李桂英 田玉富 楊成君
摘要GRAS轉錄因子是植物特有的轉錄因子,參與植物的生長發(fā)育、信號轉導、解毒作用、生物脅迫和非生物脅迫相關的應答過程。該文從GRAS轉錄因子的結構特征、在植物中的分布和功能作用方面對GRAS家族轉錄因子的研究現(xiàn)狀進行綜述,為GRAS家族轉錄因子的進一步開發(fā)利用提供依據。
關鍵詞GRAS轉錄因子;生長發(fā)育;信號轉導;生物脅迫;非生物脅迫
中圖分類號S188文獻標識碼A文章編號0517-6611(2014)14-04207-04
Research Situation of GRAS Family Transcription Factor in Plants
LI Guiying, YANG Chengjun et al (College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040)
AbstractGRAS transcription factor is plant specific transcription factor, which participate in the growth and development of plants, detoxification, biotic and abiotic stressrelated response process. The article summarizes the research status of GRAS family transcription factors from the three aspects of structural features, distribution of plants and function of GRAS transcription factor, which will provide reference for further development and utilization of GRAS transcription factor.
Key words GRAS transcription factor; Growth and development; Signal transduction; Biotic stress; Abiotic stress
植物轉錄因子的研究是功能基因組學研究的一個重要內容。轉錄因子即反式作用因子,是一種DNA結合蛋白,典型的轉錄因子由DNA結合區(qū)、轉錄調控區(qū)(包括激活區(qū)或抑制區(qū))、寡聚化位點和核定位信號區(qū)組成[1];轉錄因子通過這些功能區(qū)域與真核基因啟動子區(qū)域中的順式元件作用或與其他轉錄因子的功能區(qū)域相互作用來激活或抑制基因的表達[2]。近年來,從植物中分離出一系列調控基因表達的轉錄因子,如bZIP[3-6]、AP2/ERF[7-9]、WRKY[10-12]、MYB[13-16]、NAC[17-19]和GRAS[20-22]等轉錄因子。GRAS轉錄因子是一類植物特有的轉錄因子,GRAS的研究已被學者們關注。GRAS家族分為8個亞家族[23]:DELLA、HAM、LISCL、PAT1、LS、SCR、SHR和SCL3,廣泛分布于植物中,在植物根莖的發(fā)育、分生組織的形成、赤霉素信號傳導、光信號傳導、生物及非生物脅迫過程中發(fā)揮著重要的作用。筆者就GRAS轉錄因子的結構特征、分布和功能等方面進行綜述,以期更好地了解GRAS轉錄因子。
1GRAS家族轉錄因子的結構特征
GRAS家族的名稱是由最先發(fā)現(xiàn)的GAI、RGA、SCR 3個成員的特征字母命名,由400~770個氨基酸組成,含有高度變異的N末端結構域和高度保守的C末端結構域,并且C末端具有同源序列,典型的C末端結構還應包括LHR I、VHIID、LHR II、PFYRE、SAW[20]。GRAS家族的標志性結構域是在VHIID基序的2邊含有2個100個氨基酸殘基組成的亮氨酸豐富的區(qū)域。VHIID基序存在于GRAS家族的所有成員中,雖然有證據表明該基序中的組氨酸和天冬氨酸可以被纈氨酸和異亮氨酸代替,但在自然界中它們是完全保守的。VHIID基序代表幾個重要的氨基酸,V代表纈氨酸,I代表異亮氨酸,H代表組氨酸,D代表天冬氨酸。在第1個富含亮氨酸區(qū)域的前端含有LXXLL序列,PFYRE和RVER基序位于第2個富含亮氨酸的區(qū)域[24]。GRAS家族結構圖解如下所示:
圖1 GRAS家族結構圖解[25]2GRAS在一些植物中的分布情況
2.1模式植物 目前,至少從擬南芥中分離出33個GRAS轉錄因子,主要有SCL[20]、SCR[26]、SHR[27]、GAI[28]、RGA[29]、RGL[30]和PAT1[31]等。水稻中發(fā)現(xiàn)了60個GRAS家族成員,如MOC1[22]、SLR1[32]和CIGR1/2[33]等。此外,在煙草中分離發(fā)現(xiàn)了一個核定位的GRAS基因家族新成員NtGRAS1,并指出NtGRAS1基因可能作為一個重要的轉錄調節(jié)因子參與植物脅迫反應[21]。
2.2非模式植物 有報道指出,葡萄含有GRAS基因,并且和擬南芥GRAS家族基因間具有較高的保守性[34]。運用同源基因克隆技術從賴草中克隆了LRC1基因,該基因與控制水稻分蘗的MOC1基因具有很高的同源性(達91%)[35]。此外,在番茄[36]、玉米[37]、矮牽牛[38]、大麥[39]、百脈根[40]、松樹[41]、佛肚竹[42]、黃瓜[43]、海馬齒[44]、苜蓿[45]、胡楊[46]和白樺[47]等多種植物中也發(fā)現(xiàn)有GRAS家族轉錄因子的存在。
3GRAS的功能研究
3.1 生長發(fā)育
3.1.1 分生組織的發(fā)育。分生組織是產生和分化其他各種組織的基礎,其活動可以使植物體終生增長。LS基因是GRAS家族基因,Schumacher K利用番茄LS功能缺失突變體對番茄的分生組織發(fā)育情況進行研究,結果表明番茄中的LS基因能夠參與葉腋分生組織的發(fā)育,形成側芽[36]。水稻OsMOC1基因與番茄LS基因是同源基因,參與側生分生組織的啟動、分蘗芽的形成和長出,是控制水稻分蘗的關鍵因子[22]。植物莖的發(fā)育依靠莖尖分生組織SAM在生長軸頂點的保持,矮牽牛HAM編碼GRAS蛋白,調節(jié)側生器官原基和莖維管組織的發(fā)育,對莖尖分生組織的維持是必需的和特定的[38]。此外,擬南芥AtLAS/SCL18基因敲除家系的側芽失去萌發(fā)能力,說明AtLAS/SCL18參與調控腋下分生組織的發(fā)育[48]。
3.1.2 根、莖的生長發(fā)育。SCR[26]和SHR[27]對植物根和莖的輻射狀生長起重要作用。在同一種途徑中,SHR在SCR上游起作用,SHR可以在特定組織中直接誘導SCR啟動子活性,它們都是輻射形態(tài)形成的正調控因子[49]。Llave C發(fā)現(xiàn)擬南芥中某些GRAS家族基因(如SCL6Ⅱ、SCL6Ⅲ和SCL6Ⅳ)的表達受microRNA171的調控,以此來來控制根系的發(fā)育[50]。BnSCL1是轉錄激活因子,能與HDA19相互作用,且在根發(fā)育過程中與生長素相聯(lián)合起作用[51]。PrSCL1和CsSCL1在不定根形成的早期階段起作用,并且能對外源生長素做出反應[52]。NSP1[53]和NSP2[54]在豆科植物結瘤發(fā)育和功能中是必需的,分別屬于SHR和HAM亞家族,并且這2個蛋白在結瘤形態(tài)發(fā)生中展現(xiàn)了類似的但非冗余的功能。最新研究表明,豆科模式植物蒺藜苜蓿中含有GRAS基因MtSymSCL1,該基因在豆科植物與根瘤菌共生過程中起著調節(jié)根瘤數(shù)量的作用[45]。
3.2信號轉導
3.2.1 光敏色素信號轉導。光敏色素是植物體自身合成的一種調節(jié)生長發(fā)育的色蛋白。參與光敏色素信號傳導的GRAS轉錄因子有PAT1、SCL13和SCL21。PAT1和SCL21是光敏色素A信號傳導的正調節(jié)子,它們參與同一信號途徑。PAT1在光敏色素A信號串聯(lián)的早期階段起作用[31],光通過phyA和PAT1調節(jié)SCL21的表達[55]。而在持續(xù)的紅光信號下,AtSCL13作為一個正調節(jié)子在光敏色素B的下游起作用,主要作用是在脫黃化過程中使下胚軸伸長[56]。
3.2.2 赤霉素(GA)信號轉導。赤霉素一般促進莖的伸長、花的發(fā)育以及種子的萌發(fā),而研究表明GRAS家族中的GAI、RGA、RGL基因在赤霉素信號傳導中起負調控作用,其中GAI和RGA在莖伸長和展葉過程中起負調控作用,降低赤霉素對植物莖的伸長作用,其突變導致植物對赤霉素不敏感而呈現(xiàn)矮化等;RGL1或RGL2 基因在種子萌發(fā)過程中起負調控作用[29,57-60]。CIGR1和CIGR2在水稻懸浮培養(yǎng)細胞中通過一種劑量依賴的方法對外源生物活性的GA有響應,并且是GA信號傳導的優(yōu)良標記[33]。
擬南芥[28]、水稻[32]、大麥[39]、玉米[61]和小麥[62]的DELLA基因功能獲得或缺失突變體分別表現(xiàn)為對GA不敏感的矮化表型或基本的響應表型,這些突變體的表型暗示出DELLA蛋白是GA信號轉導的負調節(jié)子。若在正常的水稻中過量表達缺少DELLA結構域的SLRL1基因,將會誘導植株矮化、阻礙芽的伸長[63]。
3.2.3 油菜素類固醇信號轉導。油菜素類固醇(BR)是植物體內一類重要的類固醇激素,調控著植物的生長和發(fā)育,細胞內BR生物合成或信號轉導缺陷往往導致細胞增殖異常,從而引起典型的矮化表型。水稻dlt突變體的嫩枝和初生根短于野生型幼苗,表現(xiàn)為BR不敏感的矮化表型,葉子變?yōu)樯罹G色,且分蘗降低,由此證明GRAS家族新成員DLT在水稻的BR信號反應中起著積極的作用[64]。
3.3解毒作用 擬南芥中SCL14是一種TGA(II類轉錄因子)互作蛋白,對壓力誘導型啟動子的激活是必要的,在含有TGA的啟動子受到SA (水楊酸)和2,4D(生長素類似物)誘導后,SCL14可以調控其靶基因參與生物異源化學物質和內源的有害代謝產物的解毒,增強了植物對有毒物質的耐受性,由此得知,SCL14具有廣譜解毒的作用[65]。
3.4生物脅迫 水稻的CIGR1和CIGR2基因可被懸浮培養(yǎng)的水稻中的N乙?;鶜す烟羌ぐl(fā)子和共培養(yǎng)的稻瘟病菌快速誘導,CIGR1和CIGR2基因作為轉錄調節(jié)的防御信號在感應真菌和發(fā)病機制的早期階段發(fā)揮關鍵作用[66]。番茄和丁香假單胞菌相互作用時,番茄的6個SIGRAS基因(SIGRAS1、SIGRAS2、SIGRAS3、SIGRAS4、SIGRAS6和SIGRAS13)轉錄子出現(xiàn)積累;用綠色木霉菌的EIX誘導子處理番茄時,SIGRAS4和SIGRAS6基因表達量增加,這些結果表明SIGRAS基因或許參與由細菌和誘導子觸發(fā)的防御反應,參與調控生物脅迫[67]。
3.5非生物生物脅迫
3.5.1 低溫脅迫。低溫能夠提高赤霉素合成途徑中的GA2ox3和GA2ox6基因表達,進而降低體內活性GA的含量,穩(wěn)定DELLA蛋白,提高植物的抗冷能力,即DELLA蛋白有助于CBF1誘導的冷耐受性[68]。佛手GRAS基因能夠對低溫脅迫做出積極的響應,可以調節(jié)佛手對逆境的適應情況,該結果為選育耐低溫的佛手新品種提供了理論依據[69]。
3.5.2 干旱脅迫。擬南芥中過表達甘藍型油菜的BnLAS基因,能夠抑制生長,推遲葉片衰老和花期,提高葉綠素含量并且增強植物抗旱能力[70]。郭華軍等利用生物信息學手段研究表明SCL5、SCL7、SCL13、SCL14和SCL26等基因的誘導隨滲透脅迫時間的延長呈明顯上升趨勢;SCL11、SCL13和SCL15基因受干旱誘導處理后的信號強度明顯上升[71]。并且,擬南芥SCL15基因在干旱脅迫中的作用通過SCL15突變體的表型得到了驗證,野生型和突變體植株的表型差異表明SCL15突變體植株對水分的需求減少,提高了植株的抗旱能力[72]。
3.5.3 鹽脅迫。高鹽脅迫能夠激活脫落酸(ABA)信號,從而促進DELLA蛋白的積累,抑制植物生長,增強抗性[73]。鹽穗木HcSCL13基因隨鹽(600 mmol/L NaCl)脅迫時間的延長表達量逐漸升高,與對照組有顯著性差異,說明該基因對鹽脅迫能夠做出積極地響應[74]。馬洪雙首次研究了木本植物胡楊GRAS/SCL家族基因在抗逆方面的作用,結果表明在正常澆水生長條件下,胡楊PeSCL7基因沒有任何的變化, 但是,在脫水、高鹽、低溫等逆境條件下PeSCL7表達量均升高,說明PeSCL7基因能夠響應逆境脅迫[46]。
3.5.4 低磷、高NO脅迫。磷在土壤里移動性差,所以在低磷條件下,植物通過降低GA水平來控制DELLA蛋白的積累,進而能夠增加主根的長度、促進側根大量發(fā)生、促進根毛的伸長,以此擴大根系對磷吸收的表面積,使植物適應低磷土壤,提高植物對低磷的耐受能力[75]。低濃度的NO對植物的生長起促進作用,但在高濃度下其會抑制植物生長甚至會殺死植物。姚濤等研究表明,NO在轉錄水平上影響DELLA基因,高濃度NO能夠增加DELLA蛋白的含量,進而使植物能夠免受高濃度NO導致的細胞死亡[76]。
3.6其他方面 LlSCL在百合花藥細胞減數(shù)分裂前期表達,與減數(shù)分裂有關的啟動子起轉錄激活作用,在轉錄水平上參與調節(jié)百合花藥的小孢子形成[77]。DELLA蛋白有助于植物光形態(tài)建成,調控植物的生長[78]。詹杰鵬研究分析了海島棉GbGAI2基因在花后胚珠發(fā)育各個階段的表達情況,結果表明,GbGAI2基因在海島棉棉纖維發(fā)育的起始階段和棉纖維次生壁加厚階段起作用[79]。
42卷14期李桂英等植物GRAS家族轉錄因子的研究現(xiàn)狀4展望
目前,從高等植物中已分離鑒定的GRAS轉錄因子有數(shù)十種,對其分子結構及功能的研究日趨完善,這將有助于人們認識GRAS與其他轉錄因子之間及它們與DNA之間相互作用的機制,闡明GRAS蛋白的結構與基因表達模式,揭示GRAS轉錄因子在基因表達與調控中所起作用,有助于研究不同植物物種中新的GRAS基因功能。
參考文獻
[1] 劉強,張貴友,陳受宜.植物轉錄因子的結構與調控作用[J].科學通報,2000,45(14):1470-1472.
[2] SCHWECHHEIMER C,BEVAN M.The regulation of transcription factor activity in plants[J].Plant Science,1998,3(10):378-383.
[3] OEDA K,SALINAS J,CHUA N H.A tobacco bZip transcription activator (TAF1) binds to a Gboxlike motif conserved in plant genes[J].The EMBO Journal,1991,10(7):1793-1802.
[4] NAKAGAWA H,OHMIYA K,HATTORO T.A rice bZIP protein,designated OSBZ8,is rapidly induced by abscisic acid[J].The Plant Joural,1996,9(2):217-227.
[5] FINKELSTEIN R R,LYNCH T J.The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor[J].The Plant Cell,2000,12:599-609.
[6] 王磊,趙軍,范云六.玉米Cat1基因順式元件ABRE2結合蛋白ABP9的基因克隆及功能分析[J].科學通報,2002,47(15):1167-1171.
[7] NAKANO T,SUZUKI K,F(xiàn)UJIMURA T,et al.GenomeWide Analysis of the ERF Gene Family in Arabidopsis and Rice[J].Plant Physiology,2006,140:411-432.
[8] MIDDLETON P H,JAKAB J,PENMETSA R V,et al.An ERF transcription factor in Medicago truncatula that is essential for Nod Factor Signal Transduction[J].The Plant Cell,2007,19:1221-1234.
[9] 莊靜,周熙榮,孫超才,等.甘藍型油菜中一類AP2/ERF轉錄因子的克隆和生物信息學分析[J].中國生物工程雜志,2008,28(5):29-40.
[10] DU L Q,CHEN Z X.Identication of genes encoding receptorlike protein kinases as possible targets of pathogenand salicylic acidinduced WRKY DNAbinding proteins in Arabidopsis[J].The Plant Journal,2000,24(6):837-847.
[11] 江騰,林勇祥,劉雪,等.苜蓿全基因組WRKY轉錄因子基因的分析[J].草業(yè)學報,2011,20(3):211-218.
[12] 許瑞瑞,張世忠,曹慧,等.蘋果WRKY轉錄因子家族基因生物信息學分析[J].園藝學報,2012,39(10):2049-2060.
[13] LI S F,PARISH R W.Isolation of two novel myblike genes from Arabidopsis and studies on the DNAbinding properties of their products[J].The Plant Joural,1995,8(6):963-972.
[14] 陳俊,朱英,王宗陽.水稻MYB cDNA的克隆和表達分析[J].植物生理與分子生物學學報,2002,28(4):267-274.
[15] KWON Y,KIM J H,NGUYEN H N,et al.A novel Arabidopsis MYB-like transcription factor,MYBH,regulates hypocotyl elongation by enhancing auxin accumulation[J].Journal of Experimental Botany,2013,64(12):3911-3922.
[16] SU L T,LI J W,LI D Q,et al.A novel MYB transcription factor,GmMYBJ1,from soybean confers drought and cold tolerance in Arabidopsis thaliana[J].Gene,2014,538:46-55.
[17] SOUER E,HOUWELINGEN A V,KLOOS D,et al.The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries[J].Cell,1996,85:159-170.
[18] FANG Y J,YOU J,XIE K B,et al.Systematic sequence analysis and identification of tissuespecific or stressresponsive genes of NAC transcription factor family in rice[J].Mol Genet Genomics,2008,280:547-563.
[19] RUSHTON P J,BOKOWIEC M T,HAN S C,et al.Tobacco Transcription Factors:Novel Insights into Transcriptional Regulation in the Solanaceae[J].Plant Physiology,2008,147:280-295.
[20] PYSH L D,WYSOCKADILLER J W,CAMILLERI C,et al.The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROWLIKE genes[J].The Plant Journal,1999,18(1):111-119.
[21] CZIKKEL B E,MAXWELL D P.NtGRAS1,a novel stressinduced member of the GRAS family in tobacco,localizes to the nucleus[J].Journal of Plant Physiology,2007,164(9):1220-1230.
[22] LI X Y,QI SN Q,F(xiàn)U Z M,et al.Control of tillering in rice[J].Nature,2003,422:618-621.
[23] TIAN C G,WAN P,SUN S H,et al.Genomewide analysis of the GRAS gene family in rice and Arabidopsis[J].Plant Molecular Biology,2004,54(4):519-532.
[24] 侯夢筠.水稻 GRAS 轉錄因子家族基因克隆、遺傳轉化與功能分析[D].長春:吉林大學,2013.
[25] BOLLE C.The role of GRAS proteins in plant signal transduction and development[J].Planta,2004,218:683-692.
[26] LAURENZIO L D,DILLER J W,MALAMY J E,et al.The SCARECROW gene regulates an asymmetric cell division that isessential for generating the radial organization of the Arabidopsis root[J].Cell,1996,86:423-433.
[27] HELARIUTTA Y,F(xiàn)UKAKI H,DILLER J W,et al.The SHORTROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J].Cell,2000,101:555-567.
[28] RONG P J,CAROL P,RICHARDS D E,et al.The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J].Genes Dev,1997,11:3194-3205.
[29] SILVERSTONE A L,CIAMPAGLIO C N,SUN T P.The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J].The Plant Cell,1998,10:155-169.
[30] FERNANDEZ R S,DIAZ W A,MONTAGU M V,et al.Cloning of a novelArabidopsis thaliana RGAlike gene,a putative member of the VHIIDdomain transcription factor family[J].Journal of Experimental Botany,1998,49(326):1609-1610.
[31] BOLLE C,KONCZ C,CHUA N H.PAT1,a new member of the GRAS family,is involved in phytochrome A signal transduction[J].Genes Dev,2000,14:1269-1278.
[32] IKEDA A,TANAKA M U,SONODA Y,et al.Slender Rice,a Constitutive Gibberellin Response Mutant,Is Caused by a Null Mutation of the SLR1Gene,an Ortholog of the Height Regulating Gene GAI/ RGA/RHT/D8[J].The Plant Cell,2001,13:999-1010.
[33] DAY R B,TANABE S,KOSHIOKA M,et al.Two rice GRAS family genes responsive to Nacetylchitooligosaccharide elicitor are induced by phytoactive gibberellins:evidence for crosstalk between elicitor and gibberellin signaling in rice cells[J].Plant Molecular Biology,2004,54:261-272.
[34] 孫欣,王晨,房經貴,等.葡萄GRAS基因家族生物信息學分析[J].江西農業(yè)學報,2011,23(7):1-8.
[35] 何文興,李洪梅,葉春江,等.賴草根莖分蘗相關基因LRC1的克隆及表達[J].中國草地學報,2011,33(5):7-13.
[36] SCHUMACHER K,SCHMITT T,ROSSBERG M,et al.The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family[J].Plant Biology,1999,96:290-295.
[37] LIM J,HELARIUTTA Y,SPECHT C D,et al.Molecular Analysis of the SCARECROW Gene in Maize Reveals a Common Basis for Radial Patterning in Diverse Meristems[J].The Plant Cell,2000,12:1307-1318.
[38] STUURMAN J,JAGGI F,KUHLEMEIER C.Shoot meristem maintenance is controlled by a GRASgene mediated signal from differentiating cells[J].Genes Dev,2002,16:2213-2218.
[39] CHANDLER P M,POLL A M,ELLIS M,et al.Mutants at the Slender1 locus of Barley cv Himalaya.Molecular and physiological characterization[J].Plant Physiology,2002,129:181-190.
[40] HECKMANN A B,LOMBARDO F,MIWA H,et al.Lotus japonicus nodulation requires two GRASdomain regulators,one of which is functionally conserved in a nonlegume[J].Plant Physiology,2006,142:1739-1750.
[41] SOLE A,SANCHEZ C,VIELBA J M,et al.Characterization and expression of a Pinus radiate putative ortholog to the Arabidopsis SHORTROOT gene[J].Tree Physiolog,2008,28:1629-1639.
[42] ZHOU M B,ZHANG Y,TANG D Q.Characterization and Primary Functional Analysis of BvCIGR,a Member of the GRAS Gene Family in Bambusa ventricosa[J].Bot Rev,2011,77:233-241.
[43] WISNIEWSKA A,BOGIEL A P,ZUAGA S,et al.Molecular characterization of SCARECROW (CsSCR) gene expressed during somatic embryo development and in root of cucumber (Cucumis sativus L.)[J].Acta Physiol Plant,2013,35:1483-1495.
[44] 劉習文,暢文軍,朱家紅,等.海馬齒SpSCL1基因啟動子克隆及序列分析[J].廣東農業(yè)科學,2013(4):124-127.
[45] KIM G B,NAM Y W.A novel GRAS protein gene MtSymSCL1 plays a role in regulating nodule number in Medicago truncatula[J].Plant Growth Regul,2013,71:77-92.
[46] 馬洪雙,夏新莉,尹偉倫.胡楊SCL7基因及其啟動子片段的克隆與分析[J].北京林業(yè)大學學報,2011,33(1):1-10.
[47] 楊成君,崔璨,謝龍飛,等.吉爾吉斯白樺BkGRAS1基因克隆與序列分析[J/OL].http://www.doc88.com/p8039033122992.html.
[48] GREB T,CLARENZ O,SCHAFER E,et al.Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J].Genes & Development,2003,17:1175-1187.
[49] 高潛,劉玉瑛,費一楠,等.擬南芥根的輻射形態(tài)相關基因SHORTROOT研究進展[J].植物學通報,2008,25(3):363-372.
[50] LLAVE C,XIE Z X,KASSCHAU K D,et al.Cleavage of scarecrowlike mRNA targets directed by a class of Arabidopsis miRNA[J].Science,2002,297:2053-2056.
[51] GAO M J,PARKIN I A P,LYDIATE D J,et al.An auxinresponsive SCARECROW-like transcriptional activator interacts with histone deacetylase[J].Plant Molecular Biology,2004,55:417-431.
[52] SANCHEZ C,VIELBA J M,F(xiàn)ERRO E,et al.Two SCARECROWLIKE genes are induced in response to exogenous auxin in rootingcompetent cuttings of distantly related forest species[J].Tree Physiology,2007,27:1459-1470.
[53] SMIT P,RAEDTS J,PORTYANKO V,et al.NSP1 of the GRAS protein family is essential for rhizobial Nod factorinduced transcription[J].Science,2005,308:1789-1791.
[54] KALO P,GLEASON C,EDWARDS A,et al.Nodulation signaling in legumes requires NSP2,a member of the GRAS family of transcriptional regulators[J].Science,2005,308:1786-1789.
[55] GALEA P T,HIRTREITER B,BOLLE C.Two GRAS Proteins,SCARECROWLIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1,F(xiàn)unction Cooperatively in Phytochrome A Signal Transduction[J].Plant Physiology,2013,161:291-304.
[56] GALEA P T,HUANG L F,CHUA N H,et al.The GRAS protein SCL13 is a positive regulator of phytochromedependent red light signaling,but can also modulate phytochrome A responses[J].Mol Gene Genomics,2006,276:13-30.
[57] PENG J R,HARBERD N P.Gibberellin deficiency and response mutations suppress the stem elongation phenotype of Phytochromedeficient mutants of Arabidopsis[J].Plant Physiol,1997,113:1051-1058.
[58] LEE S,CHENG H,KING K E,et al.Gibberellin regulates Arabidopsis seed germination via RGL2,a GAI/RGAlike gene whose expression is upregulated following imbibition[J].Genes Dev,2002,16:646-658.
[59] WEN C K,CHANG C.Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J].The Plant Cell,2002,14:87-100.
[60] SILVERSTONE A L,ANNIE MAK P Y,MARTINEZ E C,et al.The New RGA Locus Encodes a Negative Regulator of Gibberellin Response in Arabidopsis thaliana[J].Genetics,1997,146:1087-1099.
[61] WINKLER R G,F(xiàn)REELING M.Physiological genetics of the dominant gibberellins nonresponsive maize dwarfs,Dwarf8 and Dwarf9[J].Planta,1994,193:341-348.
[62] PENG J R,RICHARDS D E,HARTLEY N M,et al.Green revolution gene encode mutant gibberellin response modulators[J].Nature,1999,400:256-261.
[63] ITOH H,SHIMADA A,TANAKA M U,et al.Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice[J].The Plant Journal,2005,44:669-679.
[64] TONG H N,JIN Y,LIU W B,et al.DWARF AND LOWTILLERING,a new member of the GRAS family,plays positive roles in brassinosteroid signaling in rice[J].The Plant Journal,2009,58:803-816.
[65] FODE B,SIEMSEN T,THUROW C,et al.The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress inducible promoters[J].The Plant Cell,2008,20:3122-3135.
[66] DAY R B,SHIBUYA N,MINAMI E.Identification and characterization of two new members of the GRAS gene family in rice responsive to Nacetylchitooligosaccharide elicitor[J].Biochim.Biophys Acta,2003,1625:261-268.
[67] MAYROSE M,EKENGREN S K,BONFIL S M,et al.A novel link between tomato GRAS genes,plant disease resistance and mechanical stress response[J].Molecular Plant Pathology,2006,7(6):593-604.
[68] ACHARD P,GONG F,CHEMINANT S,et al.The coldinducible CBF1 factordependent signaling pathway modulates the accumulation of the growthrepressing DELLA proteins via its effect on gibberellin metabolism[J].Plant Cell,2008,20:2117-2129.
[69] 石瑞,曹詣斌,陳文榮,等.佛手GRAS基因的克隆及表達分析[J].浙江師范大學學報,2011,34(4):446-451.
[70] YANG M G,YANG Q Y,F(xiàn)U T D,et al.Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J].Plant Cell Rep,2011,30:373-388.
[71] 郭華軍,焦遠年,邸超,等.擬南芥轉錄因子GRAS家族基因群響應滲透和干旱脅迫的初步探索[J].植物學報,2009,44(3):290-299.
[72] 郭華軍.擬南芥轉錄因子GRAS家族SCL15基因對干旱脅迫的響應分析[D].楊凌:西北農林科技大學,2009.
[73] ACHARD P,CHENG H,GRAUWE L D,et al.Integration of plant responses to environmentally activated phytohormonal signals[J].Science,2006,311:91-94.
[74] 周蓮潔,楊中敏,張富春,等.新疆鹽穗木GRAS轉錄因子基因克隆及表達分析[J].西北植物學報,2013,33(6):1091-1097.
[75] JIANG C F,GAO X H,LIAO L L,et al.Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellinDELLA signaling pathway in Arabidopsis[J].Plant Physiology,2007,145:1460-1470.
[76] 姚濤,白素蘭,李苗苗,等.DELLA蛋白參與擬南芥幼苗對一氧化氮逆境的抵抗[J].植物學報,2011,46(5):481-488.
[77] MOROHASHI K,MINAMI M,TAKASE H,et al.Isolation and characterization of a novel GRAS gene that regulates meiosisassociated gene expression[J].Journal of Biological Chemistry,2003,278:20865-20873.
[78] ACHARD P,LIAO L L,JIANG C F,et al.DELLAs Contribute to Plant Photomorphogenesis[J].Plant Physiology,2007,143:1163-1172.
[79] 詹杰鵬,崔百明,彭明,等.海島棉DELLA蛋白基因GbGAI2的克隆及其在胚珠中表達分析[J].石河子大學學報,2012,30(5):529-534.