• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrastructure Developments During Spermiogenesis in Polydora ciliata (Annelida: Spionidae), a Parasite of Mollusca

    2014-04-26 10:55:00GAOYanZHANGTaoZHANGLibinQIUTianlongXUEDongxiuandYANGHongsheng
    Journal of Ocean University of China 2014年6期

    GAO Yan, ZHANG Tao ZHANG Libin QIU Tianlong, XUE Dongxiu, and YANG Hongsheng

    1) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Ultrastructure Developments During Spermiogenesis in Polydora ciliata (Annelida: Spionidae), a Parasite of Mollusca

    GAO Yan1),2), ZHANG Tao1), ZHANG Libin1), QIU Tianlong1),2), XUE Dongxiu1),2), and YANG Hongsheng1),*

    1) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Spionid worms of Polydora ciliata inhabit the shells of many commercially important bivalves and cause disease in molluscan aquaculture. Their sperm structure is closely related to their fertilization method. To give an insight into the sperm structure and spermatogenesis, ultrastructure details of the subcellular components of germ cells during spermiogenesis of Polydora ciliata are detected by transmission electron microscopy (TEM). In P. ciliata, during spermiogenesis, chromatin is regularly arranged as dense fibrils and becomes more condensed when the nucleus elongates. Microtubules do not surround the nucleus during its elongation. The Golgi phase is characterized by the formation of proacrosomal granules within the Golgi apparatus. The proacrosomal granules fuse to form a single, spherical acrosomal vesicle that migrates to the anterior pole of the cell. At the time of nuclear condensation, mitochondria become reduced in number but increased in size, causing deep indentation at the base of the nucleus. The mid-piece has a few mitochondria. The cap phase includes the spreading of the acrosomal granule over the surface of the nucleus of the differentiating spermatid. The acrosomal phase of spermiogenesis is typically associated with changes in the shape of the nucleus, acrosome and tail. The relationship of sperm ultrastructure to spermiogenesis in spionidae species was discussed.

    Polydora ciliata; spermiogenesis; ultrastructure

    1 Introduction

    The Polydora complex in the family of Spionidae contains at least 115 species in nine genera: Amphipolydora, Boccardia, Boccardiella, Carazziella, Dipolydora, Polydora, Polydorella, Pseudopolydora, and Tripolydora (Rice et al., 2008). These genera, commonly known as blisterworms or mudworms, share a setigerous fifth chaetiger which is modified and includes specialized setae or spines. These spines are useful in tube construction and maintenance. These worms can be troublesome parasites of commercially important bivalves. The boring behavior in the shells induces the creation of blisters by shell marterial secretion (conchiolin covered with nacre) to isolate the worm. These blisters containing the compact sludge can occupy a large proportion of the mantle cavity space and contribute to weakening the shell. Worm infestation affects the presentation of half-shell and reduces the market value.

    Several species of polydorid have been reported to cause damage to abalone (Lleonart et al., 2003; Mcdiarmid et al., 2004; Simon et al., 2004; Aviles et al., 2007), oysters (Loosanoff and Engle, 1943; Mohammad, 1972; Sato-Okoshi and Okoshi, 1993; Nel et al., 1996), scallops (Sato-Okoshi et al., 1990; Bower et al., 1992; Sato-Okoshi and Okoshi, 1993; Mortensen et al., 2000; Silina, 2006), clams (Riascos et al., 2008) and many other mollusks. Infestation by Polydora, therefore, is an important problem in molluscan aquaculture.

    About two decades ago the Japanese scallop Patinopecten yessoensis was introduced from Japan to China, and became one of the most important commercial bivalve mollusks (Li et al., 2007). However, numerous Polydora blisters were found in the scallop culture (Read et al., 2010; Walker et al., 2011; Sato-Okoshi et al., 2012; Silina et al., 2012; Souto et al., 2012). A scallop devotes much of its energy in secreting nacre and concholin during mud blister formation, which leads to poor quality and low growth rate. Clarifying the life cycle, including reproductive biology, of these boring Polydora could help in developing a management strategy to minimize the impact of mud worm infestation of scallop culture. Thereproductive biology of Polydora is poorly understood because of their life history characteristics. For example, tube-dwelling lifestyles limit direct body-contact or decrease the mobility of individuals so that encounters between sexes are infrequent or impossible. Due to the relationship between structural features of the spermatozoa and biology of fertilization of a species, the study of the sperm ultrastructure of Polydora could elucidate the mode of sperm transfer in this species.

    The ultrastructure of spermatogenesis has been reported in three species of Polydora only: Polydora ligni, P. websteri, and P. socialis (Rice, 1981). Similar characteristics such as a conical acrosome with a distinctive substructure, and the presence of platelet-shaped electron-dense bodies throughout the nuclear region and mid-piece, have been described. Nevertheless, the structure of the spermatozoa of individual species has unique features. The present work describes the ultrastructure of spermiogenesis and sperm in Polydora ciliata (Johnston, 1838), a parasite of the scallop Patinopecten yessoensis (Bivalvia, Mollusca) in the Yellow Sea.

    2 Materials and Methods

    Scallops infested with P. ciliata were collected from the Yellow Sea (39?03′N, 122?44′E) in March 2008. Adult worms, removed from the shell fragments with forceps, were relaxed in isotonic magnesium chloride to examine the gametogenic segments. Middle gametogenic segments were cut off and fixed in cold (4℃) 2.5% glutaraldehyde in 0.1 mol L-1sodium cacodylate buffer (pH 7.4) containing 3% sucrose, and left overnight at 4℃. Then the tissues were postfixed in 1% osmium tetroxide for 1 h, rinsed in 0.1 mol L-1sodium cacodylate buffer at pH 7.4, dehydrated in an ascending series of ethanol, and infiltrated and embedded in Epon 812. Ultrathin sections (55–70 nm) at different levels were cut on an LKB ultramicrotome, mounted on bare 200-mesh copper grids, and double-stained with uranyl acetate (5 min) and lead citrate (3 min); all staining was carried out in a 60℃ oven. The specimens were then examined in a transmission electron microscope (Hitachi, H-700) operating at an accelerating voltage of 100 kV.

    3 Results

    Different developmental stages of gametes, from spermatocytes to mature spermatozoa, were found in the seminal vesicles of each investigated mature individual. We divide spermiogenesis into three stages and describe them separately for convenience.

    3.1 Early Stage

    The presence of synaptonemal complexes is an important characteristic of primary spermatocytes. It indicates that the cells are in the leptotene stage of the first meiotic division. The spherical nuclei of primary spermatocytes occupy almost the entire cell volume.

    Fig.1 TEM micrographs showing early stages of spermatogenesis in P. ciliata. A, A primary spermatocyte showing a large nucleus with several synaptonemal complexes (arrowhead); B, A secondary spermatocyte with numerous mitochondria; C, A secondary spermatocyte with diffuse heterochromatin in the nucleus. m, mitochondria; N, nucleus; NE, nuclear envelope; pg, proacrosomal granule. Scale bars = 1 μm.

    Numerous dense granules and small mitochondria are scattered in the cytoplasm (Fig.1A). The secondary spermatocytes are similar to the primary spermatocytes in appearance, and their cytoplasm contains numerous mitochondria. The nuclei of the secondary spermatocytes appear to be slightly smaller and contain more heterochromatin than those of the primary spermatocytes. Vacuoles are present in the cytoplasm, and the ovoid mitochondria are close to the nucleus (Fig.1B). Coarsely granular chromatin begins gathering into a cluster. Nuclear pores are abundant. Two electron-dense granules which are recognized as proacrosomal granule, appear in the secondary spermatocytes (Fig.1C). The proacrosomal granules are large and ovate, and migrate towards the opposite pole of the cell.

    3.2 Middle Stage

    A secondary spermatocyte forms two spermatids after the second meiotic division. The cellular components change synchronously during the differentiation of the spermatids. We describe these changes separately for convenience.

    Fig.2 TEM micrographs showing mid- to late spermatids in P. ciliate. A, A mid spermatid with nucleus (n) and developing axoneme (ax); B, A mid spermatid with Golgi complex (g) and acrosome-like structure (ac); C, A mid spermatid with trapeziform nucleus; D, A mid spermatid with a centriole lying close to the plasmalemma; E, Late spermatid with proximal centriole; F, Late spermatid with distal centriole. ac, acrosome-like structure; ax, axoneme; c, centriole; dc, distal centriole; N, nucleus; m, mitochondria; pc, proximal centriole; pg, proacrosomal granule; pl, platelet-shaped electron-dense body. Scale bars = 1 μm.

    Nuclear Condensation During this stage of spermiogenesis, the condensation of chromatin proceeds and the nucleus then becomes trapeziform (Fig.2A). The granular chromatin condenses into tightly packed and uniformly electron-dense strands. These dense strands are in a progressive manner from anterior to posterior in the nucleus (Fig.2B). The chromatin then becomes regularly arranged as dense fibrils (Fig.2C). A centriolar fossa forms at the posterior end of the nucleus. The fossa becomes progressively deeper as nuclear elongation proceeds (Fig.2E).

    Proacrosome Formation In the early spermatids, the proacrosomal granules come to lie close to the developing anterior of the nucleus in a slight nuclear depression (Fig.2A). Acrosome formation is augmented with the appearance of a spherical, membrane-bound pro-acrosome granule on the concave surface of the Golgi complex between the Golgi and the nucleus. The location of the Golgi region and pro-acrosomal granule defines the future anterior end of the sperm cell. This granule subsequently fuses with the cell nucleus and generally contains a region of denser material (Fig.2A). With the differentiation of the spermatids, the proacrosomal granules fuse to form a single, spherical acrosomal vesicle that migrates to the anterior pole of the cell. This vesicle elongates and finally locates in the cup-shaped anterior surface of nucleus. At the end of the acrosome phase, the proacrosomal granules merge and become a long, narrow structure that forms a kind of cup beneath the plasma membrane (Fig.2B).

    Cytoplasmic Inclusion In early spermatids, a few mitochondria and multivesicular bodies are distributed at the margins of the cytoplasm. At the time of nuclear condensation, mitochondria become reduced in number but increase in size; even when they become apposed to the nuclear surface, they still undergo an increase in size, causing deep indentations at the base of the nucleus (Figs.2C, E). The Golgi complex is found in the posterior cytoplasm of early spermatids, opposite to the primary acrosomal vesicle (Fig.2B). Electron-dense platelet-shaped bodies form a layer around the developing spermatid just beneath the plasma membrane (Fig.2D).

    Axoneme Formation The formation of the centriole occurs simultaneously with the condensation of chromatin in the nucleus. In early spermatids, the centrioles lie close to the plasmalemma and lack a prominent centriolar satellite (Fig.2D). During chromatin condensation, the flagellum develops from the centrioles. The axoneme becomes longer and bent because of continuous growth. As a result, an axoneme is usually sectioned twice within one cell (Fig.2F). The distal centriole and proximal centriole are oriented at right angles to each other in late spermatid. The fossa at the posterior end of the nucleus is invaded by the proximal and distal centrioles that fuse to form the basal body of the flagellum. The proximal centriole lies under the posterior fossa of the nucleus while the distal centriole is associated with the axonemal complex with microtubules connecting with the flagellum (Figs.2E, F).

    3.3 Late Stage

    Late spermatids can be recognized by a more elongate nucleus, while the chromatin is becoming homogeneously electron-dense. The nucleus has a posterior fossa that houses the proximal centriole. The centrioles are located at the base of the nucleus in a position opposite to the acrosome. The acrosome has reached its final position and shape, and the mid-piece mitochondria are located around the axoneme. The distal part of the axoneme, which has a 9 + 2 arrangement of microtubules, is located centrally within the flagellum with only a small amount of surrounding cytoplasm (Fig.3H).

    Early in spermiogenesis, the proacrosome lies next to the plasmalemma, separating from the nucleus (Fig.3A). Later, the proacrosome migrates to the surface of the nucleus so that the prominent electron-dense zone becomes apposed to the nuclear envelope (Fig.2B). The proacrosome then becomes cup-shaped, with a well-defined acrosomal fossa. Longitudinal microtubules appear in the developing acrosomal vesicle (Fig.3A).

    At the time of acrosome formation, the mitochondria become reduced in number but increased in size. The internal membranes in the sausage-shaped mitochondria are clearly discerned during earlier stages (Fig.3B). Initially, most mitochondria are almost circular in crosssection. The mid-piece contains up to seven mitochondria, six being circular and one being bean-shaped. The mitochondria lie close together and the zone contacting with the membranes are rather electron-dense (Fig.3G).

    Amoeboid-shaped cells with a large nucleus are found during spermiogenesis. They are called auxiliary cells. The cytoplasm contains a Golgi complex, a few cisternae of endoplasmic reticulum and mitochondria. These cells may support nutrients to the sperm (Fig.3I).

    4 Discussion

    4.1 Spermiogenesis Characteristics

    The present results revealed substantial similarities in the ultrastructure of the spermiogenesis and spermatozoa among P. ciliata from the Yellow Sea and the three species from the Indian River Lagoon in the United States (Rice, 1981). In Polydora, the microtubules are absent during the granular chromatin condensation into tightly packed and uniformly electron-dense clumps. Chromatin structure of the same features was found in Boccardiella hamata from the Sea of Japan (Reunov et al., 2009).

    In most taxa, the acrosome is a cap-like structure derived from the Golgi complex (Zhu et al., 2008). However, it is different for P. ciliata. In this species, the Golgi complex forms the proacrosomal granules, which fuse to form an acrosomal vesicle. This structure is similar to that found in Syllis krohni (Musco et al., 2008).

    In addition to the elongated sperm head in Polydora, the presence of cytoplasmic platelets may be important in the biology of reproduction. If these platelets are energy storage organelles (as hypothesized), then reproduction in this species could include prolonged storage of sperm without loss of viability, multiple egg laying following a single sperm transfer, establishment of new populations by a single inseminated female, and the elimination ofsimultaneous spawning of males and females. These reproductive adaptations could be quite advantageous to opportunistic species such as P. ligni and S. benedicti, which have rapid reproduction and tend to colonize ephemeral habitats (Grassle, 1974).

    4.2 Correlating Sperm Morphology and Reproductive Mechanisms

    Wilson (1991; see also Giangrande, 1997) reviewed sexual reproduction in the Polychaeta and identified 17 modes based on the type of larvae and the mode of development. He categorized the species as using free spawning (external fertilization) with no care of larvae, brooding of larvae (four types), or using gelatinous encapsulation of larvae. Offsprings were released as lecithotrophic larvae, planktotrophic larvae, or larvae that underwent ‘direct development’. This variability in reproductive mode is reflected in the variety in sperm structurethat is found among polychaetes. Ultrastructure studies of spermiogenesis and the morphology of spermatozoa in polychaetes have been reviewed (Eckelbarger and Grassle, 1987; Wilson, 1991; Giangrande, 1997; Rouse, 1999). A number of studies on ultrastructure aspects of spermatozoa in polychaetes have shown a large diversity in sperm morphology (Tzetlin et al., 2002; Jouin-Toulmond and Purschke, 2004; Simon and Rouse, 2005; Lepore et al., 2006; Musco et al., 2008; Reunov et al., 2009). The hypothesis that sperm structure correlates with the method of sperm transfer or biology of fertilization is supported by these studies. Sperm transfer in polychaetes occurs in two main modes: non-aggregate transfer, in which sperm swim freely and are not packed together before reaching eggs; and aggregate transfer, in which sperm are packed together by varying complex structure before reaching eggs. Life history characteristics and habitat choice have been considered strong selective forces for the mode of sperm transfer. For example, sessile or tube-dwelling lifestyles limit direct body-contact or decrease the mobility of individuals, so that encountering between different sexes are infrequent or impossible. Thus, neither copulation, nor pseudocopulation, nor indirect hypodermic impregnation would be favored. Broadcast spawning or free transfer of spermatophores may be the only alternative for such species. However, broadcast spawning requires a large number of gametes and synchronous reproduction in the population (Hsieh and Simon, 1990). In most cases, sperm that is directly introduced comprises a narrow bell-shaped acrosome, a elongated nucleus with highly condensed chromatin, a typical 9+2 flagellum derived from the distal centriole, and a few mitochondria as a sheath around the axoneme (Jamieson and Rouse, 1989; Purschke and Fursman, 2005).

    From the results in this study, the sperm structure of P. ciliata resembles the direct sperm transfer type. The acrosome contains a compact vesicle and an axial rod (Figs.3A, 4A). The chromatin is completely condensed in the spermatozoa. The nucleus has a posterior fossa that houses a flagellum derived from proximal centriole (Fig.4A). The sperm mitochondria are spherical during spermiogenesis and elongate slightly down the axoneme, forming a tight sheath in very late spermatid (Fig.4D). Because the mitochondria may continue to fuse during the late spermatid stage, the number of mitochondria in middle-piece is not clear and more detailed study is required. The elongation of the nuclei and mitochondria may cause the sperm to be more effective (Rice et al., 1992).

    The present study has shown that features such as the regularly arranged fibrous chromatin, the formation of proacrosomal granules, and the presence of cytoplasmic platelets are important features of P. clilata. Jamieson (1989) divided polychaete sperm into ect-aquasperm, ent-aquasperm, and introsperm. His report on the sperm structure had been demonstrated for the Spionidae. Our research supports his conclusion. Shell-boring spionid polychaetes are ubiquitous in many mollusca species and there are no effective treatments. Maybe we can explore some measures to prevent and control this parasite of Mollusca from fertilization.

    Fig.4 Reconstruction of the spermatozoon of P. ciliata. A, longitudinal section; B, transverse section through the acrosome; C, transverse section through the nucleus; D, transverse section through the mid-piece; E, transverse section through the flagellum; ax, axoneme; m, mitochondria; n, nucleus. Scale bar = 1 μm

    Acknowledgements

    The work was supported by the National Key Technology Support Program (2011BAD13B05). We appreciate the technical help from Prof. Ming Jiang and Mrs. Jialin Xie.

    Aviles, F., Rozbaczylo, N., Herve, M., and Godoy, M., 2007. First report of Polychaetes from the genus Oriopsis (Polychaeta: Sabellidae) associated with the Japanese abalone Haliotis discus hannai and other native molluscs in Chile. Journal of Shellfish Research, 26 (3): 863-867.

    Bower, S. M., Blackbourn, J., Meyer, G. R., and Nishimura, D. J. H., 1992. Diseases of cultured Japanese scallops (Patinopecten Yessoensis) in British-Columbia, Canada. Aquaculture, 107 (2-3): 201-210.

    Eckelbarger, K. J., and Grassle, J. P., 1987. Spermatogenesis,sperm storage and comparative sperm morphology in nine species of Capitella, Capitomastus and Capitellides (Polychaeta: Capitellidae). Marine Biology, 95: 415-429.

    Giangrande, A., 1997. Polychaeta reproductive patterns, life cycles and life histories: An overview. Oceanography and Marine Biology: An Annual Review, 35: 323-389.

    Grassle, J. F., and Grassle, J. P., 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes.Journal of Marine Research, 32: 253-284.

    Hsieh, H., and Simon, J. L., 1990. The Sperm Transfer System in Kinbergonuphis simoni (Polychaeta: Onuphidae). The Biological Bulletin, 178: 85-93.

    Jamieson, B. G. M., and Rouse, G. W., 1989. The spermatozoa of the Polychaeta (Annelida) – An ultrastructural review. Biological Reviews of the Cambridge Philosophical Society, 64 (2): 93-157.

    Jouin-Toulmond, C., and Purschke, G., 2004. Ultrastructure of the spermatozoa of Parenterodrilus taenioides (Protodrilida:‘Polychaeta’) and its phylogenetic significance. Zoomorphology, 123: 139-146.

    Lepore, E., Sciscioli, M., Mastrodonato, M., Gheradi, M., Giangrande, A., and Musco, L., 2006. Sperm ultra-structure and spermiogenesis in Syllis krohni (Polychaeta: Syllidae), with some observation on its reproductive biology. Scientia Marina, 70 (4): 585-592.

    Li, Q, Xu, K., and Yu, R., 2007. Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture, 269 (1-4): 211-219.

    Lleonart, M., Handlinger, J., and Powell, M., 2003. Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture, 221 (1-4): 85-96.

    Loosanoff, V. L., and Engle, J. B., 1943. Polydora in oysters suspended in, the water. Biological Bulletin, 85 (1): 69-78.

    Mcdiarmid, H., Day, R., and Wilson, R., 2004. The ecology of polychaetes that infest abalone shells in Victoria, Australia. Journal of Shellfish Research, 23 (4): 1179-1188.

    Mohammad, M. M., 1972. Infestation of pearl oyster Pinctada margaritifera (Linne) by a new species of Polydora in Kuwait, Arabian Gulf. Hydrobiologia, 39 (4): 463-477.

    Mortensen, S., Meeren, T. V., and Fosshagen, A., 2000. Mortality of scallop spat in cultivation, infested with tube dwelling bristle worm, Polydora sp. Aquaculture International, 8: 267-271.

    Musco, L., Giangrande, A., Gherardi, M., Leopre, E., Mercurio, M., and Sciscioli, M., 2008. Sperm ultra-structure of Odontosyllis ctenostoma (Polychaeta: Syllidae) with inferences on syllid phylogeny and reproductive biology. Scientia Marina, 72 (3): 421-427.

    Nel, R., Coetzee, P. S., and Niekerk, G. V., 1996. The evaluation of two treatments to reduce mud worm (Polydora hoplura Claparede) infestation in commercially reared oysters (Crassostrea gigas Thunberg). Aquaculture, 141 (1-2): 31-39.

    Okoshi, S. W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59 (7): 1243-1247.

    Purschke, G., and Fursman, M. C., 2005. Spermatogenesis and spermatozoa in Stygocapitella subterranea (Annelida, Parergodrilidae), an enigmatic supralittoral polychaete. Zoomorphology, 124: 137-148.

    Read, G. B., 2010. Comparison and history of Polydora websteri and P. haswelli (Polychaeta: Spionidae) as mud-blister worms in New Zealand shellfish. New Zealand Journal of Marine and Freshwater Research, 44 (2): 83-100.

    Reunov, A. A., Yurchenko, O. V., Alexandrova, Y. N., and Radashevsky, V. I., 2009. Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: Sperm formation mechanisms as characteristics for future taxonomic revision. Acta Zoologica, 91 (4): 447-456.

    Riascos, J. M., Heilmayer, O., Oliva, M. E., Laudien, J., and Arntz, W. E., 2008. Infestation of the surf clam Mescidesma donacium by the spionid polychaete Polydora bioccipitalis. Journal of Sea Research, 59 (4): 217-227.

    Rice, S. A., 1981. Spermatogenesis and sperm ultrastructure in three species of Polydora and in Streblospio benedicti (Polychaeta, Spionidae). Zoomorphology, 97 (1-2): 1-16.

    Rice, S. A., and Harrison, F. W., 1992. Polychaeta: Spermatogenesis and spermiogenesis. Microscopic Anatomy of Invertebrates, 7: 129-151.

    Rice, S. A., Harrison, F. W., and Gardiner, S. L., 1982. Polychaeta: Spermatogenesis and spermiogenesis. Microscopic Anatomy of Invertebrates, 7: 129-151.

    Rice, S. A., Karl, S., and Rice, K. A., 2008. The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invertebrate Biology, 127 (1): 45-64.

    Rouse, G. W., 1999. Polychaeta sperm: Phylogenetic and functional considerations. Hydrobiologia, 402: 215-224.

    Sato-Okoshi, W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59 (7): 1243-1247.

    Sato-Okoshi, W., Okoshi, K., Koh, B. S., Kim, Y. H., and Hong, J. S., 2012. Polydorid species (Polychaeta: Spionidae) associated with commercially important mollusk shells in Korean waters. Aquaculture, 350: 82-90.

    Sato-Okoshi, W., Sugawara, Y., and Nomura, T., 1990. Reproduction of the boring polychaete Polydora-Variegata inhabiting scallops in Abashiri Bay, North Japan. Marine Biology, 104 (1): 61-66.

    Silina, A. V., 2006. Tumor-like formation on the shells of Japanese scallops Patinopecten yessoensis (Jay). Marine Biology, 148: 833-840.

    Silina, A. V., and Zhukova, N. V., 2012. The benthic association between a bivalve and a shell boring polychaete and their potential food sources. Oceanology, 52 (5): 646-654.

    Simon, A. C., and Rouse, G. W., 2005. Ultrastructure of spermiogenesis, sperm, and the spermatheca in Terebrasabella heterouncinata (Polychaeta: Sabellidae: Sabellinae). Invertebrate Biology, 124 (1): 39-49.

    Simon, C. A., Kaiser, H., and Britz, P. J., 2004. Infestation of the abalone, Haliotis midae, by the sabellid, Terebrasabella heterouncinata, under intensive culture conditions, and the influence of infestation on abalone growth. Aquaculture, 232: 29-40.

    Souto, V. S., Schejter, L., and Bremec, C. C., 2012. Epibionts on Aequipecten tehuelchus (d’Orbigny, 1846) (Pectinidae) in shelf waters off Buenos Aires, Argentina. American Malacological Bulletin, 30 (2): 261-266.

    Toulmond, J. C., and Purschke, G., 2004. Ultrastructure of the spermatozoa of Parenterodrilus taenioides (Protodrilida: ‘Polychaeta’) and its phylogenetic significance. Zoomorphology, 123: 139-146.

    Tzetlin, A. B., Dahlgren, T., and Pueschke, G., 2002. Ultrastructure of the body wall, body cavity, nephridia and spermatozoa in four species of the Chrysopetalidae (Annelida, ‘Polychaeta’). Zoologischer Anzeiger, 241: 37-55.

    Walker, L. M., 2011. A review of the current status of the Polydora-complex (Polychaeta: Spionidae) in Australia and a checklist of recorded species. Zootaxa, 2751: 40-62.

    Wilson, W. H., 1991. Sexual reproductive modes in polychaetes: Classification and diversity. Bulletin of Marine Science, 48 (2): 500-516.

    Zhu, J. Q., Dahms, H. U., and Yang, W. X., 2008. Ultrastructure of the mature spermatozoon of the bivalve Scapharca broughtoni (Mollusca: Bivalvia: Arcidae). Micron, 39 (8): 1205-1209.

    (Edited by Qiu Yantao)

    (Received February 25, 2013; revised March 24, 2013; accepted August 29, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82898610

    E-mail: hshyang@qdio.ac.cn

    最近最新免费中文字幕在线| av欧美777| 91麻豆av在线| 丁香欧美五月| 男插女下体视频免费在线播放| av天堂中文字幕网| a级毛片在线看网站| 国产乱人伦免费视频| 日本 欧美在线| 三级男女做爰猛烈吃奶摸视频| 麻豆av在线久日| 白带黄色成豆腐渣| 国产精品久久久久久人妻精品电影| 无限看片的www在线观看| 18禁美女被吸乳视频| 岛国在线观看网站| 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 国产精品 国内视频| 亚洲最大成人中文| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看吧| 一区二区三区激情视频| 亚洲欧美日韩高清专用| 老汉色∧v一级毛片| 亚洲国产色片| 久久久久亚洲av毛片大全| 91麻豆精品激情在线观看国产| 蜜桃久久精品国产亚洲av| 他把我摸到了高潮在线观看| svipshipincom国产片| 美女黄网站色视频| 看免费av毛片| 国产一区二区三区在线臀色熟女| 亚洲成av人片在线播放无| 免费观看人在逋| 曰老女人黄片| 99riav亚洲国产免费| 三级国产精品欧美在线观看 | 黄色视频,在线免费观看| 午夜福利在线在线| 两性午夜刺激爽爽歪歪视频在线观看| 蜜桃久久精品国产亚洲av| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 99热6这里只有精品| 日本 av在线| 啦啦啦观看免费观看视频高清| 听说在线观看完整版免费高清| 白带黄色成豆腐渣| 亚洲色图 男人天堂 中文字幕| 精品电影一区二区在线| 性欧美人与动物交配| 午夜激情欧美在线| 黄频高清免费视频| 1024香蕉在线观看| 成人av一区二区三区在线看| 好看av亚洲va欧美ⅴa在| 天堂影院成人在线观看| 叶爱在线成人免费视频播放| 欧美日韩精品网址| 亚洲成人久久爱视频| 午夜福利欧美成人| 国内精品久久久久精免费| 制服丝袜大香蕉在线| 久久香蕉精品热| 国内精品久久久久久久电影| 日韩 欧美 亚洲 中文字幕| 天堂网av新在线| 国产黄色小视频在线观看| 一区二区三区激情视频| 中文字幕精品亚洲无线码一区| 日本 av在线| 精品久久久久久久人妻蜜臀av| 欧美成人性av电影在线观看| 欧美日韩黄片免| 国产v大片淫在线免费观看| 岛国视频午夜一区免费看| 久久久久免费精品人妻一区二区| 丝袜人妻中文字幕| 亚洲真实伦在线观看| 欧美大码av| 免费大片18禁| 国产午夜福利久久久久久| 亚洲精品456在线播放app | 激情在线观看视频在线高清| 精品一区二区三区视频在线 | 亚洲精品一卡2卡三卡4卡5卡| 久99久视频精品免费| av欧美777| 亚洲av片天天在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲真实伦在线观看| 两个人看的免费小视频| 欧美日韩乱码在线| 两个人的视频大全免费| www.精华液| 18禁裸乳无遮挡免费网站照片| 又紧又爽又黄一区二区| 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 最近最新免费中文字幕在线| 国产男靠女视频免费网站| 久久热在线av| 狠狠狠狠99中文字幕| 悠悠久久av| 日本在线视频免费播放| 国产精品av久久久久免费| 亚洲一区二区三区色噜噜| 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站| 亚洲国产高清在线一区二区三| 色综合欧美亚洲国产小说| 露出奶头的视频| 色哟哟哟哟哟哟| www.熟女人妻精品国产| 在线观看美女被高潮喷水网站 | ponron亚洲| 国产激情久久老熟女| 亚洲狠狠婷婷综合久久图片| 国产午夜福利久久久久久| 蜜桃久久精品国产亚洲av| 综合色av麻豆| 两个人的视频大全免费| 中文在线观看免费www的网站| 日韩欧美免费精品| 亚洲 国产 在线| 高潮久久久久久久久久久不卡| 欧美xxxx黑人xx丫x性爽| 国产真人三级小视频在线观看| 欧美高清成人免费视频www| 亚洲国产色片| 岛国视频午夜一区免费看| 国产乱人伦免费视频| 成人亚洲精品av一区二区| 久久久精品大字幕| 色av中文字幕| 亚洲成人久久爱视频| 母亲3免费完整高清在线观看| 欧美性猛交╳xxx乱大交人| av在线蜜桃| 久久久精品大字幕| 香蕉国产在线看| 五月玫瑰六月丁香| 精品国产亚洲在线| 黑人欧美特级aaaaaa片| 桃红色精品国产亚洲av| 亚洲激情在线av| 麻豆成人av在线观看| www.熟女人妻精品国产| 看黄色毛片网站| 久久香蕉精品热| 无遮挡黄片免费观看| 久久久成人免费电影| 精品久久久久久,| 无遮挡黄片免费观看| 国产私拍福利视频在线观看| 日本a在线网址| 在线看三级毛片| 国产成人av教育| 亚洲黑人精品在线| 天天添夜夜摸| 久久精品综合一区二区三区| 国产精品九九99| 伊人久久大香线蕉亚洲五| 亚洲av片天天在线观看| 久久久久性生活片| 制服丝袜大香蕉在线| 美女午夜性视频免费| 亚洲乱码一区二区免费版| 久久中文看片网| 又紧又爽又黄一区二区| 蜜桃久久精品国产亚洲av| 男女视频在线观看网站免费| 国产欧美日韩一区二区三| 成人特级黄色片久久久久久久| 国产综合懂色| 久久久国产成人免费| 亚洲熟女毛片儿| www.熟女人妻精品国产| 丝袜人妻中文字幕| 岛国视频午夜一区免费看| 午夜福利高清视频| 一区福利在线观看| 久久精品国产亚洲av香蕉五月| 757午夜福利合集在线观看| 精品午夜福利视频在线观看一区| 免费人成视频x8x8入口观看| 草草在线视频免费看| 日本黄色视频三级网站网址| 啦啦啦韩国在线观看视频| 精品无人区乱码1区二区| 91av网站免费观看| 国产又色又爽无遮挡免费看| 又紧又爽又黄一区二区| 国产 一区 欧美 日韩| av女优亚洲男人天堂 | 黄色丝袜av网址大全| 国产av一区在线观看免费| 丝袜人妻中文字幕| 特大巨黑吊av在线直播| 特级一级黄色大片| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久久久成人av| 免费人成视频x8x8入口观看| 亚洲,欧美精品.| 欧美+亚洲+日韩+国产| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品乱码久久久v下载方式 | 国产精品爽爽va在线观看网站| 97人妻精品一区二区三区麻豆| 变态另类成人亚洲欧美熟女| 国产探花在线观看一区二区| 国产69精品久久久久777片 | 在线国产一区二区在线| 欧美日韩亚洲国产一区二区在线观看| 美女cb高潮喷水在线观看 | 色尼玛亚洲综合影院| av女优亚洲男人天堂 | 精品久久久久久久久久免费视频| 久久这里只有精品19| 免费搜索国产男女视频| 亚洲精品美女久久久久99蜜臀| 亚洲乱码一区二区免费版| 日本成人三级电影网站| 小蜜桃在线观看免费完整版高清| 欧美极品一区二区三区四区| 欧美色视频一区免费| 亚洲av第一区精品v没综合| 中文字幕人妻丝袜一区二区| 亚洲美女黄片视频| 亚洲成人免费电影在线观看| 9191精品国产免费久久| 久久久久精品国产欧美久久久| 无人区码免费观看不卡| 中亚洲国语对白在线视频| 亚洲av日韩精品久久久久久密| 男女下面进入的视频免费午夜| 国产高潮美女av| 成年版毛片免费区| 99久久精品一区二区三区| 欧美中文综合在线视频| 三级毛片av免费| 成人无遮挡网站| 香蕉丝袜av| 国产欧美日韩精品亚洲av| 99re在线观看精品视频| 久久久久久人人人人人| 成年版毛片免费区| 久久久久久久久中文| 久久午夜综合久久蜜桃| 性欧美人与动物交配| 麻豆国产av国片精品| 亚洲黑人精品在线| 午夜福利免费观看在线| 亚洲,欧美精品.| 美女午夜性视频免费| 国产乱人视频| 国产精品久久久久久久电影 | 国产人伦9x9x在线观看| 国产午夜精品论理片| 中文亚洲av片在线观看爽| 亚洲国产高清在线一区二区三| 亚洲 国产 在线| 在线观看免费视频日本深夜| 久久欧美精品欧美久久欧美| 丰满的人妻完整版| 久久精品综合一区二区三区| 性色av乱码一区二区三区2| 成人无遮挡网站| 两人在一起打扑克的视频| 最新美女视频免费是黄的| 日本三级黄在线观看| 久久久久国产一级毛片高清牌| 国内精品久久久久久久电影| 国产真实乱freesex| 亚洲五月婷婷丁香| 国产精品 国内视频| 国产高清有码在线观看视频| 国产精品精品国产色婷婷| 女生性感内裤真人,穿戴方法视频| 一进一出好大好爽视频| 午夜a级毛片| 一级a爱片免费观看的视频| 国产精品久久久人人做人人爽| 操出白浆在线播放| 亚洲欧美日韩东京热| 他把我摸到了高潮在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲av片天天在线观看| 99re在线观看精品视频| 午夜精品在线福利| 熟妇人妻久久中文字幕3abv| 午夜免费观看网址| 国产淫片久久久久久久久 | 国产欧美日韩精品亚洲av| 美女cb高潮喷水在线观看 | 亚洲熟妇熟女久久| 国产视频内射| 亚洲国产精品合色在线| 精品国产三级普通话版| 欧美日韩福利视频一区二区| 亚洲av片天天在线观看| 国产精品一及| 又爽又黄无遮挡网站| 国产一级毛片七仙女欲春2| 99国产综合亚洲精品| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三| 制服丝袜大香蕉在线| 91老司机精品| 一a级毛片在线观看| 亚洲成av人片免费观看| 国产亚洲精品综合一区在线观看| 美女午夜性视频免费| 99riav亚洲国产免费| 国产探花在线观看一区二区| 亚洲真实伦在线观看| 国模一区二区三区四区视频 | 国产精品女同一区二区软件 | 久久久久久九九精品二区国产| 国内毛片毛片毛片毛片毛片| 黑人欧美特级aaaaaa片| 黄色 视频免费看| 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 久久久国产欧美日韩av| av女优亚洲男人天堂 | 日本一二三区视频观看| 国产免费男女视频| 床上黄色一级片| 一卡2卡三卡四卡精品乱码亚洲| 国产极品精品免费视频能看的| 成在线人永久免费视频| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 色综合亚洲欧美另类图片| 男插女下体视频免费在线播放| 成人欧美大片| 神马国产精品三级电影在线观看| 男女之事视频高清在线观看| 欧美另类亚洲清纯唯美| 亚洲自偷自拍图片 自拍| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 在线十欧美十亚洲十日本专区| 巨乳人妻的诱惑在线观看| 免费搜索国产男女视频| 欧美另类亚洲清纯唯美| 国产亚洲av高清不卡| 亚洲国产欧洲综合997久久,| 久99久视频精品免费| 亚洲无线观看免费| 国产一区二区在线观看日韩 | 亚洲国产看品久久| 亚洲欧美日韩卡通动漫| svipshipincom国产片| 一区二区三区激情视频| 黄频高清免费视频| 在线播放国产精品三级| 日韩人妻高清精品专区| 90打野战视频偷拍视频| 亚洲在线自拍视频| 精品人妻1区二区| 久久精品91无色码中文字幕| xxx96com| 国产av在哪里看| 免费看十八禁软件| 人人妻人人看人人澡| 黄色女人牲交| 亚洲成a人片在线一区二区| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 两个人看的免费小视频| 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| 国产精品国产高清国产av| 麻豆国产97在线/欧美| 亚洲avbb在线观看| 日韩精品青青久久久久久| www.www免费av| 国产精品99久久久久久久久| 国产成人福利小说| 中文字幕最新亚洲高清| 精华霜和精华液先用哪个| 热99re8久久精品国产| 亚洲国产高清在线一区二区三| 国产伦人伦偷精品视频| 曰老女人黄片| 99riav亚洲国产免费| 精品国产亚洲在线| 可以在线观看的亚洲视频| 嫩草影视91久久| 免费在线观看成人毛片| 亚洲成人中文字幕在线播放| 国产精品永久免费网站| 男女床上黄色一级片免费看| 黄色丝袜av网址大全| 巨乳人妻的诱惑在线观看| 精品久久蜜臀av无| 黄色女人牲交| 淫妇啪啪啪对白视频| 99在线人妻在线中文字幕| 天堂av国产一区二区熟女人妻| 亚洲av电影在线进入| 一本综合久久免费| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 久久久久久九九精品二区国产| 国产成人一区二区三区免费视频网站| 久久国产乱子伦精品免费另类| 亚洲第一欧美日韩一区二区三区| 国产免费av片在线观看野外av| 国产aⅴ精品一区二区三区波| 亚洲国产欧洲综合997久久,| 亚洲国产欧美网| 欧美日韩乱码在线| 亚洲精品一卡2卡三卡4卡5卡| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三| 麻豆国产av国片精品| 久久精品人妻少妇| 老司机午夜福利在线观看视频| 热99在线观看视频| 夜夜躁狠狠躁天天躁| 久久久久久国产a免费观看| 国产亚洲精品av在线| 一个人免费在线观看电影 | 成年人黄色毛片网站| 日韩免费av在线播放| xxxwww97欧美| 国产主播在线观看一区二区| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| 国产精品99久久久久久久久| 麻豆av在线久日| 欧美日韩黄片免| 99久久国产精品久久久| 18禁黄网站禁片免费观看直播| 日本三级黄在线观看| 99精品欧美一区二区三区四区| 99久久精品一区二区三区| 免费在线观看影片大全网站| 桃红色精品国产亚洲av| 91字幕亚洲| 欧美中文日本在线观看视频| 久久久成人免费电影| 啦啦啦观看免费观看视频高清| 露出奶头的视频| 亚洲va日本ⅴa欧美va伊人久久| 母亲3免费完整高清在线观看| 动漫黄色视频在线观看| 亚洲欧美激情综合另类| 亚洲片人在线观看| 啦啦啦观看免费观看视频高清| 一个人免费在线观看的高清视频| 成人国产综合亚洲| 成年人黄色毛片网站| 久久欧美精品欧美久久欧美| xxxwww97欧美| 2021天堂中文幕一二区在线观| 女警被强在线播放| 悠悠久久av| 精品欧美国产一区二区三| 麻豆成人av在线观看| 男人的好看免费观看在线视频| 久久久久久九九精品二区国产| 性欧美人与动物交配| 99久久精品热视频| 国产欧美日韩精品一区二区| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 久99久视频精品免费| 亚洲国产精品999在线| 天堂影院成人在线观看| 久久久国产精品麻豆| 欧美日韩瑟瑟在线播放| 香蕉国产在线看| 最好的美女福利视频网| 亚洲欧洲精品一区二区精品久久久| 床上黄色一级片| 亚洲自偷自拍图片 自拍| 亚洲精品久久国产高清桃花| 97碰自拍视频| 国产久久久一区二区三区| 亚洲精品美女久久av网站| 亚洲一区二区三区不卡视频| 18禁裸乳无遮挡免费网站照片| 又粗又爽又猛毛片免费看| 午夜福利成人在线免费观看| 十八禁网站免费在线| 搡老熟女国产l中国老女人| 国产精品 国内视频| 久久久久久人人人人人| 色av中文字幕| 99在线人妻在线中文字幕| 欧美绝顶高潮抽搐喷水| 两性夫妻黄色片| 午夜影院日韩av| 中文字幕最新亚洲高清| 舔av片在线| 国产精品一区二区精品视频观看| 国产成人aa在线观看| 国产又色又爽无遮挡免费看| 啦啦啦韩国在线观看视频| 51午夜福利影视在线观看| 精品国产亚洲在线| 女人被狂操c到高潮| 宅男免费午夜| 国产午夜精品论理片| 日韩高清综合在线| 婷婷精品国产亚洲av在线| 国产精品永久免费网站| a级毛片a级免费在线| h日本视频在线播放| 日韩有码中文字幕| 亚洲片人在线观看| 看片在线看免费视频| 夜夜爽天天搞| 嫩草影视91久久| 色尼玛亚洲综合影院| 色综合站精品国产| 免费av不卡在线播放| 无人区码免费观看不卡| 色综合亚洲欧美另类图片| 久久久久久久久中文| 久久天躁狠狠躁夜夜2o2o| 日韩精品青青久久久久久| 日本在线视频免费播放| or卡值多少钱| 午夜两性在线视频| 美女高潮的动态| 亚洲av免费在线观看| 又黄又粗又硬又大视频| 一本一本综合久久| 99re在线观看精品视频| 国产欧美日韩精品一区二区| 天天躁日日操中文字幕| 波多野结衣高清无吗| 国产精品永久免费网站| 舔av片在线| 全区人妻精品视频| 久久精品国产99精品国产亚洲性色| 欧美黑人欧美精品刺激| 欧美精品啪啪一区二区三区| 在线观看免费午夜福利视频| 亚洲美女视频黄频| 亚洲午夜理论影院| 男人的好看免费观看在线视频| 久久国产乱子伦精品免费另类| 精品一区二区三区av网在线观看| 亚洲欧美一区二区三区黑人| 欧美一区二区精品小视频在线| 法律面前人人平等表现在哪些方面| 亚洲无线在线观看| 九九在线视频观看精品| 亚洲一区高清亚洲精品| 亚洲av成人av| 欧美日韩精品网址| 免费在线观看亚洲国产| 久久久久久久久久黄片| 在线十欧美十亚洲十日本专区| 国产真实乱freesex| 亚洲美女视频黄频| 在线观看舔阴道视频| 日本一二三区视频观看| av国产免费在线观看| 美女被艹到高潮喷水动态| 天天躁日日操中文字幕| 亚洲真实伦在线观看| 淫妇啪啪啪对白视频| 99国产精品一区二区蜜桃av| www.自偷自拍.com| 最近最新中文字幕大全电影3| 男女之事视频高清在线观看| ponron亚洲| 成人18禁在线播放| 免费大片18禁| 国产高潮美女av| 亚洲第一电影网av| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久v下载方式 | 欧美黄色淫秽网站| 天堂√8在线中文| 国语自产精品视频在线第100页| 久久久久性生活片| 亚洲国产欧洲综合997久久,| 欧美日韩精品网址| 桃色一区二区三区在线观看| 亚洲av成人av| 黄色成人免费大全| 欧美中文日本在线观看视频| 女生性感内裤真人,穿戴方法视频| 又紧又爽又黄一区二区| 国产单亲对白刺激| 成年女人永久免费观看视频| 中文亚洲av片在线观看爽| 91麻豆av在线| 久久久久久大精品| 国产午夜福利久久久久久| 美女扒开内裤让男人捅视频| 天天添夜夜摸| 每晚都被弄得嗷嗷叫到高潮| 日本在线视频免费播放| 在线观看美女被高潮喷水网站 | 午夜日韩欧美国产| 两性夫妻黄色片| 国产高清激情床上av| 欧美乱色亚洲激情| bbb黄色大片| 欧美黑人欧美精品刺激|