• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep-water Riser Fatigue Monitoring Systems Based on Acoustic Telemetry

    2014-04-26 10:54:41LIBaojunWANGHaiyanSHENXiaohongYANYongshengYANGFuzhouandHUAFei
    Journal of Ocean University of China 2014年6期

    LI Baojun, WANG Haiyan, SHEN Xiaohong, YAN Yongsheng, YANG Fuzhou, and HUA Fei

    School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, P. R. China

    Deep-water Riser Fatigue Monitoring Systems Based on Acoustic Telemetry

    LI Baojun, WANG Haiyan*, SHEN Xiaohong, YAN Yongsheng, YANG Fuzhou, and HUA Fei

    School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, P. R. China

    Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers’ fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.

    marine riser; fatigue monitoring; engineering prototype machine; underwater telemetry

    1 Introduction

    Marine risers have been used since 1949 in Mohole Project in the US (Leklong et al., 2008). In the last 10 years, the offshore oil and gas industry has pushed aggressively into deep and ultra-deep water. Marine risers are the only key connection between platforms on the water surface and well heads on the seabed (Anne, 2007; How et al., 2009; Sakdirat et al., 2005) in such harsh environments (Fig.1). Physically, marine risers are inherently long, slender, extensible, and flexible tubular structures and they tend to undergo the large amplitude motion subject to the severe environmental forces such as vortex shedding, current and wave forces in the ultra- deep waters. These motions, especially VIV (vortex induced vibration), can give rise to high rates of riser fatigue damage accumulation (Guo et al., 2013; Liu and Huang, 2013; Matthew et al., 2012; Modarres-Sadeghi et al., 2010; Li et al., 2010). As water depth increases, VIV becomes the supreme challenges for the marine risers’ security and the biggest uncertainties facing the riser engineers (Chaplin et al., 2005; Matthew et al., 2012; Mark et al., 2012; Michael et al., 2009).

    Fig.1 Schematic of riser and its dynamic response.

    Riser monitoring provides information that enables the operator to confirm the integrity of the riser, have assist with operational decisions, optimize inspection, maintenance and repair schedules and procedures and calibrate design tools. Riser monitoring systems (RMSs) can be classified into two broad categories: condition monitoringand structural response monitoring (Brittany et al., 2007; Mukundan et al., 2009; Muthu et al., 2007; Enuganti et al., 2011). The condition monitoring mainly refers to ocean current measurement. The structural response monitoring includes measurements of acceleration, inclination, strain stress and so on. And furthermore, a variety of monitoring equipment has been used for riser fatigue monitoring (Pierre et al., 2008; Ricky and Pei, 2008; Metin et al., 2009; Shreenaath et al., 2007; Yiannis et al., 2011). However, the aforementioned method and measurement equipment are possessed by the overseas institutions, such as 2H offshore company, but cannot meet various new conditions. Firstly, the existing equipment with high cut-off frequency cannot detect the vibration of marine risers with larger length in the deeper water, because it is induced by frequencies lower than the cut-off frequency of existing equipment. Secondly, the said equipment only measures one kind of parameters, such as acceleration, inclination, strain stress and sea current. It will be more complex and expensive to measure multiple parameters using the said equipment. As a result, new methods are called for to take up the challenges from deeper water environment.

    According to the different ways that power is supplied and communication is maintained with the monitoring equipment, RMS is ordinarily divided into three types, namely, standalone systems, hardwired systems and acoustic systems. The standalone systems have been most widely used in field monitoring, but they cannot transmit data in real time. Due to the requirement of cables, the hardwired systems are limited in terms of the number of locations. Besides, they are more complex and expensive than the standalone system. The acoustic systems are the key technology but also a challenging approach, due to the pros of their own and the cons of the other ways (Himanshu et al., 2008). The acoustic systems are cable-free solutions and can be installed either by remotely operated vehicles (ROV) or during riser installation. Compared with the standalone system, they are quasi-real time systems due to the teeny delay of data transmission and can provide operational support. Moreover, they are more simple and more cost-effective than the hardwired system. Of course, they are limited by the bandwidth of underwater acoustic channel.

    With the depth of water increasing, the length of riser increases accordingly. As a consequence, the VIV is in a lower frequency range (Li, 2010), and the existing monitoring equipment will become invalid because of the high filtering cut-off frequency.

    Following the demand of study on the Deep Ocean Oil and Gas Field Development Project of Major National Science and Technology in China, the detecting algorithm and telemetry method for marine riser fatigue in deepwater and ultra-deep-water have been studied recently (Li et al., 2011a, 2011b, 2012; Wang et al., 2011). A new marine riser fatigue acoustic telemetry scheme is proposed in this paper. An engineering prototype machine is developed based on the proposed scheme. After hundreds of times of laboratory tests and lake experiment, a field experiment of the engineering prototype machine was done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea from June, 2012 to August, 2012. The experimental results of the engineering prototype machine have made a huge impact. The technique will fill up the gap of deep-water equipment in China and offer technical support for exploration and production of offshore oil and gas in deep-water and ultra-deepwater environments.

    2 Method and Framework of Riser Monitoring

    In order to acquire the riser fatigue parameters at first time farthest, the acoustic telemetry scheme is employed in the marine riser fatigue monitoring scheme, as shown in Fig.2a. The riser fatigue monitoring system consists of two main parts, namely the upper computer and the lower computer. The underwater fatigue parameters measuring and transmitting equipment is regarded as the first section, and so is the lower computer. The data receiving and dis-playing equipment at the drill site is the second section, the upper computer. The marine riser’s VIV, inclination, stress and ocean current speed are measured by their own measurement module respectively. These parameters are processed, stored and transmitted successively, illustrated in Fig.2b, with the corresponding methods under the control of MSP430 Single Chip Microcontroller from Texas Instruments.

    Fig.2 Riser fatigue telemetry scheme.

    The acoustic signals transmitted by transmitting transducer are transformed into electrical signals by the receiving transducer. After Pre-amplifying and low pass filtering at receiver, A/D conversion, and data demodulation, the measured fatigue parameters are displayed and stored at upper computer. An engineering prototype machine, which has been patented (Xu et al., 2010 and 2011), is developed followed the schematic mentioned above. Fig.3 shows the machine. The detection module includes SSMM, VIVMM, IMM and OCMM, which are specified in the appendix.

    The smart sensor is utilized for measuring VIV and inclination. The FBG sensor undertakes the task of riser strain-stress detection. The ocean current speed is detected by a universal current meter based on magnetic induction, which is the invention patent formed in this project (Jiang et al., 2010).

    Fig.3 Picture of engineering prototype.

    3 Key Techniques

    Compared to the existing riser monitoring systems, the breakthrough and innovation in the proposed engineering prototype machine are as follow.

    3.1 Current Monitoring

    The universal current meter based on magnetic induction measures the current speed where the lower computer is placed. The current vertical profile can b e achieved through the interpolation of multipoint measured current speeds. ADCP (acoustic Doppler current profilers) (Anne, 2007), to our best knowledge, is the one and only ocean current measurement equipment used for the offshore petroleum field. The power dissipation of ADCP is proportional to its measuring depth. The universal current meter is superior to ADCP in accuracy, power dissipation and cost.

    3.2 Inclination Monitoring

    The existing angle measurement is of the 2D style (x-y, x-z or y-z). However, the marine riser inclination along the z axis is the most important and limited to 10 degrees. One novel method is proposed for inclination monitoring using:

    where α, β and θ are respectively the inclination relative to x, y and z axes to be measured.

    The proposed method can reduce energy consumption greatly according to formula (1). The inclination data is transmitted in the form of frame. The angles α, β and θ have the same length of frame, which is assumed to be L bits. Compared to the existing method that angle data with two L bits need to be transmitted, the length of angle data with L bits in the proposed method reduces by one half. Meanwhile, the time of data transmission also decreases. As a result, energy consumption will reduce accordingly.

    3.3 Acceleration Monitoring

    The inherent frequency of riser is in inverse proportion to its length. As the riser length increases, the lower frequency would be excited by VIV. For example, the lowest inherent frequency of riser with 3000 m length is about 0.019 Hz (Li, 2010). As a result, lots of existing acceleration measurement equipment becomes out of action, due to the high cut-off frequency, e.g., the cut-off frequency of INTEGRI pod?-AM, which is the typical case of 2H offshore Inc, is 4.5 Hz, and in the reference (Tang et al., 2012) it is 1 Hz. They all cannot match the riser fatigue monitoring in deep and ultra-deep water. However, the cut-off frequency of the proposed engineering prototype machine is 0 Hz and its sampling frequency is 25 Hz, which permits a wider frequency range to be monitored.

    Last, the engineering prototype machine is an integrated fatigue monitoring system. To our best knowledge, kinds of existing riser monitoring systems are single- parameter monitoring system. Strain and vibration are the parameters that can be interchangeable in theory. In practice the measurement of strain or vibration present its own sets of challenges (Himanshu et al., 2008). The integrated monitoring system possesses the comparative advantage and comprehensive advantage compared with the oneparameter monitoring system.

    4 Sea Trials

    The accuracy, measuring error and feasibility of every parameter measurement module of the engineering pro-totype machine had been tested through laboratory tests. And lake experiments made at Fengjia Shan Reservoir of Shaanxi province in Nov. 2010 tested and verified the data transmitting and the good performance of underwater acoustic communication. After hundreds of times of laboratory tests and lake experiments, sea trials of the machine were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea from June 30, 2012 to August 10, 2012. The seal housing was installed by a special ribbon during riser installation as shown in Fig.4. The receiving transducer was launched into water 100m below sea level to avoid thermocline.

    Fig.4 Pictures of seal housing installation.

    The data transmitting through underwater acoustic channel are affected critically by ambient noise. The frequency range of the engineering prototype machine is 8 kHz-12 kHz. According to the ambient noise frequency spectrum around the platform HYSY-981 shown in Fig.5, the needed frequency range is smooth and no noise interference exists. It proves that the frequency range is in point and the sea trials show the system’s feasibility and reliability.

    The interface of data receiving and data displaying is illustrated in Fig.6. The received Bauhinia pattern transmitted by lower computer before fatigue data transmitting signifies the excellent underwater acoustic communication performance. The received fatigue parameters aredrawn in red line.

    Fig.5 Ambient noise spectrums around HYSY-981.

    Fig.6 Interface of data receiving and data displaying.

    Fig.7 Inclination data chart.

    Because of the confidentiality and operation limitations of the platform HYSY-981, only the inclination measurement results are demonstrated in this paper. The risers moved from 0 m to 12 m under the manipulation by drilling platform. The inclination changing process was monitored and recorded by two monitoring systems. The inclination data are shown in the left diagram of Fig.7. The horizontal axis stands for sampling data numbers and the vertical axis indicates the inclination data of marine riser. The right picture displays the inclination measured by the Kongsberg Riser Management System that has been employed by the deep-water drilling platform HYSY-981. The monitored inclination changing process by the engineering prototype machine is in agreement with that by Kongsberg system. The measuring error in the proposed system is less than 5% compared to Kongsberg.

    5 Conclusions

    Marine risers are the only key connection between platforms on the water surface and well heads on the seabed. Their fatigue and failure induced by dynamic response can not only diminish its fatigue life, but also lead to economic losses and eco-catastrophe. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed. The proposed integrated fatigue monitoring system has many breakthroughs and innovation.

    The sea trial results obtained from the 6th generation deep-water drilling platform HYSY-981 in the South China Sea show that the proposed scheme is feasible and reliable and the engineering prototype machine developed meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained will provide much technical support to optimize the design of the engineering prototype machine in the future.

    Acknowledgements

    This work was supported in part by the National Science and Technology Major Project of China (2011ZX 05026-001-06), and the National Natural Science Foundation of China (51249005; 60972153).

    Appendix

    Nomenclature

    DDS: Direct Digital Synthesis

    DSM: Display System Module

    DSP: Digital Signal Processor

    IMM: Inclination Measurement Module

    OCMM: Ocean Current Measurement Module

    SSMM: Stress Strain Measurement Module

    VIV: Vortex Induced Vibrations

    VIVMM: VIV Measurement Module

    UAC: Underwater Acoustic Channel

    Anne, M. R., 2007. Modeling and control of top tensioned risers. PhD dissertation. Norwegian University of Science and Technology, Norway, 1-55.

    Brittany, G., Elizabeth, F., and Madhu, H., 2007. The role of offshore monitoring in an effective deepater riser integrity management program. In: Proceedings of OMAE 2007: 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, OMAE2007-29479.

    Chaplin, J. R., Bearman, P. W., and Cheng, Y., 2005. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures, 21: 25-40.

    Enuganti, P., Shakkari, P., and Constantinides, Y., 2011. SCR integrity management program using field data from a monitoring system. In: Offshore Technology Conference. Houston. OTC-21912-PP.

    Guo, H. Y., Zhang, L., Li, X. M., and Lou, M., 2013. Dynamic responses of top tensioned riser under combined excitation of internal solitary wave, surface wave and vessel motion. Journal of Ocean University of China, 12 (1): 6-12.

    Himanshu, M., Wolfgang, R., and Dave, W., 2008. Riser integrity monitoring techniques and data processing methods. ISOPE-2008-EF-01

    How, B. V. E., Ge, S. S., and Choo, Y. S., 2009. Active control of flexible marine risers. Journal of Sound and Vibration, 320: 758-776

    Jiang, S. Q., Xu, L. B., and Wang, H. Y., 2010. One kind of deep-water universal current meter based on magnetic induction. Patent pending number: 201010593428.3 (China Patent).

    Leklong, J., Chucheepsakul, S., and Kaewunruen, S., 2008. Dynamic responses of marine risers/pipes tran sporting fluid subject to top end excitations. In: Proceedings of the Eighth International Society of Offshore and Polar Engineers Pacific/Asia Offshore Mechanics Symposium Bangkok. Thailand, November 10-14.

    Li, B. J., 2010. Research on fatigue monitoring techniques of deepwater risers. Master thesis. Northwest-ernPolytechnical University, Xi’an, 1-32 (in Chinese with English abstract).

    Li, B. J., Wang, H. Y., Shen, X. H., and Zhu, M. Y., 2011. A novel algorithm for riser vortexinducedvibration detecting. Computer Measurement & Control, 19 (6): 1273-1277 (in Chinese with English abstract).

    Li, B. J., Wang, H. Y., Shen, X. H., and Zhao, R. Q., 2012. Telemetry method with low power consumption for marine riser fatigue monitoring. Computer Measurement & Control, 20 (5): 1211-1213 (in Chinese with English abstract).

    Li, X. M., Guo, H. Y., and Meng, F. S., 2010a. Fatigue life assessment of top tensioned risers under vortexinduced vibrations. Journal of Ocean University of China, 9 (1): 43-47.

    Li, X. M., Guo, H. Y., and Meng, F. S., 2010b. Stress analysis of top tensioned riser under random waves and vessel motions. Journal of Ocean University of China, 9 (3): 251-256.

    Liu, J., and Huang, W. P., 2013.A nonlinear vortex induced vibration model of marine risers, Journal of Ocean University of China, 12 (1): 32-36.

    Mark, C., Shyue, S. C., and Cary, G., 2012. Fatigue analysis of tether chain in hybrid risers. In: Proceedings of the ASME 31stInternational Conference on Ocean, Offshore and Arctic Engineering. Rio De Janeiro, OMAE2012-83954.

    Matthew, B., Elizabeth,T., and Dhyanjyoti, D., 2012. Experi-mental evaluation of vortex induced vibration response of straked pipes in tandem arrangements. In: Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio De Janeiro, OMAE2012-83772.

    Metin, K., Wolfgang, R., and Shreenaath, N., 2009. Steel catenary riser response characterization with on-line monitoring devices, OMAE2009-79437.

    Metin, K., Chen, J. H., and Curtiss, B., 2009. Tahiti online monitoring system for steel catenary risers and flowlines. OTC 19860.

    Michael, A. T., Yin, F. J., and Mike, C., 2009. Benchmarking of shear7v4.5: Comparisons to full-scale drilling riser VIV data and legacy analyses. In: Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, OMAE2009-79442.

    Modarres, S. Y., Mukundan, H., and Dahl, J. M., 2010. The effect of higher harmonic forces on fatigue life of marine risers. Journal of Sound and Vibration,329: 43-55.

    Mukundan, H., Modarres, S. Y., and Dahl, J. M., 2009. Monitoring VIV fatigue damage on marine risers. Journal of Fluids and Structures,25: 617-628.

    Muthu, C., and Trond, S. M., 2007. Riser monitoring systems–then and now. Exploration & Production –Oil & Gas Review–OTC Edition, 82-85.

    Pierre, B., Roy, S., and Mike, C., 2008. Full scale VIV response measurements of a drill pipe in Gulf of Mexico loop currents, OMAE2008-57610.

    Ricky, T., and Pei, A., 2008. Performance monitoring of deep-water risers. In: Proceedings of the ASME 27th International Conference on Ocean, Offshore and Arctic Engineering. Estoril, OMAE2008-57018.

    Sakdirat, K., Julapot, C., and Somchai, C., 2005. Nonlinear free vibrations of marine risers/pipes transporting fluid. Ocean Engineering,32: 417–440.

    Shreenaath, N., Mateusz, P., and Metin, K., 2007. Deep-water spar steel catenary riser monitoring strategy, In: International Conference on Ocean, Offshore and Arctic Engineering. OMAE 2007-29344.

    Tang, D., He, F., and Shi, R. F., 2012. New-developed selfcontained acceleration measurement instrument used for offshore platform monitoring. Chinese Journal of Scientific Instrument,33(3): 689-694 (in Chinese with English abstract).

    Wang, H. Y., Li, B. J., Shen, X. H., Jiang, S. Q., and Xu, L. B., 2011. Research on deep-water Riser VIV fati--guetelemetry monitoring. In: the 8th International Bhurban Conference on Applied Sciences & Technology. Pakistan, 5pp.

    Xu, L. B., Wang, H. Y., and Jiang, S. Q., 2011. One kind of multiple point acoustic monitoring system for marine riser fatigure. Patent pending number: 201120001419.0 (China Patent).

    Xu, L. B., Wang, H. Y., and Jiang, S. Q., 2010. One kind of seal housing used for deep-water information sensing and acoustic wireless transmitting. Patent pending number: 201010616028. X (China Patent).

    Yiannis, C., Lee, T., and Prahlad, E., 2011. Steel catenary riser response identification based on field measurements. In: Proceedings of the ASME 30thInternational Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, OMAE 2011-50148.

    (Edited by Ji Dechun)

    (Received September 24, 2013; revised April 29, 2014; accepted May 24, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-029-88495759

    E-mail: hywang@nwpu.edu.cn

    高清av免费在线| 妹子高潮喷水视频| 他把我摸到了高潮在线观看 | 夜夜骑夜夜射夜夜干| 精品国产超薄肉色丝袜足j| 国产日韩欧美在线精品| 久久精品人人爽人人爽视色| 99精品久久久久人妻精品| 法律面前人人平等表现在哪些方面| 亚洲av成人一区二区三| 在线亚洲精品国产二区图片欧美| 18禁国产床啪视频网站| 交换朋友夫妻互换小说| 91麻豆av在线| 老司机深夜福利视频在线观看| 自线自在国产av| 国产在线视频一区二区| 国产色视频综合| 高清在线国产一区| 国产亚洲一区二区精品| 亚洲视频免费观看视频| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 亚洲精品国产区一区二| 91精品三级在线观看| 亚洲精华国产精华精| 精品午夜福利视频在线观看一区 | 欧美老熟妇乱子伦牲交| tocl精华| 国产99久久九九免费精品| 动漫黄色视频在线观看| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 熟女少妇亚洲综合色aaa.| 我要看黄色一级片免费的| 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 久久性视频一级片| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 热99久久久久精品小说推荐| 超色免费av| 多毛熟女@视频| a级毛片黄视频| 美女午夜性视频免费| 免费观看人在逋| 最新在线观看一区二区三区| 在线 av 中文字幕| 国产不卡av网站在线观看| 麻豆av在线久日| 色尼玛亚洲综合影院| 欧美日韩av久久| 久久精品熟女亚洲av麻豆精品| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 国产精品久久久久久精品电影小说| 在线观看一区二区三区激情| 夜夜爽天天搞| 久久影院123| 一级黄色大片毛片| 高清视频免费观看一区二区| 国产精品成人在线| 久久国产亚洲av麻豆专区| 久久人人97超碰香蕉20202| 日韩熟女老妇一区二区性免费视频| 99精品久久久久人妻精品| 丁香六月欧美| 国产高清视频在线播放一区| 欧美激情极品国产一区二区三区| 视频区图区小说| 丁香六月欧美| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人| 欧美精品av麻豆av| 飞空精品影院首页| 99国产综合亚洲精品| 两人在一起打扑克的视频| 香蕉久久夜色| 他把我摸到了高潮在线观看 | 欧美 日韩 精品 国产| 91精品三级在线观看| 国产精品成人在线| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影 | 亚洲专区中文字幕在线| 丝袜美腿诱惑在线| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 波多野结衣av一区二区av| 狠狠婷婷综合久久久久久88av| 亚洲精品乱久久久久久| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 亚洲国产av影院在线观看| 欧美日韩国产mv在线观看视频| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o| av天堂久久9| 亚洲精品在线美女| 成人亚洲精品一区在线观看| av网站在线播放免费| 国产精品1区2区在线观看. | 免费观看av网站的网址| 黑人猛操日本美女一级片| 亚洲三区欧美一区| 19禁男女啪啪无遮挡网站| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 欧美在线黄色| 又大又爽又粗| 丰满少妇做爰视频| 久久精品国产亚洲av香蕉五月 | 最近最新中文字幕大全电影3 | 国产又爽黄色视频| 最近最新免费中文字幕在线| 久久人人爽av亚洲精品天堂| av天堂在线播放| 国产亚洲精品久久久久5区| 成人三级做爰电影| 中文亚洲av片在线观看爽 | 中文字幕人妻熟女乱码| 91九色精品人成在线观看| 亚洲国产看品久久| 久久香蕉激情| 热99国产精品久久久久久7| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 免费一级毛片在线播放高清视频 | 国产aⅴ精品一区二区三区波| 一级黄色大片毛片| 久久国产精品大桥未久av| 精品久久蜜臀av无| 一区二区三区激情视频| 视频区欧美日本亚洲| 热99re8久久精品国产| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 丁香六月欧美| 午夜福利一区二区在线看| 制服诱惑二区| 大片免费播放器 马上看| 无遮挡黄片免费观看| 欧美精品一区二区大全| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 麻豆av在线久日| 黄色a级毛片大全视频| 国产深夜福利视频在线观看| 亚洲精华国产精华精| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 桃红色精品国产亚洲av| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 性少妇av在线| 亚洲熟女毛片儿| 99精品欧美一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 岛国在线观看网站| 啦啦啦 在线观看视频| 视频区图区小说| 国产老妇伦熟女老妇高清| 欧美老熟妇乱子伦牲交| 成年女人毛片免费观看观看9 | 亚洲欧美激情在线| videosex国产| 国产精品免费大片| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av | 黄色成人免费大全| 视频区欧美日本亚洲| 老司机福利观看| 国产日韩欧美视频二区| 51午夜福利影视在线观看| 久久影院123| 十八禁高潮呻吟视频| 亚洲黑人精品在线| 久久青草综合色| 日韩免费av在线播放| 国产免费福利视频在线观看| 久久热在线av| 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 国产精品免费视频内射| 91成年电影在线观看| 高清av免费在线| 久久久久久人人人人人| 人成视频在线观看免费观看| 91精品国产国语对白视频| 美女午夜性视频免费| 后天国语完整版免费观看| 日韩免费高清中文字幕av| 久久天堂一区二区三区四区| 国产成人欧美在线观看 | 欧美黄色片欧美黄色片| 国产国语露脸激情在线看| 久久久久网色| 99国产综合亚洲精品| 国产aⅴ精品一区二区三区波| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 色老头精品视频在线观看| 日本黄色日本黄色录像| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 亚洲精华国产精华精| 午夜日韩欧美国产| 国产在线视频一区二区| 搡老乐熟女国产| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 久久精品亚洲熟妇少妇任你| 成年人免费黄色播放视频| 熟女少妇亚洲综合色aaa.| 亚洲专区中文字幕在线| 中文欧美无线码| 大片免费播放器 马上看| 久久久欧美国产精品| 亚洲国产av影院在线观看| 国产精品亚洲一级av第二区| 狠狠婷婷综合久久久久久88av| 人人妻人人添人人爽欧美一区卜| 在线永久观看黄色视频| 亚洲第一欧美日韩一区二区三区 | 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| kizo精华| 午夜久久久在线观看| 老熟女久久久| 99精品久久久久人妻精品| 午夜激情av网站| 国产精品一区二区在线观看99| av一本久久久久| 久久久国产欧美日韩av| 一区二区av电影网| 国产精品久久久久久精品古装| 18禁美女被吸乳视频| 日日爽夜夜爽网站| 精品乱码久久久久久99久播| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 久久午夜亚洲精品久久| 午夜两性在线视频| 亚洲av欧美aⅴ国产| 午夜日韩欧美国产| 国产一区二区激情短视频| 国产高清videossex| 国产男靠女视频免费网站| 如日韩欧美国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| av一本久久久久| 国产精品麻豆人妻色哟哟久久| 波多野结衣一区麻豆| 黄色视频在线播放观看不卡| 丝袜美腿诱惑在线| 9191精品国产免费久久| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 男人操女人黄网站| 午夜两性在线视频| 视频在线观看一区二区三区| 国产精品国产高清国产av | 夜夜夜夜夜久久久久| 老汉色∧v一级毛片| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 国产成人精品久久二区二区91| 美女福利国产在线| 亚洲精品美女久久av网站| 国产精品欧美亚洲77777| 男女午夜视频在线观看| 国产成人一区二区三区免费视频网站| 蜜桃国产av成人99| 亚洲人成电影观看| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲| 日韩视频一区二区在线观看| tube8黄色片| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 欧美精品人与动牲交sv欧美| 美女国产高潮福利片在线看| 精品免费久久久久久久清纯 | 午夜免费成人在线视频| 中国美女看黄片| 757午夜福利合集在线观看| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 国产一卡二卡三卡精品| 搡老乐熟女国产| 精品一品国产午夜福利视频| 夜夜夜夜夜久久久久| 久久久久久久大尺度免费视频| 十八禁人妻一区二区| 国产精品国产高清国产av | 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 如日韩欧美国产精品一区二区三区| 又紧又爽又黄一区二区| 一级片免费观看大全| 亚洲国产欧美网| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| 2018国产大陆天天弄谢| 精品亚洲成国产av| 亚洲成a人片在线一区二区| 日韩免费av在线播放| 香蕉国产在线看| 麻豆成人av在线观看| 男女免费视频国产| 欧美人与性动交α欧美软件| 国产精品av久久久久免费| 国产av国产精品国产| 精品人妻在线不人妻| 久久久久视频综合| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 国产色视频综合| 国产精品亚洲一级av第二区| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| 欧美黑人欧美精品刺激| 久久热在线av| 国产精品二区激情视频| 日本av手机在线免费观看| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 国产淫语在线视频| 午夜激情久久久久久久| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 男女午夜视频在线观看| 一本—道久久a久久精品蜜桃钙片| 老熟妇仑乱视频hdxx| 成人黄色视频免费在线看| 在线观看免费视频日本深夜| 老鸭窝网址在线观看| 一边摸一边抽搐一进一出视频| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 国产成人精品在线电影| 黑人操中国人逼视频| 免费高清在线观看日韩| 国产亚洲精品一区二区www | 精品欧美一区二区三区在线| 在线观看一区二区三区激情| 2018国产大陆天天弄谢| 两个人免费观看高清视频| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 少妇被粗大的猛进出69影院| 国产精品免费大片| 久久久欧美国产精品| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 午夜免费鲁丝| 亚洲精品美女久久av网站| 一级毛片女人18水好多| 性高湖久久久久久久久免费观看| 中文字幕高清在线视频| 国产免费现黄频在线看| 一本久久精品| 精品免费久久久久久久清纯 | 美女午夜性视频免费| 精品午夜福利视频在线观看一区 | 日本vs欧美在线观看视频| 十八禁高潮呻吟视频| 亚洲免费av在线视频| 国产精品麻豆人妻色哟哟久久| 少妇的丰满在线观看| 在线观看一区二区三区激情| 欧美中文综合在线视频| 蜜桃在线观看..| 欧美大码av| 国产欧美日韩一区二区三| 一级毛片电影观看| 亚洲,欧美精品.| 国产成人av激情在线播放| 99re6热这里在线精品视频| 久久99热这里只频精品6学生| 国产一区二区三区综合在线观看| 日本av手机在线免费观看| 日韩三级视频一区二区三区| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 激情在线观看视频在线高清 | 久久ye,这里只有精品| 在线永久观看黄色视频| 国产人伦9x9x在线观看| 亚洲久久久国产精品| 淫妇啪啪啪对白视频| 日韩三级视频一区二区三区| 咕卡用的链子| 天天操日日干夜夜撸| 老司机在亚洲福利影院| 成人手机av| 午夜视频精品福利| 菩萨蛮人人尽说江南好唐韦庄| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 美女高潮喷水抽搐中文字幕| 国精品久久久久久国模美| 国产成人精品在线电影| 色婷婷久久久亚洲欧美| 欧美在线一区亚洲| 久久久精品区二区三区| 无人区码免费观看不卡 | 午夜久久久在线观看| 蜜桃在线观看..| 看免费av毛片| 国产av精品麻豆| 欧美人与性动交α欧美软件| 久久精品91无色码中文字幕| 飞空精品影院首页| 久久久久久亚洲精品国产蜜桃av| avwww免费| 国产亚洲午夜精品一区二区久久| 黄片小视频在线播放| av国产精品久久久久影院| 一个人免费在线观看的高清视频| 久久天躁狠狠躁夜夜2o2o| 曰老女人黄片| 电影成人av| 久久国产精品影院| 中文字幕人妻熟女乱码| 日韩成人在线观看一区二区三区| 国产激情久久老熟女| 久久天堂一区二区三区四区| 啦啦啦在线免费观看视频4| 亚洲中文av在线| 女人爽到高潮嗷嗷叫在线视频| 在线看a的网站| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美精品济南到| 三上悠亚av全集在线观看| 亚洲国产av影院在线观看| 日本欧美视频一区| 久久热在线av| 老司机影院毛片| 欧美人与性动交α欧美软件| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 最黄视频免费看| 亚洲少妇的诱惑av| 亚洲avbb在线观看| 十八禁网站免费在线| 9191精品国产免费久久| 老鸭窝网址在线观看| 国产精品久久久久久精品古装| 国产麻豆69| 久久狼人影院| 50天的宝宝边吃奶边哭怎么回事| 精品国产一区二区三区久久久樱花| 亚洲午夜精品一区,二区,三区| 久久性视频一级片| 国产男靠女视频免费网站| 国产男女内射视频| 高清视频免费观看一区二区| 91九色精品人成在线观看| av网站免费在线观看视频| 日韩中文字幕欧美一区二区| 美女国产高潮福利片在线看| 成人手机av| 亚洲精品在线观看二区| 亚洲国产中文字幕在线视频| 久久久水蜜桃国产精品网| 成人永久免费在线观看视频 | 国产精品久久久久久精品古装| 亚洲人成电影免费在线| 亚洲全国av大片| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| 在线观看免费午夜福利视频| 自线自在国产av| aaaaa片日本免费| 亚洲精品在线观看二区| 女警被强在线播放| 纯流量卡能插随身wifi吗| 国产国语露脸激情在线看| 丝瓜视频免费看黄片| 久久性视频一级片| 午夜91福利影院| 99在线人妻在线中文字幕 | 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 日本撒尿小便嘘嘘汇集6| 久热这里只有精品99| 搡老乐熟女国产| 亚洲av电影在线进入| 黄色视频在线播放观看不卡| 国产欧美日韩综合在线一区二区| 精品视频人人做人人爽| 国产av国产精品国产| 日本a在线网址| 精品国产亚洲在线| 国产精品亚洲av一区麻豆| 久久中文看片网| 精品国产国语对白av| 亚洲黑人精品在线| 成人av一区二区三区在线看| 老司机午夜福利在线观看视频 | www.精华液| 啦啦啦 在线观看视频| 在线 av 中文字幕| 99精品久久久久人妻精品| 日韩视频在线欧美| 亚洲色图综合在线观看| 天天操日日干夜夜撸| 老熟妇仑乱视频hdxx| 高清av免费在线| 19禁男女啪啪无遮挡网站| 女性被躁到高潮视频| 成人手机av| 国产一区有黄有色的免费视频| 欧美国产精品一级二级三级| 久久中文看片网| 咕卡用的链子| 色精品久久人妻99蜜桃| 国产在线一区二区三区精| av一本久久久久| 天天添夜夜摸| 亚洲欧美日韩另类电影网站| 两人在一起打扑克的视频| 国产精品免费一区二区三区在线 | 亚洲精品一卡2卡三卡4卡5卡| 无人区码免费观看不卡 | 中文字幕av电影在线播放| 狠狠狠狠99中文字幕| 欧美 日韩 精品 国产| 欧美日韩亚洲国产一区二区在线观看 | av在线播放免费不卡| 中文字幕av电影在线播放| 久久亚洲真实| 亚洲伊人色综图| 搡老乐熟女国产| 大陆偷拍与自拍| 女同久久另类99精品国产91| 操美女的视频在线观看| 1024香蕉在线观看| 高清欧美精品videossex| 一级,二级,三级黄色视频| 亚洲 国产 在线| 免费久久久久久久精品成人欧美视频| 在线天堂中文资源库| 成年人午夜在线观看视频| 女警被强在线播放| 国产免费av片在线观看野外av| 午夜91福利影院| 两性夫妻黄色片| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 午夜福利欧美成人| 欧美成狂野欧美在线观看| √禁漫天堂资源中文www| 蜜桃在线观看..| 国产99久久九九免费精品| 久久精品人人爽人人爽视色| 99九九在线精品视频| 精品免费久久久久久久清纯 | 国产成人精品在线电影| 日韩免费高清中文字幕av| 在线看a的网站| 久热爱精品视频在线9| 欧美乱妇无乱码| 狠狠精品人妻久久久久久综合| 首页视频小说图片口味搜索| 欧美变态另类bdsm刘玥| 色视频在线一区二区三区| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 久久久久久亚洲精品国产蜜桃av| 久热这里只有精品99| 丰满迷人的少妇在线观看| 亚洲精品国产精品久久久不卡| 美国免费a级毛片| 国产精品久久久久久人妻精品电影 | 国产野战对白在线观看| 久久久国产一区二区| 黄片小视频在线播放| 国产成人精品久久二区二区免费| 男女下面插进去视频免费观看| 国产视频一区二区在线看| 亚洲人成电影免费在线| 少妇精品久久久久久久| av天堂久久9| 亚洲av日韩精品久久久久久密| 免费日韩欧美在线观看| 一区二区三区精品91| 99久久人妻综合| 法律面前人人平等表现在哪些方面| 欧美黑人欧美精品刺激|