产精品一区在线| 香蕉丝袜av| 97碰自拍视频| av黄色大香蕉| 免费大片18禁| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区| 99在线人妻在线中文字幕| 亚洲欧美日韩东京热| 成人av在线播放网站| 久久这里只有精品中国| 亚洲成av人片在线播放无| 亚洲五月婷婷丁香| 18禁黄网站禁片免费观看直播| 国产激情欧美一区二区| 亚洲五月天丁香| 免费看a级黄色片| 国产成人av激情在线播放| 国产成人精品久久二区二区91| 日韩人妻高清精品专区| 级片在线观看| 日韩欧美免费精品| 99久久久亚洲精品蜜臀av| 亚洲国产精品久久男人天堂| 舔av片在线| 国产一级毛片七仙女欲春2| 成熟少妇高潮喷水视频| 亚洲无线在线观看| 夜夜看夜夜爽夜夜摸| 精品午夜福利视频在线观看一区| 成年女人永久免费观看视频| 国产亚洲av高清不卡| 免费看日本二区| 亚洲中文av在线| 九九在线视频观看精品| 可以在线观看的亚洲视频| 亚洲乱码一区二区免费版| e午夜精品久久久久久久| 精品国产三级普通话版| 午夜亚洲福利在线播放| 国产欧美日韩精品一区二区| or卡值多少钱| 婷婷亚洲欧美| 丝袜人妻中文字幕| 91字幕亚洲| 久久久国产成人免费| 午夜免费成人在线视频| 日韩欧美在线二视频| 日韩三级视频一区二区三区| 亚洲成av人片在线播放无| 久久天躁狠狠躁夜夜2o2o| 精品电影一区二区在线| 首页视频小说图片口味搜索| 男女做爰动态图高潮gif福利片| 观看免费一级毛片| 国产亚洲欧美在线一区二区| 99国产精品一区二区三区|