• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of a Bacteriocin-Like Substance Produced from a Novel Isolated Strain of Bacillus subtilis SLYY-3

    2014-04-26 10:54:49LIJunfengLIHongfangZHANGYuanyuanDUANXiaohuiandLIUJie
    Journal of Ocean University of China 2014年6期

    LI Junfeng, LI Hongfang, ZHANG Yuanyuan, DUAN Xiaohui, and LIU Jie

    1) College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

    2) Yantai Entry-Exit Inspection and Quarantine Bureau, Yantai 264000, P. R. China

    Characterization of a Bacteriocin-Like Substance Produced from a Novel Isolated Strain of Bacillus subtilis SLYY-3

    LI Junfeng1),*, LI Hongfang1), ZHANG Yuanyuan1), DUAN Xiaohui2), and LIU Jie1)

    1) College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

    2) Yantai Entry-Exit Inspection and Quarantine Bureau, Yantai 264000, P. R. China

    In the present research, the strain SLYY-3 was isolated from sediments of Jiaozhou Bay, Qingdao, China. The strain SLYY-3, which produced a bacteriocin-like substance (BLS), was characterized to be a strain of Bacillus subtillis by biochemical profiling and 16S rDNA sequence analysis. It is the first time to report that Bacillus subtilis from Jiaozhou Bay sediments could produce a BLS. The BLS of B. subtillis SLYY-3 exhibited strong inhibitory activity against gram-positive bacteria (including Staphylococcus aureus and B. subtillis) and some fungi (including Penicillium glaucum, Aspergillus niger and Aspergillus flavus). The antimicrobial activity was detected from culture in the exponential growth phase and reached its maximum when culture entered into stationary growth phase. It was thermo-tolerant even when being kept at 100℃ for 60 min without losing any activity and stable over a wide pH range from 1.0 to 12.0 while being inactivated by proteolytic enzyme and trypsin, indicating the proteinaceous nature of the BLS. The BLS was purified by precipitation with hydrochloric acid (HCl) and gel filteration (Sephadex G-100). SDS-PAGE analysis of the extracellular peptides of SLYY-3 revealed a bacteriocin-like protein with a molecular mass of 66 kDa. Altogether, these characteristics indicate the potential of the BLS for food industry as a protection against pathogenic and spoilage microorganisms.

    bacteriocin-like substance; Bacillus subtillis SLYY-3; antimicrobial activity; food protection; purification

    1 Introduction

    Antimicrobial substances are widespread among bacteria. Bacteriocins and bacteriocin-like substances (BLS) are antimicrobial peptides produced by a number of different bacteria that are usually effective against closely related species (Baugher and Klaenhammer, 2011). Bacteriocins have received increasing attention due to their potential use as natural preservatives in food industry, as probiotics in the human health, and as therapeutic agents against pathogenic microorganisms (Riley and Wertz, 2002). Although most research efforts were mainly focused on bacteriocins produced by lactic acid bacteria, bacteriocins from other various species have also been characterized (Turgis et al., 2012; McAulife et al., 2001).

    Bacillus is a genus that has been investigated for antimicrobial activity since Bacillus species produce a large number of peptide antibiotics representing several different basic chemical structures (von D?hren, 1995). The production of bacteriocins or bacteriocin-like substances has been already described for B. thuringiensis, B. subtilis, B. amyloliquefaciens, B. licheniformis, B. megaterium and B. cereus (Balciunas, 2013; Gray et al., 2006; Liu et al., 2012; He et al., 2006; Senbagam et al., 2013).

    The objective of this study is to evaluate the potential antimicrobial activity of a bacteriocin-like substance produced by a Bacillus subtilis SLYY-3 isolated from sediments of Jiaozhou Bay, Qingdao, China. The antimicrobial spectrum and some properties of this bacteriocin-like substance are investigated.

    2 Materials and Methods

    2.1 Isolation of Microorganisms

    The samples (5 g moist weight) collected from Jiaozhou Bay sediments were mixed with sterile water (1:1 w/v), homogenized for 5 min, and 1 mL of this suspension was inoculated into 50 mL of nutrient medium. After microbial growth was observed by turbidity, aliquots were inoculated onto nutrient agar plates incubated at 28℃, and single colonies were isolated and screened for antimicrobial activity.

    2.2 Indicator Bacterial Strains

    The indicator strains Enterobacter aerogenes, Proteus vulgaris and Pseudomonas aeruginosa were kindly offered by UNESCO Chinese Center of Marine Biotechnology. Bacillus subtilis, Escherichia coli, Staphylococcus aureus ATCC 6538, Penicillium glaucum, Aspergil-lus niger, and Aspergillus flavus were the collections of our laboratory.

    2.3 Taxonomical Studies

    Strain SLYY-3 was identified based on 16S rDNA sequence analyses and the characterization of bacteria recorded in Bergey’s Manual of Determinative Bacteriology. Genomic DNA of strain was isolated as described by Edwards et al. (1989), 16S rDNA gene was amplified via PCR and then amplicon was sequenced. The primers used for amplification were: F (5’-AGAGTTTGATCCTG GCTCAG-3’) and R (5’-ACGGCTACCTTGTTACG ACT-3’). Alignment of different 16S rDNA nucleotide sequences was carried out by CLUSTAL W program (Thompson et al., 1994). Phylogenetic trees for 16S rRNA genes were constructed by the NJ method (Saitou and Nei, 1987) using the MEGA4.0 program (Tamura et al., 2007).

    2.4 Activity Assay

    To determine the activity spectrum of BLS, strain SLYY-3 was cultured in LB broth for 24 h at 28℃ in a rotary shaker at 150 r min-1. The cells were harvested (10000 r min-1, 15 min, 4℃), and the cell-free supernatant (CFS) was obtained by filtering through a Milipore filtre with 0.22 μm pore size. Pre-poured agar media plates were spread with 107CFU of the respective indicator microorganism and allowed to dry. The sterile Oxford-cups (8 mm×10 mm) were placed on the plates. 200 μL of CFS was added to each cup and incubated at optimal temperature of the test organism for 24 h and the diameter of the inhibition zone was determined (Li et al., 2008).

    2.5 Characterization of Bacteriocin-Like Substances

    To determine the thermal stability, the BLS samples were heated at 100℃ for 0 (control), 10, 20, 30, 40, 50 and 60 min, cooled and assayed for activity. The effect of trypsin on activity of BLS was also tested by the following method: 0.2 mL phosphate buffer as Control I (C1); 0.1 mL CFS containing BLS + 0.1 mL phosphate buffer as Control II (C2); 1 mg of enzyme-Trypsin (Sigma Chemicals) was dissolved in 1 mL of 0.1 molL-1phosphate buffer, pH 7.0 and then added to CFS of B. subtilis in the ratio of 1:1 as Enzyme reaction (ER). The activities of enzyme reaction and control I and II were assayed on the indicator plates. To test the sensitivity of the BLS to pH, each of aliquots was adjusted to 1.0-12.0 with 0.1 mol L-1HCl or 0.1 mol L-1NaOH and incubated for 30 min at 37℃. Then each sample was adjusted back to pH 7.0 and assayed for the residual activity. After each treatment, the samples were tested for antibacterial activity against S. aureus ATCC 6538 using diffusion method.

    2.6 Purification of BLS and Molecular Weight Determination by SDS-PAGE

    Precipitation of the BLS was induced by acidification using 6 mol L-1hydrochloric acid (HCl). The BLS was extracted from the pellet with 100 mL methanol. After evaporation, the light brown viscous extract was resuspended in 20 mL of 10 mol L-1sodium phosphate. This extract was loaded on a Sephadex G-100 column (2.6 cm × 80 cm, Pharmacia, Uppsala Sweden), equilibrated with 10 mmol L-1sodium phosphate, pH 7.2 and eluted with the same phosphate buffer. The elution with bactericidal activity was used to determine the molecular size of BLS by SDS-PAGE according to the method described by Laemmli (1970). The apparent molecular masses of proteins were estimated by co-electrophoresis of marker proteins (Biorad, Hercules, CA, USA) with masses ranging from 14.4 to 116 kDa. One half of the gel was stained with Coomassie Blue R250, and the position of the active bacteriocin was determined on the other unstained gel. S. aureus ATCC 6538 (107CFU mL-1) suspended in 1% nutrient agar was used to overlay the gel and cleared zone due to inhibition was examined after overnight incubation at 37℃.

    3 Results and Discussion

    3.1 Isolation and Identification of BLS-Producing Strain

    In this study strain SLYY-3 was isolated from sediments which produced the highest inhibition zones using B. subtilis and S. aureus as indicator strains. The microorganism is Gram-positive, aerobic, endospore forming and strongly catalase positive. The morphological and physiological characteristics (data not shown) and the phylogenetic analysis of strain SLYY-3 confirmed that the strain belonged to B. subtillis. The 16S rDNA sequence of SLYY-3 showed a high similarity (99%) to B. subtillis. The cluster formed by SLYY-3 and B. subtillis was supported by high bootstrap values (Fig.1).

    Fig.1 Phylogenetic tree of the SLYY-3 and related type species based on the 16S rDNA domain sequences.

    3.2 Bacteriocin-Like Substances Production

    SLYY-3 was grown in flasks with 50 mL LB medium at 28℃ on a rotary shaker. The optical density (OD) of the culture was determined at 600 nm at an interval of 2 h with a Hitachi U-1100 spectrophotometer (Hitachi, Tokyo, Japan). Cells reached the stationary phase after 12 h ofcultivation (Fig.2). Kinetics of BLS production showed that its synthesis and ? or secretion started at the early exponential phase, and reached to its maximum antibacterial activity at the stationary phase. Afterward, the inhibitory activity slowly decreased (Fig.2). Similar results have been reported with other bacteriocins (Samy et al., 2010; Cladera-Olivera et al., 2004), the antibacteria activity was detected at the middle exponential growth phase and the maximum activity was obtained at the early stage of the stationary growth phase.

    Fig.2 Growth and BLS of SLYY-3: (◆) OD600 and (■) inhibitory zone diameter.

    The cell-free supernatant of SLYY-3 exhibited a broad spectrum of antagonistic activities against all indicator strains of Gram-positive bacteria and some fungal pathogens, but not against the strains of Gram-negative bacteria (Table 1). These findings are consistent with bacteriocins or BLS by other Bacillus species reported. Although some bacteriocin are active against a narrow spectrum of bacteria (Lee et al., 2001), several strains produce bacteriocins with a broad range of activity against important pathogens (Khochamit et al., 2013, Cherif et al., 2001). The BLS produced by SLYY-3 was able to inhibit the growth of A. flavus, a very important pathogen in food safety. Therefore, the BLS may be useful for controlling several important pathogenic and spoilage microorganisms.

    3.3 Characterization of Bacteriocin-Like Substances

    3.3.1 Effect of temperature on BLS activity

    Cell-free supernatant of SLYY-3 was assayed for the thermal stability. The activity of BLS produced from SLYY-3 showed 100% activity even after exposure to 100℃ for 60 min (Fig.3), the same as reported for the low-molecular-weight bacteriocin from B. licheniformis MKU3 (Kayalvizhi and Gunasekaran, 2008). The results are characteristic of other bacteriocins reported, such as thuricin 7, being stable after exposure to 90℃ for 30 min, and losing all activity after exposure to 121℃ for 20 min (Cherif et al., 2001). The bacteriocin produced from Bacillus sp. strain 8 A was reported to be heat-stable only up to 80℃ and the activity disappeared dramatically after incubation at 100℃ only for 15 min (Bizani and Brandelli, 2002). Therefore, this superior thermostability of BLS from B. subtillis SLYY-3 is a remarkable property for biopreservation of food.

    Fig.3 Effect of temperature on activity of BLS of SLYY-3.

    3.3.2 Effect of pH on BLS activity

    Taking S. aureus as indicator strain, BLS produced from B. subtillis SLYY-3 retained its activity between pH 1.0 to 12.0. There was a very small difference in the zone of inhibitions formed after interaction of indicators with different pH treated BLS (Fig.4). Similar studies have been reported for bacteriocin of Bacillus sp., such as thuricin 7, which was stable between pH 3.0 and 9.0 (Cherif et al., 2001). The bacteriocin from strain 8A remained active between pH 5.0 and 8.0 (Bizani and Brandelli, 2002). When the pH was higher than 9.25, the biological activity of thuricin 17 disappeared (Gray et al., 2006). The activity of low molecular weight bacteriocin from the strain MKU3 was found to be stable under a pH range of 3.0-10.0 (Kayalvizhi and Gunasekaran, 2008). As a result, this wide range pH property of BLS in our study further recommends its application in biopreservation of acidic and alkaline food.

    Fig.4 Effect of pH on activity of BLS of SLYY-3.

    3.3.3 Effect of Proteolytic Enzyme-Trypsin on BLS Activity

    Cell free supernatant containing the BLS from SLYY-3 pretreated with trypsin (ER) did not show any zone of inhibition against the S. aureus, with the sample as similar as the negative control by using phosphate bufferalone (C1), whereas the CFS mixed with phosphate buffer (C2) resulted in an inhibition zone at a diameter of 22 mm (Fig.5). This result showed that enzyme trypsin had completely inactivated the BLS of B. subtillis SLYY-3. This sensitivity to proteolytic enzyme trypsin reveals its proteinaceous nature and further supports its use as food biopreservative since it can be easily degraded in the digestive system of human beings.

    Fig.5 Effect of trypsin on activity of bacteriocin-like substances of SLYY-3.

    3.3.4 Partial Purification and Molecular Weight Determination of BLS

    The inhibitory antibacterial component was isolated from the cell free culture supernatant by a combination of acid precipitation and gel filtration chromatography as shown by the results presented in Fig.6. Gel filtration resulted in fractions exhibiting antibacterial activity corresponding to peak II. Since antibacterial activity was present over a wide range of elution tube (Nos.15-19) and proteins in these fractions were not well resolved, it was difficult to determine precisely the elution tube for proteins having antibacterial activity. However, as the maximum zone of inhibition (23 mm) was observed at No.18 tube of elution, this point was considered arbitrary for determination of molecular weight of the antibacterial protein. SDS-PAGE followed by Coomassie blue R250 staining indicated that the peak consisted of a single peptide with an estimated molecular mass of 66 kDa (Fig.7) that exhibited antibacterial activity against S. aureus ATCC 6538. Some other bacteriocins with high (>10 kDa) molecular weight produced by Bacillus spp. had been previously studied in detail, such as bacteriocins (150 and 20 kDa) from B. licheniformis P40 (Cladera-Olivera et al., 2004); entomocin 9 (12.4 kDa) from B. thuringiensis ssp. entomocidus HD9 (Cherif et al., 2003); and thuricin 7 (11.6 kDa) from B. Thuringiensis BMG17 (Cherif et al., 2001). However, no bacteriocins with the same characteristics as the peptide described here have been reported from B. subtilis SLYY-3.

    Fig.6 Elution profile of BLS from gel-filtration column.

    Fig.7 Molecular weight of BLS estimated by SDS-PAGE.

    4 Conclusion

    In this study, we have successfully isolated a strain Bacillus subtilis SLYY-3 from sediments of Jiaozhou Bay, Qingdao, China. It is the first time to report the production of bacteriocin-like substance of Bacillus subtilis from this source. The bacteriocin-like substance (66 kDa) from B. subtilis SLYY-3 shows strong antimicrobial activity against most challenging and serious food pathogens such as Aspergillus flavus and S. Aureus. It is active over a wide range of temperatures and pH, which is a common characteristic of a number of bacteriocins produced by Lactobacilli (Anacarso et al., 2014). In addition, this BLS is more heat-stable when compared with other antimicrobial proteins produced by different species of Bacillus and Lactobacillus. As B. subtilis SLYY-3 produces a higher activity of BLS with a broad spectrum of activity and stability, this BLS can effectively be used as a biopreservative to prevent the growth of spoilage bacteria. It could also be proposed as a potential product used as medicine, natural biopreservative in the food processing industry, and pesticide for plant diseases control.

    Acknowledgements

    This work was supported by the National Science and Technology Support Program (No. 2011BAD14B04), Project of Shandong Province Higher Educational Science and Technology Program (J14LE59), Applied & Basic Research Foundation of Qingdao (No. 12-1-4-3-(3)-jch), and Science & Technology Project of AQSIQ (No. 2012IK176).

    Anacarso, I., Messi, P., Condò, C., Iseppi, R., Bondi, M., Sabia, C., and de Niederh?usern, S., 2014. A bacteriocin-like substance produced from Lactobacillus pentosus 39 is a natural antagonist for the control of Aeromonas hydrophila and Listeria monocytogenes in fresh salmon fillets. Food Science and Technology, 55: 604-611.

    Balciunas E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A., and de Souza Oliveira, R. P., 2013. Novel biotechnological applications of bacteriocins: A review. Food Control, 32: 134-142.

    Baugher, J. L., and Klaenhammer, T. R., 2011. Application of omics tools to understanding probiotic functionality. Journal of Dairy Science, 94: 4753-4765.

    Bizani, D., and Brandelli, A., 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8A. Journal of Applied Microbiology, 93: 512-519.

    Cherif, A., Ouzari, H., Daffonchio, D., Cherif, H., Ben Slama, K., Hassen, A., Jaoua, S., and Boudabous, A., 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG17, a new strain isolated from soil. Letters in Applied Microbiology, 32: 243-247.

    Cherif, A., Chehimi, S., Limen, F., Hansen, B. M., Hendriksen, N. B., Daffonchio, D., and Boudabous, A., 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95: 990-1000.

    Cladera-Olivera, F., Caron, G. R., and Brandelli, A., 2004. Bacteriocin-like peptide production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38: 251-256.

    Edwards, U., Rogall, T., Bocker, H., Emde, M., and Bottger, E., 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal DNA. Nucleic Acids Research, 17: 7843-7853.

    Gray, E. J., Lee, K. D., Souleimanov, A. M., Di Falco, M. R., Zhou, X., Ly, A., Charles, T. C., Driscoll, B. T., and Smith, D. L., 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. Journal of Applied Microbiology, 100: 545-554.

    He, L. L., Chen, W. L., and Liu, L., 2006. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiological Research, 161: 321-326.

    Kayalvizhi, N., and Gunasekaran, P., 2008. Production and characterization of a low molecular weight bacteriocin from Bacillus licheniformis MKU3. Letters in Applied Microbiology, 47: 600-607.

    Khochamit, N., Siripornadulsil, S., Sukon, P., and Siripor nadulsil, W., 2013. Characterization of bacteriocin-producing Bacillus subtilis KKU213 and its potential as a probiotic strain. Current Opinion in Biotechnology, 24: S36.

    Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

    Lee, K. H., Jun, K. D., Kim, W. S., and Paik, H. D., 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 32: 146-151.

    Li, J. F., Chi, Z. M., Li, H. F., and Wang, X. H., 2008. Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. Journal of Ocean University of China, 7 (1): 55-59.

    Liu, Q. L., Gao, G., Xu, H. J., and Qiao, M. Q., 2012. Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Research in Microbiology, 163: 470-478.

    McAulife, O., Ross, R. P., and Hill, C., 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25: 285-308.

    Riley, M. A., and Wertz, J. E., 2002. Bacteriocins: Evolution, ecology and application. Annual Review of Microbiology, 56: 117-137.

    Saitou, N., and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.

    Samy, R. P., Gopalakrishnakone, P., Bow, H., Puspharaj, P. N., and Chow, V. T. K., 2010. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie, 92: 1854-1866.

    Senbagam, D., Gurusamy, R., and Senthilkumar, B., 2013. Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pacific Journal of Tropical Medicine, 12: 934-941

    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24: 1596-1599.

    Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.

    Turgis, M., Vu, K. D., Dupont, C., and Lacroix, M., 2012. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48: 696-702.

    von D?hren, H., 1995. Peptides. In: Genetics and Biochemistry of Antibiotic Production. Vining, L. C., and Stuttard, C., eds., Studtard, Boston, 129-171.

    (Edited by Ji Dechun)

    (Received December 4, 2013; revised March 28, 2014; accepted April 11, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-84023030

    E-mail: lijf1999@qust.edu.cn

    身体一侧抽搐| 岛国在线观看网站| 亚洲 欧美 日韩 在线 免费| 男女下面进入的视频免费午夜 | 两个人免费观看高清视频| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 中文字幕av电影在线播放| 国产视频一区二区在线看| 成人三级黄色视频| 极品教师在线免费播放| 中文字幕色久视频| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 两个人视频免费观看高清| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 免费一级毛片在线播放高清视频 | 久久久国产成人免费| 久久午夜综合久久蜜桃| 亚洲精品国产区一区二| av在线天堂中文字幕| 国产亚洲精品久久久久5区| 亚洲人成伊人成综合网2020| 国产伦一二天堂av在线观看| 欧美在线黄色| 极品教师在线免费播放| 久久久久亚洲av毛片大全| АⅤ资源中文在线天堂| 国产国语露脸激情在线看| 我的亚洲天堂| 999精品在线视频| 日本精品一区二区三区蜜桃| 别揉我奶头~嗯~啊~动态视频| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 国产一区二区三区综合在线观看| 别揉我奶头~嗯~啊~动态视频| 高潮久久久久久久久久久不卡| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| aaaaa片日本免费| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| 久久久国产精品麻豆| 免费在线观看黄色视频的| 中文字幕久久专区| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| x7x7x7水蜜桃| 欧美性长视频在线观看| 精品人妻在线不人妻| 一个人观看的视频www高清免费观看 | 视频区欧美日本亚洲| 中文字幕人妻熟女乱码| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区蜜桃| 黄频高清免费视频| 精品日产1卡2卡| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av香蕉五月| 母亲3免费完整高清在线观看| 亚洲avbb在线观看| 亚洲国产高清在线一区二区三 | 亚洲人成77777在线视频| 久9热在线精品视频| 午夜福利成人在线免费观看| 久久热在线av| 精品午夜福利视频在线观看一区| 亚洲天堂国产精品一区在线| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| 成人特级黄色片久久久久久久| 国产在线观看jvid| 欧洲精品卡2卡3卡4卡5卡区| 久久午夜综合久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 成人永久免费在线观看视频| 妹子高潮喷水视频| 国产免费av片在线观看野外av| 免费在线观看完整版高清| 美女高潮喷水抽搐中文字幕| 亚洲性夜色夜夜综合| a级毛片在线看网站| 高清黄色对白视频在线免费看| 91国产中文字幕| 国产成人欧美在线观看| 日韩欧美在线二视频| 91精品国产国语对白视频| 亚洲精品国产区一区二| 亚洲欧美日韩无卡精品| 国产精品日韩av在线免费观看 | 欧美最黄视频在线播放免费| 欧美精品亚洲一区二区| 亚洲少妇的诱惑av| 日本精品一区二区三区蜜桃| 满18在线观看网站| tocl精华| 久久草成人影院| 黄色毛片三级朝国网站| 一边摸一边抽搐一进一出视频| www.自偷自拍.com| 欧美av亚洲av综合av国产av| 久久久久久国产a免费观看| 中国美女看黄片| e午夜精品久久久久久久| 久久人人爽av亚洲精品天堂| 在线十欧美十亚洲十日本专区| 国产高清视频在线播放一区| 日韩欧美一区二区三区在线观看| 国产av精品麻豆| 欧美日韩一级在线毛片| 国内久久婷婷六月综合欲色啪| netflix在线观看网站| 一进一出抽搐gif免费好疼| 日韩欧美一区二区三区在线观看| 欧美日韩乱码在线| 国产精品秋霞免费鲁丝片| 怎么达到女性高潮| 动漫黄色视频在线观看| 国产精品一区二区三区四区久久 | 夜夜爽天天搞| 最近最新中文字幕大全免费视频| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| 久久久水蜜桃国产精品网| 国产成人一区二区三区免费视频网站| 欧美绝顶高潮抽搐喷水| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 99国产精品免费福利视频| 在线观看日韩欧美| 亚洲午夜精品一区,二区,三区| 亚洲激情在线av| 久久香蕉激情| 国产熟女xx| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片 | 久久精品亚洲精品国产色婷小说| 精品国产美女av久久久久小说| 午夜免费激情av| 国产精品电影一区二区三区| 婷婷精品国产亚洲av在线| 一夜夜www| 亚洲第一电影网av| 老汉色∧v一级毛片| 露出奶头的视频| 久久草成人影院| 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| 亚洲avbb在线观看| 嫩草影视91久久| 欧美成人性av电影在线观看| 国产99久久九九免费精品| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 精品第一国产精品| 搡老岳熟女国产| 一级,二级,三级黄色视频| 日韩大尺度精品在线看网址 | 黄色丝袜av网址大全| 亚洲精品国产区一区二| 51午夜福利影视在线观看| 国产av一区在线观看免费| 老汉色∧v一级毛片| 国产av精品麻豆| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 久久精品成人免费网站| 热re99久久国产66热| 亚洲国产看品久久| 国产欧美日韩综合在线一区二区| 亚洲午夜精品一区,二区,三区| 男女床上黄色一级片免费看| 大码成人一级视频| 午夜福利高清视频| 搡老妇女老女人老熟妇| 午夜免费鲁丝| 日本五十路高清| 母亲3免费完整高清在线观看| 脱女人内裤的视频| 91成人精品电影| 一边摸一边抽搐一进一小说| 91在线观看av| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 久久婷婷成人综合色麻豆| 久久中文字幕一级| 国产激情欧美一区二区| 国产av一区二区精品久久| bbb黄色大片| 欧美激情久久久久久爽电影 | 中文字幕av电影在线播放| 91字幕亚洲| 久久狼人影院| 欧美乱码精品一区二区三区| 一区二区三区激情视频| 男女下面进入的视频免费午夜 | 人人妻人人澡欧美一区二区 | 搡老熟女国产l中国老女人| 欧美+亚洲+日韩+国产| or卡值多少钱| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看 | 午夜日韩欧美国产| 999久久久国产精品视频| 国产一区二区在线av高清观看| 女警被强在线播放| 精品高清国产在线一区| 久久久久亚洲av毛片大全| 久久中文字幕人妻熟女| 最新在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 国产成人影院久久av| 黄片播放在线免费| 久久久久久人人人人人| 久久久水蜜桃国产精品网| 久久久精品国产亚洲av高清涩受| 国产一区二区三区视频了| 日本免费a在线| 黄色a级毛片大全视频| 亚洲国产精品999在线| 午夜精品在线福利| 久久精品亚洲熟妇少妇任你| 啦啦啦 在线观看视频| 国产精品久久电影中文字幕| 亚洲 国产 在线| 大型av网站在线播放| 脱女人内裤的视频| 在线永久观看黄色视频| 亚洲一区高清亚洲精品| 嫩草影视91久久| 亚洲人成电影观看| 亚洲国产精品合色在线| 亚洲精品国产精品久久久不卡| 亚洲男人的天堂狠狠| 好男人电影高清在线观看| 人成视频在线观看免费观看| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 精品久久久久久,| 久久香蕉激情| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 日韩欧美国产在线观看| 国产又色又爽无遮挡免费看| 欧美色欧美亚洲另类二区 | 亚洲欧美激情综合另类| 日韩免费av在线播放| 国产高清有码在线观看视频 | 一级作爱视频免费观看| 日本黄色视频三级网站网址| 欧美成人一区二区免费高清观看 | 久久性视频一级片| 又黄又粗又硬又大视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久久中文| 国产私拍福利视频在线观看| 婷婷丁香在线五月| 亚洲成人久久性| 电影成人av| 无限看片的www在线观看| 一二三四社区在线视频社区8| 国产在线精品亚洲第一网站| 亚洲欧美日韩无卡精品| av片东京热男人的天堂| 亚洲三区欧美一区| a级毛片在线看网站| 亚洲专区字幕在线| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址 | 中文字幕久久专区| 99精品欧美一区二区三区四区| 色综合欧美亚洲国产小说| 日韩精品青青久久久久久| 两性夫妻黄色片| 成年版毛片免费区| а√天堂www在线а√下载| 真人做人爱边吃奶动态| 国产一区二区激情短视频| 久久热在线av| 欧美老熟妇乱子伦牲交| 精品久久久久久成人av| 日本欧美视频一区| 99久久国产精品久久久| 午夜视频精品福利| 一级作爱视频免费观看| 妹子高潮喷水视频| 两性夫妻黄色片| 变态另类成人亚洲欧美熟女 | 国产精品亚洲一级av第二区| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲| 99国产综合亚洲精品| 看片在线看免费视频| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| 午夜影院日韩av| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费 | 9191精品国产免费久久| 淫秽高清视频在线观看| 国产1区2区3区精品| 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| 国产精品,欧美在线| 美女扒开内裤让男人捅视频| 亚洲欧美日韩无卡精品| 日本vs欧美在线观看视频| 女人被躁到高潮嗷嗷叫费观| 亚洲成av人片免费观看| 亚洲熟女毛片儿| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 满18在线观看网站| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 91大片在线观看| 久久婷婷人人爽人人干人人爱 | 国产精品,欧美在线| 色尼玛亚洲综合影院| 国产又爽黄色视频| 成人三级做爰电影| 在线观看一区二区三区| 少妇的丰满在线观看| 一区二区三区高清视频在线| 在线观看日韩欧美| 91字幕亚洲| 欧美日韩一级在线毛片| 18禁观看日本| 精品一区二区三区四区五区乱码| 午夜免费成人在线视频| 中文字幕人妻熟女乱码| 999久久久国产精品视频| 99在线视频只有这里精品首页| 动漫黄色视频在线观看| 国产欧美日韩一区二区精品| 午夜视频精品福利| 午夜老司机福利片| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡 | 亚洲国产精品999在线| 一区二区三区精品91| 老司机深夜福利视频在线观看| 国产在线观看jvid| 国产成人精品久久二区二区91| 久久热在线av| 免费看a级黄色片| 欧美乱妇无乱码| 欧美乱色亚洲激情| 日本精品一区二区三区蜜桃| 国产成人欧美在线观看| 不卡一级毛片| 亚洲av熟女| 夜夜躁狠狠躁天天躁| 国产又爽黄色视频| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 欧美日韩黄片免| 久久久久久久精品吃奶| 看黄色毛片网站| 1024香蕉在线观看| 欧美中文日本在线观看视频| 不卡一级毛片| 国产精品 国内视频| 亚洲国产日韩欧美精品在线观看 | 欧美av亚洲av综合av国产av| 国产亚洲av嫩草精品影院| 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 欧美成人午夜精品| 午夜精品在线福利| 大型黄色视频在线免费观看| av片东京热男人的天堂| 国产真人三级小视频在线观看| 婷婷丁香在线五月| 国产蜜桃级精品一区二区三区| 黄色丝袜av网址大全| 1024香蕉在线观看| 中文字幕久久专区| 亚洲av电影在线进入| 精品久久久精品久久久| 大型av网站在线播放| 精品福利观看| 午夜福利视频1000在线观看 | 欧美丝袜亚洲另类 | 国产片内射在线| 黄色女人牲交| 91老司机精品| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 露出奶头的视频| 亚洲一区二区三区不卡视频| 久久精品国产亚洲av高清一级| 激情在线观看视频在线高清| 一边摸一边抽搐一进一小说| 国产成人欧美| 免费不卡黄色视频| 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 国产91精品成人一区二区三区| 九色国产91popny在线| 亚洲精品美女久久久久99蜜臀| 亚洲色图综合在线观看| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品一区二区蜜桃av| 黄网站色视频无遮挡免费观看| 久久九九热精品免费| 12—13女人毛片做爰片一| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡欧美一区二区 | 国产成年人精品一区二区| 久久青草综合色| 91成年电影在线观看| 在线观看舔阴道视频| 免费看美女性在线毛片视频| 午夜激情av网站| 免费看十八禁软件| 久久久久久人人人人人| 久久久国产成人精品二区| 男女下面进入的视频免费午夜 | 50天的宝宝边吃奶边哭怎么回事| 欧美日韩中文字幕国产精品一区二区三区 | 色av中文字幕| 欧美一区二区精品小视频在线| 青草久久国产| 一级黄色大片毛片| 久久久久久久久久久久大奶| 国产一区二区三区视频了| 黄色片一级片一级黄色片| 村上凉子中文字幕在线| 亚洲国产精品久久男人天堂| 亚洲av成人av| 国产熟女xx| 亚洲国产精品成人综合色| 欧美成人午夜精品| 国产成人av教育| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲视频免费观看视频| 成人欧美大片| 一夜夜www| 麻豆成人av在线观看| 欧美色视频一区免费| 国产精品影院久久| 精品日产1卡2卡| 宅男免费午夜| 在线国产一区二区在线| 高清黄色对白视频在线免费看| 亚洲人成网站在线播放欧美日韩| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 日本三级黄在线观看| 日本精品一区二区三区蜜桃| 亚洲国产日韩欧美精品在线观看 | 亚洲国产精品久久男人天堂| 长腿黑丝高跟| 一本大道久久a久久精品| 久久亚洲真实| 久久久久久人人人人人| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 亚洲午夜理论影院| av超薄肉色丝袜交足视频| 欧美亚洲日本最大视频资源| 首页视频小说图片口味搜索| 国产精品久久久人人做人人爽| 欧美最黄视频在线播放免费| 久久人妻熟女aⅴ| 国产精品亚洲一级av第二区| 精品国产一区二区久久| 男人舔女人下体高潮全视频| 精品久久久久久久久久免费视频| 俄罗斯特黄特色一大片| 女同久久另类99精品国产91| 美女 人体艺术 gogo| 欧美在线黄色| 我的亚洲天堂| 欧美日韩乱码在线| 亚洲国产高清在线一区二区三 | www.精华液| 国产欧美日韩精品亚洲av| 国产亚洲精品av在线| a级毛片在线看网站| 一区二区三区高清视频在线| 91麻豆av在线| 亚洲精品美女久久久久99蜜臀| 女人爽到高潮嗷嗷叫在线视频| 亚洲黑人精品在线| ponron亚洲| 精品欧美一区二区三区在线| 深夜精品福利| 亚洲自偷自拍图片 自拍| 一本久久中文字幕| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区三区| 91国产中文字幕| 国产三级在线视频| 最近最新中文字幕大全电影3 | 母亲3免费完整高清在线观看| 免费在线观看影片大全网站| 99久久综合精品五月天人人| 午夜福利,免费看| 精品卡一卡二卡四卡免费| 国产精品 国内视频| 亚洲专区中文字幕在线| 法律面前人人平等表现在哪些方面| 亚洲av成人av| 99国产精品一区二区三区| 一个人观看的视频www高清免费观看 | 欧美人与性动交α欧美精品济南到| 亚洲 欧美 日韩 在线 免费| 给我免费播放毛片高清在线观看| 麻豆成人av在线观看| 最近最新免费中文字幕在线| 欧美精品亚洲一区二区| 免费看十八禁软件| 久久精品91蜜桃| 波多野结衣一区麻豆| 黄色 视频免费看| 女警被强在线播放| 免费看a级黄色片| 精品久久蜜臀av无| 国产xxxxx性猛交| 法律面前人人平等表现在哪些方面| 久久婷婷人人爽人人干人人爱 | 国产精品免费一区二区三区在线| xxx96com| 日韩三级视频一区二区三区| 波多野结衣巨乳人妻| 黄色视频,在线免费观看| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 黄网站色视频无遮挡免费观看| 波多野结衣一区麻豆| 91字幕亚洲| 首页视频小说图片口味搜索| 久久亚洲精品不卡| 最近最新中文字幕大全电影3 | 在线永久观看黄色视频| netflix在线观看网站| 又大又爽又粗| 男女午夜视频在线观看| 精品一区二区三区av网在线观看| 一夜夜www| 国产高清视频在线播放一区| 日韩欧美在线二视频| 淫秽高清视频在线观看| 亚洲熟女毛片儿| 国产成人欧美在线观看| АⅤ资源中文在线天堂| 97人妻天天添夜夜摸| 国产成人av教育| 国产一卡二卡三卡精品| 熟妇人妻久久中文字幕3abv| 亚洲成av人片免费观看| 久久狼人影院| 亚洲国产欧美网| 禁无遮挡网站| 亚洲第一av免费看| 91精品国产国语对白视频| 欧美成人一区二区免费高清观看 | av天堂久久9| 丝袜美腿诱惑在线| 免费在线观看影片大全网站| 日韩欧美在线二视频| 黄色视频,在线免费观看| 国产一区二区三区视频了| 一卡2卡三卡四卡精品乱码亚洲| 视频区欧美日本亚洲| 一边摸一边做爽爽视频免费| 久久久国产成人精品二区| 变态另类丝袜制服| 在线观看66精品国产| 操美女的视频在线观看| 亚洲男人天堂网一区| 久久精品亚洲熟妇少妇任你| 国产麻豆成人av免费视频| 亚洲成人国产一区在线观看| 天天一区二区日本电影三级 | 日本 av在线| 在线国产一区二区在线| 青草久久国产| av欧美777| 好看av亚洲va欧美ⅴa在| 成年人黄色毛片网站| 日本 av在线| 美国免费a级毛片| 69精品国产乱码久久久| 他把我摸到了高潮在线观看| 亚洲自偷自拍图片 自拍| 黄片大片在线免费观看| 乱人伦中国视频| 校园春色视频在线观看| 两个人看的免费小视频| 99精品欧美一区二区三区四区| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 超碰成人久久| 夜夜爽天天搞| 夜夜看夜夜爽夜夜摸| 99精品久久久久人妻精品|