• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrastructure Developments During Spermiogenesis in Polydora ciliata (Annelida: Spionidae), a Parasite of Mollusca

    2014-04-26 10:55:00GAOYanZHANGTaoZHANGLibinQIUTianlongXUEDongxiuandYANGHongsheng
    Journal of Ocean University of China 2014年6期

    GAO Yan, ZHANG Tao ZHANG Libin QIU Tianlong, XUE Dongxiu, and YANG Hongsheng

    1) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Ultrastructure Developments During Spermiogenesis in Polydora ciliata (Annelida: Spionidae), a Parasite of Mollusca

    GAO Yan1),2), ZHANG Tao1), ZHANG Libin1), QIU Tianlong1),2), XUE Dongxiu1),2), and YANG Hongsheng1),*

    1) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Spionid worms of Polydora ciliata inhabit the shells of many commercially important bivalves and cause disease in molluscan aquaculture. Their sperm structure is closely related to their fertilization method. To give an insight into the sperm structure and spermatogenesis, ultrastructure details of the subcellular components of germ cells during spermiogenesis of Polydora ciliata are detected by transmission electron microscopy (TEM). In P. ciliata, during spermiogenesis, chromatin is regularly arranged as dense fibrils and becomes more condensed when the nucleus elongates. Microtubules do not surround the nucleus during its elongation. The Golgi phase is characterized by the formation of proacrosomal granules within the Golgi apparatus. The proacrosomal granules fuse to form a single, spherical acrosomal vesicle that migrates to the anterior pole of the cell. At the time of nuclear condensation, mitochondria become reduced in number but increased in size, causing deep indentation at the base of the nucleus. The mid-piece has a few mitochondria. The cap phase includes the spreading of the acrosomal granule over the surface of the nucleus of the differentiating spermatid. The acrosomal phase of spermiogenesis is typically associated with changes in the shape of the nucleus, acrosome and tail. The relationship of sperm ultrastructure to spermiogenesis in spionidae species was discussed.

    Polydora ciliata; spermiogenesis; ultrastructure

    1 Introduction

    The Polydora complex in the family of Spionidae contains at least 115 species in nine genera: Amphipolydora, Boccardia, Boccardiella, Carazziella, Dipolydora, Polydora, Polydorella, Pseudopolydora, and Tripolydora (Rice et al., 2008). These genera, commonly known as blisterworms or mudworms, share a setigerous fifth chaetiger which is modified and includes specialized setae or spines. These spines are useful in tube construction and maintenance. These worms can be troublesome parasites of commercially important bivalves. The boring behavior in the shells induces the creation of blisters by shell marterial secretion (conchiolin covered with nacre) to isolate the worm. These blisters containing the compact sludge can occupy a large proportion of the mantle cavity space and contribute to weakening the shell. Worm infestation affects the presentation of half-shell and reduces the market value.

    Several species of polydorid have been reported to cause damage to abalone (Lleonart et al., 2003; Mcdiarmid et al., 2004; Simon et al., 2004; Aviles et al., 2007), oysters (Loosanoff and Engle, 1943; Mohammad, 1972; Sato-Okoshi and Okoshi, 1993; Nel et al., 1996), scallops (Sato-Okoshi et al., 1990; Bower et al., 1992; Sato-Okoshi and Okoshi, 1993; Mortensen et al., 2000; Silina, 2006), clams (Riascos et al., 2008) and many other mollusks. Infestation by Polydora, therefore, is an important problem in molluscan aquaculture.

    About two decades ago the Japanese scallop Patinopecten yessoensis was introduced from Japan to China, and became one of the most important commercial bivalve mollusks (Li et al., 2007). However, numerous Polydora blisters were found in the scallop culture (Read et al., 2010; Walker et al., 2011; Sato-Okoshi et al., 2012; Silina et al., 2012; Souto et al., 2012). A scallop devotes much of its energy in secreting nacre and concholin during mud blister formation, which leads to poor quality and low growth rate. Clarifying the life cycle, including reproductive biology, of these boring Polydora could help in developing a management strategy to minimize the impact of mud worm infestation of scallop culture. Thereproductive biology of Polydora is poorly understood because of their life history characteristics. For example, tube-dwelling lifestyles limit direct body-contact or decrease the mobility of individuals so that encounters between sexes are infrequent or impossible. Due to the relationship between structural features of the spermatozoa and biology of fertilization of a species, the study of the sperm ultrastructure of Polydora could elucidate the mode of sperm transfer in this species.

    The ultrastructure of spermatogenesis has been reported in three species of Polydora only: Polydora ligni, P. websteri, and P. socialis (Rice, 1981). Similar characteristics such as a conical acrosome with a distinctive substructure, and the presence of platelet-shaped electron-dense bodies throughout the nuclear region and mid-piece, have been described. Nevertheless, the structure of the spermatozoa of individual species has unique features. The present work describes the ultrastructure of spermiogenesis and sperm in Polydora ciliata (Johnston, 1838), a parasite of the scallop Patinopecten yessoensis (Bivalvia, Mollusca) in the Yellow Sea.

    2 Materials and Methods

    Scallops infested with P. ciliata were collected from the Yellow Sea (39?03′N, 122?44′E) in March 2008. Adult worms, removed from the shell fragments with forceps, were relaxed in isotonic magnesium chloride to examine the gametogenic segments. Middle gametogenic segments were cut off and fixed in cold (4℃) 2.5% glutaraldehyde in 0.1 mol L-1sodium cacodylate buffer (pH 7.4) containing 3% sucrose, and left overnight at 4℃. Then the tissues were postfixed in 1% osmium tetroxide for 1 h, rinsed in 0.1 mol L-1sodium cacodylate buffer at pH 7.4, dehydrated in an ascending series of ethanol, and infiltrated and embedded in Epon 812. Ultrathin sections (55–70 nm) at different levels were cut on an LKB ultramicrotome, mounted on bare 200-mesh copper grids, and double-stained with uranyl acetate (5 min) and lead citrate (3 min); all staining was carried out in a 60℃ oven. The specimens were then examined in a transmission electron microscope (Hitachi, H-700) operating at an accelerating voltage of 100 kV.

    3 Results

    Different developmental stages of gametes, from spermatocytes to mature spermatozoa, were found in the seminal vesicles of each investigated mature individual. We divide spermiogenesis into three stages and describe them separately for convenience.

    3.1 Early Stage

    The presence of synaptonemal complexes is an important characteristic of primary spermatocytes. It indicates that the cells are in the leptotene stage of the first meiotic division. The spherical nuclei of primary spermatocytes occupy almost the entire cell volume.

    Fig.1 TEM micrographs showing early stages of spermatogenesis in P. ciliata. A, A primary spermatocyte showing a large nucleus with several synaptonemal complexes (arrowhead); B, A secondary spermatocyte with numerous mitochondria; C, A secondary spermatocyte with diffuse heterochromatin in the nucleus. m, mitochondria; N, nucleus; NE, nuclear envelope; pg, proacrosomal granule. Scale bars = 1 μm.

    Numerous dense granules and small mitochondria are scattered in the cytoplasm (Fig.1A). The secondary spermatocytes are similar to the primary spermatocytes in appearance, and their cytoplasm contains numerous mitochondria. The nuclei of the secondary spermatocytes appear to be slightly smaller and contain more heterochromatin than those of the primary spermatocytes. Vacuoles are present in the cytoplasm, and the ovoid mitochondria are close to the nucleus (Fig.1B). Coarsely granular chromatin begins gathering into a cluster. Nuclear pores are abundant. Two electron-dense granules which are recognized as proacrosomal granule, appear in the secondary spermatocytes (Fig.1C). The proacrosomal granules are large and ovate, and migrate towards the opposite pole of the cell.

    3.2 Middle Stage

    A secondary spermatocyte forms two spermatids after the second meiotic division. The cellular components change synchronously during the differentiation of the spermatids. We describe these changes separately for convenience.

    Fig.2 TEM micrographs showing mid- to late spermatids in P. ciliate. A, A mid spermatid with nucleus (n) and developing axoneme (ax); B, A mid spermatid with Golgi complex (g) and acrosome-like structure (ac); C, A mid spermatid with trapeziform nucleus; D, A mid spermatid with a centriole lying close to the plasmalemma; E, Late spermatid with proximal centriole; F, Late spermatid with distal centriole. ac, acrosome-like structure; ax, axoneme; c, centriole; dc, distal centriole; N, nucleus; m, mitochondria; pc, proximal centriole; pg, proacrosomal granule; pl, platelet-shaped electron-dense body. Scale bars = 1 μm.

    Nuclear Condensation During this stage of spermiogenesis, the condensation of chromatin proceeds and the nucleus then becomes trapeziform (Fig.2A). The granular chromatin condenses into tightly packed and uniformly electron-dense strands. These dense strands are in a progressive manner from anterior to posterior in the nucleus (Fig.2B). The chromatin then becomes regularly arranged as dense fibrils (Fig.2C). A centriolar fossa forms at the posterior end of the nucleus. The fossa becomes progressively deeper as nuclear elongation proceeds (Fig.2E).

    Proacrosome Formation In the early spermatids, the proacrosomal granules come to lie close to the developing anterior of the nucleus in a slight nuclear depression (Fig.2A). Acrosome formation is augmented with the appearance of a spherical, membrane-bound pro-acrosome granule on the concave surface of the Golgi complex between the Golgi and the nucleus. The location of the Golgi region and pro-acrosomal granule defines the future anterior end of the sperm cell. This granule subsequently fuses with the cell nucleus and generally contains a region of denser material (Fig.2A). With the differentiation of the spermatids, the proacrosomal granules fuse to form a single, spherical acrosomal vesicle that migrates to the anterior pole of the cell. This vesicle elongates and finally locates in the cup-shaped anterior surface of nucleus. At the end of the acrosome phase, the proacrosomal granules merge and become a long, narrow structure that forms a kind of cup beneath the plasma membrane (Fig.2B).

    Cytoplasmic Inclusion In early spermatids, a few mitochondria and multivesicular bodies are distributed at the margins of the cytoplasm. At the time of nuclear condensation, mitochondria become reduced in number but increase in size; even when they become apposed to the nuclear surface, they still undergo an increase in size, causing deep indentations at the base of the nucleus (Figs.2C, E). The Golgi complex is found in the posterior cytoplasm of early spermatids, opposite to the primary acrosomal vesicle (Fig.2B). Electron-dense platelet-shaped bodies form a layer around the developing spermatid just beneath the plasma membrane (Fig.2D).

    Axoneme Formation The formation of the centriole occurs simultaneously with the condensation of chromatin in the nucleus. In early spermatids, the centrioles lie close to the plasmalemma and lack a prominent centriolar satellite (Fig.2D). During chromatin condensation, the flagellum develops from the centrioles. The axoneme becomes longer and bent because of continuous growth. As a result, an axoneme is usually sectioned twice within one cell (Fig.2F). The distal centriole and proximal centriole are oriented at right angles to each other in late spermatid. The fossa at the posterior end of the nucleus is invaded by the proximal and distal centrioles that fuse to form the basal body of the flagellum. The proximal centriole lies under the posterior fossa of the nucleus while the distal centriole is associated with the axonemal complex with microtubules connecting with the flagellum (Figs.2E, F).

    3.3 Late Stage

    Late spermatids can be recognized by a more elongate nucleus, while the chromatin is becoming homogeneously electron-dense. The nucleus has a posterior fossa that houses the proximal centriole. The centrioles are located at the base of the nucleus in a position opposite to the acrosome. The acrosome has reached its final position and shape, and the mid-piece mitochondria are located around the axoneme. The distal part of the axoneme, which has a 9 + 2 arrangement of microtubules, is located centrally within the flagellum with only a small amount of surrounding cytoplasm (Fig.3H).

    Early in spermiogenesis, the proacrosome lies next to the plasmalemma, separating from the nucleus (Fig.3A). Later, the proacrosome migrates to the surface of the nucleus so that the prominent electron-dense zone becomes apposed to the nuclear envelope (Fig.2B). The proacrosome then becomes cup-shaped, with a well-defined acrosomal fossa. Longitudinal microtubules appear in the developing acrosomal vesicle (Fig.3A).

    At the time of acrosome formation, the mitochondria become reduced in number but increased in size. The internal membranes in the sausage-shaped mitochondria are clearly discerned during earlier stages (Fig.3B). Initially, most mitochondria are almost circular in crosssection. The mid-piece contains up to seven mitochondria, six being circular and one being bean-shaped. The mitochondria lie close together and the zone contacting with the membranes are rather electron-dense (Fig.3G).

    Amoeboid-shaped cells with a large nucleus are found during spermiogenesis. They are called auxiliary cells. The cytoplasm contains a Golgi complex, a few cisternae of endoplasmic reticulum and mitochondria. These cells may support nutrients to the sperm (Fig.3I).

    4 Discussion

    4.1 Spermiogenesis Characteristics

    The present results revealed substantial similarities in the ultrastructure of the spermiogenesis and spermatozoa among P. ciliata from the Yellow Sea and the three species from the Indian River Lagoon in the United States (Rice, 1981). In Polydora, the microtubules are absent during the granular chromatin condensation into tightly packed and uniformly electron-dense clumps. Chromatin structure of the same features was found in Boccardiella hamata from the Sea of Japan (Reunov et al., 2009).

    In most taxa, the acrosome is a cap-like structure derived from the Golgi complex (Zhu et al., 2008). However, it is different for P. ciliata. In this species, the Golgi complex forms the proacrosomal granules, which fuse to form an acrosomal vesicle. This structure is similar to that found in Syllis krohni (Musco et al., 2008).

    In addition to the elongated sperm head in Polydora, the presence of cytoplasmic platelets may be important in the biology of reproduction. If these platelets are energy storage organelles (as hypothesized), then reproduction in this species could include prolonged storage of sperm without loss of viability, multiple egg laying following a single sperm transfer, establishment of new populations by a single inseminated female, and the elimination ofsimultaneous spawning of males and females. These reproductive adaptations could be quite advantageous to opportunistic species such as P. ligni and S. benedicti, which have rapid reproduction and tend to colonize ephemeral habitats (Grassle, 1974).

    4.2 Correlating Sperm Morphology and Reproductive Mechanisms

    Wilson (1991; see also Giangrande, 1997) reviewed sexual reproduction in the Polychaeta and identified 17 modes based on the type of larvae and the mode of development. He categorized the species as using free spawning (external fertilization) with no care of larvae, brooding of larvae (four types), or using gelatinous encapsulation of larvae. Offsprings were released as lecithotrophic larvae, planktotrophic larvae, or larvae that underwent ‘direct development’. This variability in reproductive mode is reflected in the variety in sperm structurethat is found among polychaetes. Ultrastructure studies of spermiogenesis and the morphology of spermatozoa in polychaetes have been reviewed (Eckelbarger and Grassle, 1987; Wilson, 1991; Giangrande, 1997; Rouse, 1999). A number of studies on ultrastructure aspects of spermatozoa in polychaetes have shown a large diversity in sperm morphology (Tzetlin et al., 2002; Jouin-Toulmond and Purschke, 2004; Simon and Rouse, 2005; Lepore et al., 2006; Musco et al., 2008; Reunov et al., 2009). The hypothesis that sperm structure correlates with the method of sperm transfer or biology of fertilization is supported by these studies. Sperm transfer in polychaetes occurs in two main modes: non-aggregate transfer, in which sperm swim freely and are not packed together before reaching eggs; and aggregate transfer, in which sperm are packed together by varying complex structure before reaching eggs. Life history characteristics and habitat choice have been considered strong selective forces for the mode of sperm transfer. For example, sessile or tube-dwelling lifestyles limit direct body-contact or decrease the mobility of individuals, so that encountering between different sexes are infrequent or impossible. Thus, neither copulation, nor pseudocopulation, nor indirect hypodermic impregnation would be favored. Broadcast spawning or free transfer of spermatophores may be the only alternative for such species. However, broadcast spawning requires a large number of gametes and synchronous reproduction in the population (Hsieh and Simon, 1990). In most cases, sperm that is directly introduced comprises a narrow bell-shaped acrosome, a elongated nucleus with highly condensed chromatin, a typical 9+2 flagellum derived from the distal centriole, and a few mitochondria as a sheath around the axoneme (Jamieson and Rouse, 1989; Purschke and Fursman, 2005).

    From the results in this study, the sperm structure of P. ciliata resembles the direct sperm transfer type. The acrosome contains a compact vesicle and an axial rod (Figs.3A, 4A). The chromatin is completely condensed in the spermatozoa. The nucleus has a posterior fossa that houses a flagellum derived from proximal centriole (Fig.4A). The sperm mitochondria are spherical during spermiogenesis and elongate slightly down the axoneme, forming a tight sheath in very late spermatid (Fig.4D). Because the mitochondria may continue to fuse during the late spermatid stage, the number of mitochondria in middle-piece is not clear and more detailed study is required. The elongation of the nuclei and mitochondria may cause the sperm to be more effective (Rice et al., 1992).

    The present study has shown that features such as the regularly arranged fibrous chromatin, the formation of proacrosomal granules, and the presence of cytoplasmic platelets are important features of P. clilata. Jamieson (1989) divided polychaete sperm into ect-aquasperm, ent-aquasperm, and introsperm. His report on the sperm structure had been demonstrated for the Spionidae. Our research supports his conclusion. Shell-boring spionid polychaetes are ubiquitous in many mollusca species and there are no effective treatments. Maybe we can explore some measures to prevent and control this parasite of Mollusca from fertilization.

    Fig.4 Reconstruction of the spermatozoon of P. ciliata. A, longitudinal section; B, transverse section through the acrosome; C, transverse section through the nucleus; D, transverse section through the mid-piece; E, transverse section through the flagellum; ax, axoneme; m, mitochondria; n, nucleus. Scale bar = 1 μm

    Acknowledgements

    The work was supported by the National Key Technology Support Program (2011BAD13B05). We appreciate the technical help from Prof. Ming Jiang and Mrs. Jialin Xie.

    Aviles, F., Rozbaczylo, N., Herve, M., and Godoy, M., 2007. First report of Polychaetes from the genus Oriopsis (Polychaeta: Sabellidae) associated with the Japanese abalone Haliotis discus hannai and other native molluscs in Chile. Journal of Shellfish Research, 26 (3): 863-867.

    Bower, S. M., Blackbourn, J., Meyer, G. R., and Nishimura, D. J. H., 1992. Diseases of cultured Japanese scallops (Patinopecten Yessoensis) in British-Columbia, Canada. Aquaculture, 107 (2-3): 201-210.

    Eckelbarger, K. J., and Grassle, J. P., 1987. Spermatogenesis,sperm storage and comparative sperm morphology in nine species of Capitella, Capitomastus and Capitellides (Polychaeta: Capitellidae). Marine Biology, 95: 415-429.

    Giangrande, A., 1997. Polychaeta reproductive patterns, life cycles and life histories: An overview. Oceanography and Marine Biology: An Annual Review, 35: 323-389.

    Grassle, J. F., and Grassle, J. P., 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes.Journal of Marine Research, 32: 253-284.

    Hsieh, H., and Simon, J. L., 1990. The Sperm Transfer System in Kinbergonuphis simoni (Polychaeta: Onuphidae). The Biological Bulletin, 178: 85-93.

    Jamieson, B. G. M., and Rouse, G. W., 1989. The spermatozoa of the Polychaeta (Annelida) – An ultrastructural review. Biological Reviews of the Cambridge Philosophical Society, 64 (2): 93-157.

    Jouin-Toulmond, C., and Purschke, G., 2004. Ultrastructure of the spermatozoa of Parenterodrilus taenioides (Protodrilida:‘Polychaeta’) and its phylogenetic significance. Zoomorphology, 123: 139-146.

    Lepore, E., Sciscioli, M., Mastrodonato, M., Gheradi, M., Giangrande, A., and Musco, L., 2006. Sperm ultra-structure and spermiogenesis in Syllis krohni (Polychaeta: Syllidae), with some observation on its reproductive biology. Scientia Marina, 70 (4): 585-592.

    Li, Q, Xu, K., and Yu, R., 2007. Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture, 269 (1-4): 211-219.

    Lleonart, M., Handlinger, J., and Powell, M., 2003. Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture, 221 (1-4): 85-96.

    Loosanoff, V. L., and Engle, J. B., 1943. Polydora in oysters suspended in, the water. Biological Bulletin, 85 (1): 69-78.

    Mcdiarmid, H., Day, R., and Wilson, R., 2004. The ecology of polychaetes that infest abalone shells in Victoria, Australia. Journal of Shellfish Research, 23 (4): 1179-1188.

    Mohammad, M. M., 1972. Infestation of pearl oyster Pinctada margaritifera (Linne) by a new species of Polydora in Kuwait, Arabian Gulf. Hydrobiologia, 39 (4): 463-477.

    Mortensen, S., Meeren, T. V., and Fosshagen, A., 2000. Mortality of scallop spat in cultivation, infested with tube dwelling bristle worm, Polydora sp. Aquaculture International, 8: 267-271.

    Musco, L., Giangrande, A., Gherardi, M., Leopre, E., Mercurio, M., and Sciscioli, M., 2008. Sperm ultra-structure of Odontosyllis ctenostoma (Polychaeta: Syllidae) with inferences on syllid phylogeny and reproductive biology. Scientia Marina, 72 (3): 421-427.

    Nel, R., Coetzee, P. S., and Niekerk, G. V., 1996. The evaluation of two treatments to reduce mud worm (Polydora hoplura Claparede) infestation in commercially reared oysters (Crassostrea gigas Thunberg). Aquaculture, 141 (1-2): 31-39.

    Okoshi, S. W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59 (7): 1243-1247.

    Purschke, G., and Fursman, M. C., 2005. Spermatogenesis and spermatozoa in Stygocapitella subterranea (Annelida, Parergodrilidae), an enigmatic supralittoral polychaete. Zoomorphology, 124: 137-148.

    Read, G. B., 2010. Comparison and history of Polydora websteri and P. haswelli (Polychaeta: Spionidae) as mud-blister worms in New Zealand shellfish. New Zealand Journal of Marine and Freshwater Research, 44 (2): 83-100.

    Reunov, A. A., Yurchenko, O. V., Alexandrova, Y. N., and Radashevsky, V. I., 2009. Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: Sperm formation mechanisms as characteristics for future taxonomic revision. Acta Zoologica, 91 (4): 447-456.

    Riascos, J. M., Heilmayer, O., Oliva, M. E., Laudien, J., and Arntz, W. E., 2008. Infestation of the surf clam Mescidesma donacium by the spionid polychaete Polydora bioccipitalis. Journal of Sea Research, 59 (4): 217-227.

    Rice, S. A., 1981. Spermatogenesis and sperm ultrastructure in three species of Polydora and in Streblospio benedicti (Polychaeta, Spionidae). Zoomorphology, 97 (1-2): 1-16.

    Rice, S. A., and Harrison, F. W., 1992. Polychaeta: Spermatogenesis and spermiogenesis. Microscopic Anatomy of Invertebrates, 7: 129-151.

    Rice, S. A., Harrison, F. W., and Gardiner, S. L., 1982. Polychaeta: Spermatogenesis and spermiogenesis. Microscopic Anatomy of Invertebrates, 7: 129-151.

    Rice, S. A., Karl, S., and Rice, K. A., 2008. The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invertebrate Biology, 127 (1): 45-64.

    Rouse, G. W., 1999. Polychaeta sperm: Phylogenetic and functional considerations. Hydrobiologia, 402: 215-224.

    Sato-Okoshi, W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59 (7): 1243-1247.

    Sato-Okoshi, W., Okoshi, K., Koh, B. S., Kim, Y. H., and Hong, J. S., 2012. Polydorid species (Polychaeta: Spionidae) associated with commercially important mollusk shells in Korean waters. Aquaculture, 350: 82-90.

    Sato-Okoshi, W., Sugawara, Y., and Nomura, T., 1990. Reproduction of the boring polychaete Polydora-Variegata inhabiting scallops in Abashiri Bay, North Japan. Marine Biology, 104 (1): 61-66.

    Silina, A. V., 2006. Tumor-like formation on the shells of Japanese scallops Patinopecten yessoensis (Jay). Marine Biology, 148: 833-840.

    Silina, A. V., and Zhukova, N. V., 2012. The benthic association between a bivalve and a shell boring polychaete and their potential food sources. Oceanology, 52 (5): 646-654.

    Simon, A. C., and Rouse, G. W., 2005. Ultrastructure of spermiogenesis, sperm, and the spermatheca in Terebrasabella heterouncinata (Polychaeta: Sabellidae: Sabellinae). Invertebrate Biology, 124 (1): 39-49.

    Simon, C. A., Kaiser, H., and Britz, P. J., 2004. Infestation of the abalone, Haliotis midae, by the sabellid, Terebrasabella heterouncinata, under intensive culture conditions, and the influence of infestation on abalone growth. Aquaculture, 232: 29-40.

    Souto, V. S., Schejter, L., and Bremec, C. C., 2012. Epibionts on Aequipecten tehuelchus (d’Orbigny, 1846) (Pectinidae) in shelf waters off Buenos Aires, Argentina. American Malacological Bulletin, 30 (2): 261-266.

    Toulmond, J. C., and Purschke, G., 2004. Ultrastructure of the spermatozoa of Parenterodrilus taenioides (Protodrilida: ‘Polychaeta’) and its phylogenetic significance. Zoomorphology, 123: 139-146.

    Tzetlin, A. B., Dahlgren, T., and Pueschke, G., 2002. Ultrastructure of the body wall, body cavity, nephridia and spermatozoa in four species of the Chrysopetalidae (Annelida, ‘Polychaeta’). Zoologischer Anzeiger, 241: 37-55.

    Walker, L. M., 2011. A review of the current status of the Polydora-complex (Polychaeta: Spionidae) in Australia and a checklist of recorded species. Zootaxa, 2751: 40-62.

    Wilson, W. H., 1991. Sexual reproductive modes in polychaetes: Classification and diversity. Bulletin of Marine Science, 48 (2): 500-516.

    Zhu, J. Q., Dahms, H. U., and Yang, W. X., 2008. Ultrastructure of the mature spermatozoon of the bivalve Scapharca broughtoni (Mollusca: Bivalvia: Arcidae). Micron, 39 (8): 1205-1209.

    (Edited by Qiu Yantao)

    (Received February 25, 2013; revised March 24, 2013; accepted August 29, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82898610

    E-mail: hshyang@qdio.ac.cn

    国产精品乱码一区二三区的特点| 91在线精品国自产拍蜜月| 亚洲激情五月婷婷啪啪| 免费观看精品视频网站| 亚洲一区高清亚洲精品| 亚洲国产欧美人成| 99视频精品全部免费 在线| 日韩大尺度精品在线看网址| 成人亚洲精品av一区二区| 亚洲欧美日韩高清专用| 国内揄拍国产精品人妻在线| 欧美潮喷喷水| 成人鲁丝片一二三区免费| 午夜精品在线福利| 97人妻精品一区二区三区麻豆| 午夜久久久久精精品| 中文字幕熟女人妻在线| 欧美bdsm另类| 亚洲欧美精品自产自拍| 变态另类丝袜制服| 国产精品久久久久久久电影| 日本一本二区三区精品| www.色视频.com| 亚洲真实伦在线观看| 久久久精品大字幕| 99在线视频只有这里精品首页| 色综合亚洲欧美另类图片| 麻豆成人av视频| 国内精品久久久久精免费| 青春草国产在线视频 | 高清午夜精品一区二区三区 | 最好的美女福利视频网| 色视频www国产| 91久久精品国产一区二区三区| 亚洲欧美精品专区久久| 亚洲色图av天堂| 国产成人精品一,二区 | 欧美日本视频| 人妻系列 视频| 国产一区二区三区在线臀色熟女| 日本免费一区二区三区高清不卡| 欧美高清成人免费视频www| 国产精品久久久久久久久免| av卡一久久| 国产国拍精品亚洲av在线观看| 99热只有精品国产| 国产亚洲5aaaaa淫片| 18+在线观看网站| 成人二区视频| 久久午夜福利片| 男女边吃奶边做爰视频| 只有这里有精品99| av天堂中文字幕网| 小蜜桃在线观看免费完整版高清| 一卡2卡三卡四卡精品乱码亚洲| 老司机影院成人| 一个人免费在线观看电影| 亚洲一级一片aⅴ在线观看| 亚洲成人中文字幕在线播放| 伊人久久精品亚洲午夜| 又爽又黄a免费视频| 成人亚洲精品av一区二区| 久久久国产成人精品二区| 最近的中文字幕免费完整| 简卡轻食公司| 99国产精品一区二区蜜桃av| 一区福利在线观看| 人人妻人人澡欧美一区二区| 在线观看av片永久免费下载| 成年版毛片免费区| 成人二区视频| 最后的刺客免费高清国语| 3wmmmm亚洲av在线观看| 亚洲真实伦在线观看| av福利片在线观看| 国产91av在线免费观看| 欧美色视频一区免费| 亚洲精品国产av成人精品| 一级毛片久久久久久久久女| av又黄又爽大尺度在线免费看 | 国产视频内射| 在线观看午夜福利视频| 国产高清视频在线观看网站| 两个人的视频大全免费| 国产老妇女一区| 伦理电影大哥的女人| 久久人人爽人人片av| 国产一区二区在线av高清观看| 91久久精品电影网| 少妇熟女aⅴ在线视频| 亚洲不卡免费看| 精品一区二区三区视频在线| 午夜福利在线观看吧| 午夜亚洲福利在线播放| 男女边吃奶边做爰视频| 免费不卡的大黄色大毛片视频在线观看 | 国产午夜精品一二区理论片| 亚洲第一电影网av| 99热全是精品| 99久久久亚洲精品蜜臀av| 日韩国内少妇激情av| 99久久精品一区二区三区| 亚洲国产精品久久男人天堂| 精品无人区乱码1区二区| 午夜福利视频1000在线观看| 一夜夜www| 欧美一区二区国产精品久久精品| 国产精品免费一区二区三区在线| 18禁黄网站禁片免费观看直播| 久久国产乱子免费精品| 亚洲成人av在线免费| 免费观看精品视频网站| 午夜久久久久精精品| 亚洲在线观看片| 级片在线观看| 18+在线观看网站| 老女人水多毛片| 欧美3d第一页| av女优亚洲男人天堂| 简卡轻食公司| 久久午夜亚洲精品久久| 亚洲精品粉嫩美女一区| avwww免费| 国产熟女欧美一区二区| 看十八女毛片水多多多| 一级黄色大片毛片| 黄色欧美视频在线观看| 成年av动漫网址| a级毛色黄片| 人妻少妇偷人精品九色| 嫩草影院新地址| 丝袜美腿在线中文| 日本免费a在线| 欧美性猛交╳xxx乱大交人| 最近中文字幕高清免费大全6| 九九热线精品视视频播放| 日韩制服骚丝袜av| 日日撸夜夜添| 精品人妻视频免费看| 日韩欧美精品v在线| 男女下面进入的视频免费午夜| 久久中文看片网| 免费看a级黄色片| 国产爱豆传媒在线观看| 一级黄色大片毛片| av天堂中文字幕网| 国产精品一区二区性色av| 99久久九九国产精品国产免费| 国产激情偷乱视频一区二区| 99久久精品一区二区三区| 免费人成在线观看视频色| 精品久久久久久久久久免费视频| 国产色爽女视频免费观看| 国产综合懂色| 丝袜喷水一区| 观看免费一级毛片| 亚洲天堂国产精品一区在线| 又爽又黄a免费视频| 中文字幕人妻熟人妻熟丝袜美| 老女人水多毛片| 男女那种视频在线观看| 日韩大尺度精品在线看网址| 99久久精品一区二区三区| 亚洲在线自拍视频| 国产精品麻豆人妻色哟哟久久 | 全区人妻精品视频| 欧美日韩综合久久久久久| 国产精品1区2区在线观看.| 白带黄色成豆腐渣| 人妻制服诱惑在线中文字幕| 熟妇人妻久久中文字幕3abv| av在线亚洲专区| 久久久久久久久久成人| 熟妇人妻久久中文字幕3abv| 欧美激情国产日韩精品一区| 特级一级黄色大片| 免费看光身美女| 黄色配什么色好看| 色综合色国产| 欧美最新免费一区二区三区| 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| 欧美日韩综合久久久久久| 99视频精品全部免费 在线| 亚洲电影在线观看av| 日本黄大片高清| 色哟哟哟哟哟哟| 12—13女人毛片做爰片一| 国产午夜精品久久久久久一区二区三区| 2022亚洲国产成人精品| 久久精品国产自在天天线| 亚洲av.av天堂| 一级毛片电影观看 | 久久欧美精品欧美久久欧美| 看免费成人av毛片| 国产在线男女| 婷婷亚洲欧美| 边亲边吃奶的免费视频| 免费观看a级毛片全部| 亚洲av免费在线观看| 床上黄色一级片| 波多野结衣高清作品| 男女下面进入的视频免费午夜| 亚洲av成人av| 深爱激情五月婷婷| av卡一久久| 一个人观看的视频www高清免费观看| 嫩草影院入口| 国产片特级美女逼逼视频| 成人二区视频| 级片在线观看| 亚洲丝袜综合中文字幕| 大香蕉久久网| 91久久精品电影网| 中文字幕av成人在线电影| 男女啪啪激烈高潮av片| 国产午夜精品久久久久久一区二区三区| 亚洲激情五月婷婷啪啪| 精品久久久久久久久亚洲| 亚洲自偷自拍三级| 亚洲av第一区精品v没综合| 亚洲欧洲日产国产| av又黄又爽大尺度在线免费看 | 精品久久久噜噜| 亚洲欧美日韩高清在线视频| 黄色欧美视频在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩东京热| 插逼视频在线观看| 国内揄拍国产精品人妻在线| 18禁在线播放成人免费| 麻豆成人午夜福利视频| 秋霞在线观看毛片| 国产精品久久久久久久久免| 国产色婷婷99| 九草在线视频观看| 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清| 久久久久网色| 亚洲成av人片在线播放无| 1000部很黄的大片| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 亚洲自偷自拍三级| 欧美性感艳星| 日本免费a在线| 一本久久中文字幕| 99久久精品国产国产毛片| 国内精品宾馆在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线观看播放| 成人高潮视频无遮挡免费网站| 色综合色国产| 精品人妻偷拍中文字幕| 九九久久精品国产亚洲av麻豆| 久久久久久久午夜电影| 亚洲av熟女| 黄色视频,在线免费观看| 中国美女看黄片| 国产精品伦人一区二区| 老女人水多毛片| 在线国产一区二区在线| 国产亚洲精品久久久久久毛片| 男女啪啪激烈高潮av片| 少妇被粗大猛烈的视频| 一本久久精品| 国产精品伦人一区二区| 日韩在线高清观看一区二区三区| 九九在线视频观看精品| 大型黄色视频在线免费观看| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| а√天堂www在线а√下载| 51国产日韩欧美| 免费看日本二区| 国产av麻豆久久久久久久| av在线亚洲专区| 日本黄大片高清| 黄片wwwwww| 色综合站精品国产| 一级毛片我不卡| 亚洲精品456在线播放app| 啦啦啦观看免费观看视频高清| 看十八女毛片水多多多| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 91久久精品国产一区二区成人| 国产人妻一区二区三区在| 午夜福利成人在线免费观看| 免费人成在线观看视频色| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 国产不卡一卡二| 有码 亚洲区| 夜夜爽天天搞| 99热全是精品| 99热这里只有是精品50| 搞女人的毛片| 国内少妇人妻偷人精品xxx网站| avwww免费| 亚洲最大成人av| 毛片女人毛片| 午夜精品国产一区二区电影 | 99久久精品热视频| 亚洲婷婷狠狠爱综合网| 久99久视频精品免费| 亚洲国产精品国产精品| 久久久久免费精品人妻一区二区| 全区人妻精品视频| 欧美bdsm另类| 听说在线观看完整版免费高清| 日本一二三区视频观看| 亚洲在线观看片| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 国产色爽女视频免费观看| 亚洲中文字幕日韩| 国产精品国产三级国产av玫瑰| 久久国内精品自在自线图片| 真实男女啪啪啪动态图| www.av在线官网国产| 18禁黄网站禁片免费观看直播| 美女xxoo啪啪120秒动态图| 精品欧美国产一区二区三| 国产久久久一区二区三区| 亚洲无线观看免费| 亚洲精品亚洲一区二区| 国产成人91sexporn| 少妇猛男粗大的猛烈进出视频 | 亚洲婷婷狠狠爱综合网| 欧美3d第一页| 中文资源天堂在线| 亚洲第一区二区三区不卡| 亚洲av.av天堂| 国产黄色小视频在线观看| 国产视频内射| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 亚洲av中文av极速乱| 久久久精品94久久精品| 国产人妻一区二区三区在| 精品国内亚洲2022精品成人| 看免费成人av毛片| 人人妻人人澡欧美一区二区| 亚洲精品粉嫩美女一区| 禁无遮挡网站| 国产成人a区在线观看| 亚洲第一区二区三区不卡| 九九久久精品国产亚洲av麻豆| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 国产黄片美女视频| 亚洲美女视频黄频| 最近中文字幕高清免费大全6| 少妇人妻精品综合一区二区 | 久久这里有精品视频免费| 亚洲第一区二区三区不卡| 亚洲综合色惰| 六月丁香七月| 成年av动漫网址| 大香蕉久久网| 免费av毛片视频| 99riav亚洲国产免费| 别揉我奶头 嗯啊视频| 熟女电影av网| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片| 在线播放国产精品三级| 大香蕉久久网| 最新中文字幕久久久久| 亚洲av第一区精品v没综合| 国产单亲对白刺激| 搞女人的毛片| 亚洲精品日韩av片在线观看| 免费观看人在逋| 成人二区视频| 国产探花极品一区二区| 美女大奶头视频| 亚洲av中文av极速乱| 99热精品在线国产| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久久久按摩| 国产一区二区激情短视频| 欧美丝袜亚洲另类| 成人一区二区视频在线观看| 国内少妇人妻偷人精品xxx网站| 丰满人妻一区二区三区视频av| 精品久久久久久久末码| 国产成人精品一,二区 | 国产黄色小视频在线观看| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 婷婷精品国产亚洲av| 国产精品,欧美在线| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验 | av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| h日本视频在线播放| 我的女老师完整版在线观看| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 精品一区二区三区视频在线| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲精品粉嫩美女一区| 成年免费大片在线观看| 国产精品一区二区在线观看99 | 一夜夜www| 九九爱精品视频在线观看| 色哟哟哟哟哟哟| 免费av毛片视频| 三级毛片av免费| 亚洲人成网站在线观看播放| 2021天堂中文幕一二区在线观| 日本爱情动作片www.在线观看| 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 一区二区三区四区激情视频 | 自拍偷自拍亚洲精品老妇| 一区二区三区四区激情视频 | 亚洲欧美精品专区久久| 丝袜美腿在线中文| 天堂网av新在线| 日韩欧美精品v在线| 亚洲精品影视一区二区三区av| 高清毛片免费看| 亚洲av二区三区四区| 长腿黑丝高跟| 99热这里只有是精品在线观看| 亚洲国产精品合色在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久国产乱子免费精品| 久久6这里有精品| 尤物成人国产欧美一区二区三区| 日韩一本色道免费dvd| av在线播放精品| 真实男女啪啪啪动态图| av在线蜜桃| 免费大片18禁| av黄色大香蕉| 男女啪啪激烈高潮av片| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 18禁在线播放成人免费| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 国产白丝娇喘喷水9色精品| 欧美日本亚洲视频在线播放| av卡一久久| 国产欧美日韩精品一区二区| 深夜a级毛片| 99久久精品国产国产毛片| 97超碰精品成人国产| 男女做爰动态图高潮gif福利片| 一进一出抽搐动态| av天堂中文字幕网| 国产视频首页在线观看| 内地一区二区视频在线| 国内少妇人妻偷人精品xxx网站| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| 少妇人妻一区二区三区视频| 日本欧美国产在线视频| 91狼人影院| av又黄又爽大尺度在线免费看 | 精品不卡国产一区二区三区| 少妇丰满av| 国产精品一区www在线观看| 久久久久久久久久久免费av| 成人特级av手机在线观看| 尤物成人国产欧美一区二区三区| eeuss影院久久| 亚洲最大成人手机在线| 伊人久久精品亚洲午夜| 亚州av有码| 国产一级毛片在线| 亚洲成人久久性| 国产成人a∨麻豆精品| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久精品电影| 桃色一区二区三区在线观看| av在线蜜桃| 一区二区三区免费毛片| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 女的被弄到高潮叫床怎么办| 大型黄色视频在线免费观看| 一级毛片我不卡| 一个人看视频在线观看www免费| 一边亲一边摸免费视频| 国产精品蜜桃在线观看 | 深夜a级毛片| 精品人妻熟女av久视频| 精品不卡国产一区二区三区| 校园人妻丝袜中文字幕| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 久久精品久久久久久久性| kizo精华| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站 | 黄色视频,在线免费观看| 国产亚洲av片在线观看秒播厂 | 九九热线精品视视频播放| 中文在线观看免费www的网站| 91aial.com中文字幕在线观看| 午夜精品在线福利| 国产毛片a区久久久久| 激情 狠狠 欧美| 联通29元200g的流量卡| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| 亚洲精品乱码久久久久久按摩| 国产亚洲精品久久久com| 亚洲经典国产精华液单| 观看美女的网站| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩卡通动漫| 久久久久国产网址| 狠狠狠狠99中文字幕| 特级一级黄色大片| 久久久精品94久久精品| 国产精品电影一区二区三区| 99久久中文字幕三级久久日本| 如何舔出高潮| 午夜福利在线在线| 国产老妇伦熟女老妇高清| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 91精品一卡2卡3卡4卡| 国产黄a三级三级三级人| 老女人水多毛片| 亚洲欧美成人综合另类久久久 | 在现免费观看毛片| 日本成人三级电影网站| 欧美激情在线99| 久久久久久久久久成人| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 99热只有精品国产| 国产精品永久免费网站| 婷婷色综合大香蕉| 美女高潮的动态| 男人舔奶头视频| 国产精品久久久久久精品电影小说 | 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 高清午夜精品一区二区三区 | 国产午夜精品一二区理论片| 亚洲av成人av| 亚洲在线观看片| 亚洲一级一片aⅴ在线观看| 在线播放国产精品三级| 久久亚洲精品不卡| 欧美成人免费av一区二区三区| 国产三级在线视频| 久久人人爽人人片av| 男女啪啪激烈高潮av片| av女优亚洲男人天堂| 国内精品美女久久久久久| 国产精华一区二区三区| 一级黄色大片毛片| 国产成人精品婷婷| 性欧美人与动物交配| 久久人人精品亚洲av| 色视频www国产| 日本与韩国留学比较| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 91精品国产九色| 免费观看a级毛片全部| 国产一级毛片在线| 色噜噜av男人的天堂激情| 亚洲美女搞黄在线观看| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 日韩精品有码人妻一区| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 99热这里只有精品一区| 草草在线视频免费看| 99久久成人亚洲精品观看| 日日撸夜夜添| 最近最新中文字幕大全电影3| 我的女老师完整版在线观看| 中文在线观看免费www的网站| av免费在线看不卡| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 青春草视频在线免费观看| 亚洲内射少妇av| 在线国产一区二区在线| 国产精品精品国产色婷婷| 麻豆成人av视频| 亚洲欧美日韩卡通动漫|