• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Major Mid-Late Holocene Cooling in the East China Sea Revealed by an Alkenone Sea Surface Temperature Record

    2014-04-26 10:54:39ZHAOMeixunDINGLingXINGLeiQIAOShuqingandYANGZuosheng
    Journal of Ocean University of China 2014年6期

    ZHAO Meixun, DING Ling XING Lei QIAO Shuqing, and YANG Zuosheng

    1) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China

    2) Institute of Marine Organic Geochemistry, Ocean University of China, Qingdao 266100, P. R. China

    3) Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, P. R. China

    4) College of Marine Geoscience, Ocean University of China, Qingdao 266100, P. R. China

    Major Mid-Late Holocene Cooling in the East China Sea Revealed by an Alkenone Sea Surface Temperature Record

    ZHAO Meixun1),2),*, DING Ling1),2), XING Lei1),2), QIAO Shuqing3),4), and YANG Zuosheng4)

    1) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China

    2) Institute of Marine Organic Geochemistry, Ocean University of China, Qingdao 266100, P. R. China

    3) Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, P. R. China

    4) College of Marine Geoscience, Ocean University of China, Qingdao 266100, P. R. China

    sea surface temperature; alkenone; East China Sea; 4 ka; ITCZ

    1 Introduction

    Terrestrial and marine records have revealed that the Holocene climate has experienced both long- and short-term fluctuations with superimposed spatial characteristics (Mayewski et al., 2004; Wanner et al., 2008). For example, during the mid-Holocene, SST increased for the western Pacific warm pool but decreased for the equatorial East Pacific cold tongue (Koutavas et al., 2006), and the increased zonal SST gradient was typical of strong La Ni?a conditions. Since the mid-Holocene, the zonal SST gradient decreased, indicating a change to a typical modern condition characterized by enhanced El Ni?o/Southern Oscillation (ENSO). One short-term Holocene climate event, the ca. 4 ka, has received much attention recently (Staubwasser et al., 2003; Staubwasser and Weiss, 2006), partly because it might have caused the abrupt collapse of many agriculture-based societies and civilizations (Wu and Liu, 2004; Drysdale et al., 2006), especially via droughts at lower latitudes. Proposed mechanisms for the mid-late Holocene climate changes and the 4 ka event include the reduced monsoon precipitation caused by the southward migration of the Northern Hemisphere summer position of the Intertropical Convergence Zone (ITCZ) in response to the precessional cycle (Haug et al., 2001), and/or changes in ENSO patterns (Koutavas et al., 2006). However, questions remain about the apparent asynchroneity of the 4 ka event recorded in different records, and the abruptness of changes which is incompatible with a gradual change in the position of the ITCZ. Additional records, especially from marine environments, are needed for improved cross-correlation, determination of phase relationships among different records, and constraining mechanisms of both centennial and millennial scale Holocene climate changes.

    Only a few deep-sea records have been obtained todocument the marine responses of the 4 ka event (Jian et al., 2000; Koutavas et al., 2006). Marginal sea sediments are especially suitable for such reconstructions because the climate signal there is often amplified since marginal seas are more sensitive to coupled atmosphere-ocean forcing (Wang et al., 1999; Wang et al., 2011). Here we report a Holocene SST record from the continental shelf region of the East China Sea based on alkenone analysis of Core B3. Our record reveals a major cooling during the mid- to late-Holocene transition, approximately coeval with the 4 ka event. We focus on the mechanism of this event, by correlating it with other relevant records from the region.

    2 Oceanographic Setting

    Fig.1 A map of China and the West Pacific marginal seas showing the locations of both the terrestrial and marine proxy records discussed in the text (Fig.1a). A detailed map for the Yellow Sea and the East China Sea is shown in Fig.1b with the marine core locations of B3, 255, B-3GC and MD982195 (abbreviated as MD95 in Fig.1b) indicated by filled squares. The surface currents during the winter season are also shown (modified after Su (2005) and Wang et al. (2011)). YSCC: Yellow Sea Coastal Current; YSWC: Yellow Sea Warm Current; TWWC: Taiwan Warm Current; KCC: Korea Coastal Current. The stippled areas labeled M1, M2 and M3 are the distal mud areas.

    3 Materials and Methods

    The Holocene age model for Core B3 was constrained by six accelerator mass spectrometry (AMS)14C dates of mixtures of benthic foraminiferal species (Fig.2), since no sufficient amount could be picked up from any single species. The AMS14C dates showed neither age reversals, nor detectable gaps for the last 8.0 kyr. The AMS14C dates were converted to calendar ages by CALIB 4.3 with a 400-year reservoir age correction. The age model, by linear interpolation between individual AMS14C dates, has an error of ±60 years, and yields average sedimentation rate of 23 cm kyr-1. Thus, the alkenone analysis sampling resulted in an average time resolution of about 250 years.

    4 Results and Discussions

    4.1 SST and Productivity Variations of the Last 8 kyr

    The record for Core B3 (Fig.2b) reveals an annual SST change of about 6℃ during the last 8 kyr, with the highest SST occurring at 5.6 ka (24.7℃) and the lowest SST occurring at 0.4 ka (18.6℃). Although the record is of relatively low resolution, it can be broadly divided into three intervals. The first interval shows an increasing trend from 8.0 ka (22.1℃) to 5.6 ka (24.7℃), including some oscillations. The second interval from 5.6 ka to 3.8 ka is characterized by a major cooling, with SST reaching a minimum of 19.2℃ by 3.8 ka. Due to the limited sampling resolution (250 years), the record seems to suggest that the cooling was gradual, with a first decrease starting at 5.6 ka, followed by a decrease of almost 3℃ from 4.8 ka (22.1℃) to 3.8 ka (19.2℃). During the third interval (the last 3.8 kyr), SST oscillated between 18.6℃ and 21.9℃, within which the most obvious feature is an SST minimum of 18.6℃ at 0.4 ka. Due to the low sampling resolution, our SST record could not be used to evaluate whether the 4 ka cooling was an abrupt event or a gradual change. The core F10-B SST record also reveals a major cooling from 6 ka to 5 ka, followed by small and gradual cooling which reaches a broad low SST interval around 4 ka (Xing et al., 2013).

    The alkenone content (Fig.2a) is used as a proxy for haptophyte productivity, and it can be characterized by two intervals. During the warm interval from 8.0 ka to 5.6 ka, the average haptophyte productivity was lower and the productivity variability was also lower. For the last 5 kyr when SST was lower, the average haptophyte productivity was higher and productivity oscillations also increased. This record is broadly consistent with the F10-B productivity record, although the latter revealed a major late Holocene increase partly due to higher sampling resolution (Yuan et al., 2013). Although SST and alkenone content appear to be inversely correlated, an X-Y plot (not shown) reveals no significant correlation between these two proxies.

    Fig.2 K' U37 SST and alkenone content records for Core B3 and comparison with other regional climate records. (a) Alkenone content (ng g-1, dry sediment weight); (b) The B3 K' U37 SST record (solid line) and the Holocene part of the K' U37 SST record for MD982195 (Ijiri et al., 2005), re-calculated using the Müller equation (dashed line); (c) The P. obliquiloculata percentage in Core B-3GC (solid line) and Core 255 (dashed line) from the Okinawa Trough (Jian et al., 2000); (d) The δ18O (solid line) and growth rate (dashed line) records for Dongge Stalagmite D4 (Dykoski et al., 2005); (e) The five-point averaged TOC content record of core GH99a from Daihai Lake of Inner Mongolia (Xiao et al., 2006); (f) The redness record of Qinghai Lake sediment (Ji et al., 2005); (g) The summer solar insolation (June, July, August) at 30°N. The depth and corresponding 14C ages for Core B3 are shown on the top. The shaded vertical bar indicates the interval of minimum SST in Core B3 near the 4 ka event.

    4.2 Comparison with Regional Climate Records

    Our SST record can be compared with other relevant marine and terrestrial climate records which have revealed the mid-late Holocene climate change and especially the 4 ka event, in order to put our record in a regional and global context and to shed some light on relevant mechanisms (Fig.2). The Pulleniatina obliquiloculata percentage in Cores B-3GC and 255 (Figs.1b and 2c) from the Okinawa Trough is a proxy for the strength of the Kuroshio Current, and the Pulleniatina minimum event at 4.6 to 2.7 ka suggests a weakened Kuroshio influence and a stronger winter monsoon (Jian et al., 2000). The overall similarity between our SST record and the P. obliquiloculata percentage record and the coincidence of our SST minimum with the Pulleniatina minimum event suggest that the strength of the Kuroshio Current could be a major factor controlling B3 SST, probably through its shelf branches, the TWWC and the YSWC. Thus, the weakened Kuroshio influence could be partially responsible for the mid-late Holocene cooling in Core B3.

    Many terrestrial records from China have documented mid-late Holocene summer monsoon decreases. For example, the Dongge stalagmite δ18O and growth rate records (Figs.1a and 2d) show a significant and abrupt decrease in the summer monsoon strength at about 3.6 ka (Dykoski et al., 2005); the TOC content of Daihai Lake (Fig.2e) in north-central China (Fig.1a) suggests that the summer monsoon intensity began to decrease around 5.3 ka, and reached a minimum around 3.3 ka (Xiao et al., 2006); the sediment redness from Qinghai Lake (Figs.1a and 2f) shows an abrupt decrease at ca. 4.2 ka, marking a sudden decrease of the summer monsoon intensity (Ji et al., 2005). The apparent asynchronous changes in the monsoon records could be partly explained by the uncertainties of the chronologies of the different records, which would be resolved with more records and (or) better dating. Another explanation would be spatial variations in the changes in Holocene Asian monsoon intensity (An et al., 2000; He et al., 2004). Because it is well established that the East Asia summer and winter monsoons have an anti-phase relationship (Yancheva et al., 2007), it could be inferred from these summer monsoon records that the winter monsoon intensity increased significantly during the mid-late Holocene.

    The beginning of the mid-late Holocene SST decrease in Core B3 is almost synchronous with the major δ18O change in Dongge record at ca. 5.6 ka, but leads the major decrease in the Daihai Lake TOC occurring at 4.8 ka. The Lake Qinghai redness record shows slightly different patterns, with values beginning to decrease at ca. 6 ka and large oscillations between 6 and 4 ka. For the 4 ka event, the B3 SST minimum is coincident, within age uncertainties, with the Dongge stalagmite growth rate minimum and with the Lake Qinghai redness minimum. However, the Dongge δ18O maximum and the Daihai Lake TOC minimum occurred later. These correlations suggest that mid-late Holocene climate changes have affected both Asian monsoon and the East China Sea SST. In addition, the decrease in the summer monsoon intensity and the increase in winter monsoon intensity might have initiated the modern East China Sea-Yellow Sea circulation system (Kim and Kucera, 2000; Xiang et al., 2008), which contributed significantly to the about 5℃ drop in the B3 and a smaller SST drop in F10-B during the transition from the early Holocene to the mid-late Holocene.

    4.3 Possible Causes of SST Changes in Core B3 During the Holocene

    We propose that the initiation or strengthening of theshelf circulation system could be the amplifier. The early Holocene circulation pattern in the Yellow Sea and the East China Sea was different from that in the late Holocene, as the YSCC would be weak due to the northerly position of the ITCZ and weaker winter monsoons. Without the interaction between the YSWC and the YSCC, the eddy circulation/cold front around the B3 area would not exist or be weak. Thus, SST at site B3 was higher than and was comparable with SST at Core MD982195 (Fig.2b) on a similar latitude in the Okinawa Trough (Ijiri et al., 2005). During the mid-late Holocene climate transition, the southward migration of the ITCZ and the increase of the winter monsoon intensity might have resulted in a stronger YSCC to establish the modern circulation system, which initiated or strengthened the eddy circulation/cold front that resulted in lower SST for the eddy area compared with non-eddy regions. As a result, the B3 SST decreased 3-4℃ from 5 ka to 3 ka, while the open ocean SST at MD982195 (Ijiri et al., 2005) actually increased slightly during the interval. Since ca. 4 ka and with the establishment of the Yellow Sea and East China Sea shelf circulation system, the SST difference between MD982195 and B3 has been 4-5℃. This proposed mechanism is also in accord with the modern observation that the East China Sea shelf eddy is stronger during El Ni?o years (Chen et al., 2004) when the ITCZ is further south. In addition, stronger upwelling/cold front since the mid-late Holocene has also resulted in higher surface productivity, as indicated by higher alkenone content in B3.

    5 Concluding Remarks and Implications

    SST records from more locations in the East China Sea and the Yellow Sea would provide a new approach to reconstruct the history of circulation changes in these marginal seas, which has important biological and economical implications. Today, the eddy-induced upwelling is an important factor causing the higher productivity in the Yellow Sea and the East China Sea, which in turn supports an important fishery economy for the surrounding countries. With global warming, it is likely that the ITCZ would migrate northward and the winter monsoon might weaken, which would reduce the YSCC flow and weaken the eddy circulation/cold front in the Yellow Sea and the East China Sea.

    Acknowledgements

    We thank Dr. Y. Saito and Dr. J. Liu for providing the AMS14C dates. This research was supported by the National Basic Research Program of China (973 Program 2010CB428901) and by the Natural Science Foundation of China (Grant Nos. 41221004 and 41020164005). This is MCTL Contribution #70.

    An, Z., Porter, S. C., Kutzback, J. E., Wu, X., Wang, S., Liu, X., Li, X., and Zhou, W., 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews, 19 (8): 743-762.

    Chen, Y., Hu, D., and Wang, F., 2004. Long-term variabilities of thermodynamic structure of the East China Sea Cold Eddy in summer. Chinese Journal of Oceanology and Limnology, 22 (3): 224-230.

    Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett, M., Cartwright, I., and Piccini, L., 2006. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology, 34 (2): 101-104.

    Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233 (1-2): 71-86.

    Ge, H., Zhang, C. L., Li, J., Versteegh, G. J. M., Hu, B., Zhao, J., and Dong, L., 2014. Tetraether lipids from the southern Yellow Sea of China: Implications for the variability of East Asia Winter Monsoon in the Holocene. Organic Geochemistry, 70: 10-19.

    Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and R?hl, U., 2001. Southward migration of the Intertropical Convergence Zone through the Holocene. Science, 293 (5533): 1304-1308.

    He, Y., Theakstone, W. H., Zhang, Z., Zhang, D., Yao, T., Chen, T., Shen, Y., and Pang, H., 2004. Asynchronous Holocene climatic change across China. Quaternary Research, 61 (1): 52-63.

    Ijiri, A., Wang, L., Oba, T., Kawahata, H., Huang, C. Y., and Huang, C.-Y., 2005. Paleoenvironmental changes in the northern area of the East China Sea during the past 42 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 219 (3-4): 239-261.

    Ji, J., Shen, J., Balsam, W., Chen, J., Liu, L., and Liu, X., 2005. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth and Planetary Science Letters, 233 (1-2): 61-70.

    Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., and Cheng, X., 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean.Earth and Planetary Science Letters,184(1): 305-319.

    Kim, J. M., and Kennett, J. P., 1998. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae). Marine Micropaleontology,34(1-2): 71-89.

    Kim, J. M., and Kucera, M., 2000. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years. Quaternary Science Reviews,19(11): 1067-1085.

    Koutavas, A., deMenocal, P. B., Olive, G. C., and Lynch-Stieglitz, J., 2006. Mid-Holocene El Ni?o-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology,34(12): 993-996.

    Levitus, S., and Boyer, T. P., 1994. World Ocean Atlas 1994, vol. 4, Temperature. U. S. Department of Commer., Washington, D. C.

    Li, G. X., Sun, X. Y., Liu, Y., Bickert, T., and Ma, Y. Y., 2009. Sea surface temperature record from the north of the East China Sea since late Holocene. Chinese Science Bulletin,54(23): 4507-4513.

    Li, T., Liu, Z., Hall, M. A., Berne, S., Saito, Y., Cang, S., and Cheng, Z., 2001. Heinrich event imprints in the Okinawa Trough: Evidence from oxygen isotope and planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology,176(1-4): 133-146.

    Lin, Y. S., Wei, K. Y., Lin, I. T., Yu, P. S., Chiang, H. W., Chen, C. Y., Shen, C. C., Mii, H. S., and Chen, Y. G., 2006. The Holocene Pulleniatina Minimum Event revisited: Geochemical and faunal evidence from the Okinawa Trough and upper reaches of the Kuroshio current. Marine Micropaleontology,59(3-4): 153-170.

    Liu, J. P., Milliman, J. D., Gao, S., and Cheng, P., 2004. Holocene development of the Yellow River subaqueous delta, North Yellow Sea. Marine Geology,209(1-4): 45-67.

    Liu, J. P., Xu, K. H., Li, A. C., Milliman, J. D., Velozzi, D. M., Xiao, S. B., and Yang, Z. S., 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology,85(3-4): 208-224.

    Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlen, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J., 2004. Holocene climate variability. Quaternary Research,62(3): 243-255.

    Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M., 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters,30(8): 1425.

    Staubwasser, M., and Weiss, H., 2006. Holocene climate and cultural evolution in late prehistoric-early historic West Asia. Quaternary Research,66(3): 372-387.

    Su, J. L., 2005. Hydrography of the Coastal Oceans Near China Ocean Press, Beijing, 174-181 (in Chinese).

    Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology,156(1-4): 245-284.

    Wang, L. B., Yang, Z. S., Zhang, R. P., Fan, D. J., Zhao, M. X., and Hu, B. Q., 2011. Sea surface temperature records of core ZY2 from the central mud area in the South Yellow Sea during last 6200 years and related effect of the Yellow Sea Warm Current. Chinese Science Bulletin,56(15): 1588-1595.

    Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M., 2008. Mid- to Late Holocene climate change: An overview. Quaternary Science Reviews,27(19-20): 1791-1828.

    Wu, W., and Liu, T., 2004. Possible role of the ‘Holocene Event 3’ on the collapse of neolithic cultures around the Central Plain of China. Quaternary International,117(1): 153-166.

    Xiang, R., Yang, Z., Saito, Y., Fan, D., Chen, M., Guo, Z., and Chen, Z., 2008. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: Benthic foraminiferal and stable isotopic evidence. Marine Micropaleontology,67(1-2): 104-119.

    Xiao, J., Wu, J., Si, B., Liang, W., Nakamura, T., Liu, B., and Inouchi, Y., 2006. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene,16(4): 551-560.

    Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W., Liu, J., Sigman, D. M., Peterson, L. C., and Haug, G. H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature,445(7123): 74-77.

    Yang, S., and Youn, J. S., 2007. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology,243(1-4): 229-241.

    Yuan, Z., Xing, L., Li, L., Zhang, H., Xiang, R., and Zhao, M., 2013. Biomarker records of phytoplankton productivity and community structure changes during the last 14000 years in the mud area southwest off Cheju Island, East China Sea. Journal of Ocean University of China,12(4): 611-618.

    Zhao, M., Beveridge, N. A. S., Shackleton, N. J., Sarnthein, M., and Eglinton, G., 1995. Molecular stratigraphy of cores off northwest Africa: Sea surface temperature history over the last 80 ka. Paleoceanography,10(3): 661-675.

    (Edited by Ji Dechun)

    (Received April 1, 2014; revised May 15, 2014; accepted June 4, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-0532-66782103

    E-mail: maxzhao@ouc.edu.cn

    亚洲欧美清纯卡通| 午夜a级毛片| 成人高潮视频无遮挡免费网站| 男女边吃奶边做爰视频| 变态另类成人亚洲欧美熟女| 国产亚洲av片在线观看秒播厂 | 国产美女午夜福利| 一级二级三级毛片免费看| 少妇人妻精品综合一区二区 | 精华霜和精华液先用哪个| 亚洲最大成人中文| 天堂网av新在线| 免费看日本二区| 日韩亚洲欧美综合| a级毛片免费高清观看在线播放| 精华霜和精华液先用哪个| 永久网站在线| 色5月婷婷丁香| 又黄又爽又刺激的免费视频.| 国产高清三级在线| 亚洲美女搞黄在线观看| 91久久精品国产一区二区三区| www日本黄色视频网| 人人妻人人澡人人爽人人夜夜 | 日韩欧美精品v在线| 一个人看的www免费观看视频| 亚洲不卡免费看| 国产黄片视频在线免费观看| 欧美又色又爽又黄视频| 午夜免费男女啪啪视频观看| 婷婷色av中文字幕| 男女视频在线观看网站免费| 九色成人免费人妻av| www.色视频.com| 亚洲激情五月婷婷啪啪| 国模一区二区三区四区视频| 亚洲无线观看免费| 国产91av在线免费观看| 日韩高清综合在线| 中文精品一卡2卡3卡4更新| 91午夜精品亚洲一区二区三区| 欧美激情国产日韩精品一区| 久久精品国产鲁丝片午夜精品| 精品人妻熟女av久视频| 天美传媒精品一区二区| 97超视频在线观看视频| 91午夜精品亚洲一区二区三区| 国产精品国产高清国产av| 日本一本二区三区精品| 国产亚洲欧美98| 美女xxoo啪啪120秒动态图| 一个人免费在线观看电影| 91麻豆精品激情在线观看国产| 中文字幕av成人在线电影| 国内精品一区二区在线观看| 成人欧美大片| 美女高潮的动态| 一区二区三区免费毛片| 久久久久久国产a免费观看| 看非洲黑人一级黄片| 国产高潮美女av| 岛国毛片在线播放| 看片在线看免费视频| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠久久av| 亚洲在久久综合| 99热这里只有是精品50| 国产日本99.免费观看| videossex国产| 九九热线精品视视频播放| 亚洲欧美成人综合另类久久久 | 99久久九九国产精品国产免费| 啦啦啦观看免费观看视频高清| 又爽又黄无遮挡网站| 国产精华一区二区三区| 乱人视频在线观看| 亚洲av免费在线观看| 亚洲欧美日韩无卡精品| 色哟哟哟哟哟哟| 看十八女毛片水多多多| 小蜜桃在线观看免费完整版高清| 99久久人妻综合| 精品人妻熟女av久视频| 六月丁香七月| 欧美性猛交╳xxx乱大交人| 综合色av麻豆| 亚洲精品日韩av片在线观看| 精品熟女少妇av免费看| 少妇熟女aⅴ在线视频| 欧美最黄视频在线播放免费| 亚洲av不卡在线观看| 哪个播放器可以免费观看大片| 夜夜夜夜夜久久久久| 免费观看的影片在线观看| 校园人妻丝袜中文字幕| 国产成人精品婷婷| 男女下面进入的视频免费午夜| 在线观看av片永久免费下载| 在线观看免费视频日本深夜| 久久久久久久久久成人| 精品国内亚洲2022精品成人| 欧美3d第一页| 麻豆成人午夜福利视频| 亚洲精品影视一区二区三区av| 我要看日韩黄色一级片| 免费电影在线观看免费观看| 亚洲国产精品sss在线观看| 午夜福利高清视频| 亚洲电影在线观看av| 国产极品精品免费视频能看的| 色综合色国产| 一级毛片aaaaaa免费看小| 人妻久久中文字幕网| 99热6这里只有精品| 国内精品宾馆在线| 国产成人a∨麻豆精品| 欧美性猛交╳xxx乱大交人| 国产国拍精品亚洲av在线观看| 美女大奶头视频| 男人舔奶头视频| 国产成人精品久久久久久| 免费看光身美女| 欧美高清成人免费视频www| 亚洲在线自拍视频| 日本在线视频免费播放| 欧美3d第一页| 韩国av在线不卡| 亚洲国产精品成人久久小说 | 中国美白少妇内射xxxbb| 可以在线观看毛片的网站| 一本精品99久久精品77| 男人狂女人下面高潮的视频| 日韩 亚洲 欧美在线| 久久久色成人| 春色校园在线视频观看| 美女cb高潮喷水在线观看| av免费在线看不卡| 婷婷色综合大香蕉| 男女那种视频在线观看| 美女大奶头视频| 男女啪啪激烈高潮av片| 国产亚洲精品久久久久久毛片| 亚洲最大成人中文| 尾随美女入室| 欧美变态另类bdsm刘玥| 午夜精品一区二区三区免费看| 亚洲美女搞黄在线观看| 国产亚洲欧美98| 亚洲成人久久爱视频| 毛片女人毛片| 18禁裸乳无遮挡免费网站照片| 99久久无色码亚洲精品果冻| 69人妻影院| 免费观看人在逋| 舔av片在线| a级毛片免费高清观看在线播放| 亚洲内射少妇av| 亚洲av免费在线观看| 国产精品免费一区二区三区在线| 国产蜜桃级精品一区二区三区| 我要搜黄色片| 国产精品爽爽va在线观看网站| 国产一区二区激情短视频| 国产成人精品婷婷| 国产精品国产三级国产av玫瑰| 日韩制服骚丝袜av| 最新中文字幕久久久久| 国内揄拍国产精品人妻在线| 3wmmmm亚洲av在线观看| 精品人妻视频免费看| 日本色播在线视频| 亚洲精品日韩av片在线观看| 免费观看a级毛片全部| 欧美日韩在线观看h| 日韩欧美精品v在线| 久久国产乱子免费精品| 免费观看a级毛片全部| 18禁黄网站禁片免费观看直播| 国产午夜精品久久久久久一区二区三区| 神马国产精品三级电影在线观看| 91久久精品电影网| 欧美一区二区精品小视频在线| 男的添女的下面高潮视频| 一区二区三区高清视频在线| 男的添女的下面高潮视频| 久久精品人妻少妇| av天堂在线播放| 欧美高清性xxxxhd video| 国产精品免费一区二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 深爱激情五月婷婷| 精品免费久久久久久久清纯| 嫩草影院新地址| 国产精品久久久久久av不卡| 好男人视频免费观看在线| 欧美成人一区二区免费高清观看| 成人无遮挡网站| 美女cb高潮喷水在线观看| 99在线视频只有这里精品首页| 亚洲人与动物交配视频| 人妻系列 视频| 嘟嘟电影网在线观看| 日韩在线高清观看一区二区三区| 亚洲人成网站高清观看| 日韩一区二区视频免费看| 久久这里有精品视频免费| 日韩欧美在线乱码| 亚洲性久久影院| 少妇高潮的动态图| 国产精品久久久久久久电影| 我的老师免费观看完整版| 日韩人妻高清精品专区| 自拍偷自拍亚洲精品老妇| 日本色播在线视频| 久久99热这里只有精品18| 99热只有精品国产| 床上黄色一级片| av在线天堂中文字幕| 一边摸一边抽搐一进一小说| 好男人在线观看高清免费视频| 在线国产一区二区在线| 国产精品无大码| 欧美zozozo另类| 九九爱精品视频在线观看| 在线观看免费视频日本深夜| 深夜精品福利| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 国产蜜桃级精品一区二区三区| 青春草视频在线免费观看| 男人的好看免费观看在线视频| 亚洲国产色片| 看片在线看免费视频| 岛国毛片在线播放| 久久人人精品亚洲av| av在线播放精品| 久久久久久久亚洲中文字幕| 熟女电影av网| 精品人妻偷拍中文字幕| 久久久精品欧美日韩精品| 三级毛片av免费| 日韩国内少妇激情av| avwww免费| 欧美色视频一区免费| 国产成人午夜福利电影在线观看| 国产精品无大码| 日本免费a在线| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 亚洲18禁久久av| 国产老妇伦熟女老妇高清| 18+在线观看网站| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 亚洲在线自拍视频| 高清午夜精品一区二区三区 | 国产真实乱freesex| 91精品国产九色| 精品不卡国产一区二区三区| 国产蜜桃级精品一区二区三区| 嫩草影院新地址| 99热这里只有精品一区| 日本黄大片高清| 成人特级av手机在线观看| 非洲黑人性xxxx精品又粗又长| 国产成人一区二区在线| av免费观看日本| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 国产熟女欧美一区二区| 日韩中字成人| 日韩欧美精品免费久久| 日韩一区二区视频免费看| 国产私拍福利视频在线观看| 国产午夜精品一二区理论片| 成年版毛片免费区| 国内少妇人妻偷人精品xxx网站| 嫩草影院精品99| 插阴视频在线观看视频| av女优亚洲男人天堂| 国产精品久久电影中文字幕| 波多野结衣巨乳人妻| 网址你懂的国产日韩在线| 久久99精品国语久久久| 亚洲精品粉嫩美女一区| 美女内射精品一级片tv| 国产日本99.免费观看| 久久人妻av系列| 久久精品国产亚洲av涩爱 | 一本一本综合久久| 九九爱精品视频在线观看| 久久久久久久久中文| 亚洲人成网站在线播放欧美日韩| 2022亚洲国产成人精品| 亚洲精品色激情综合| 久久6这里有精品| 国产色爽女视频免费观看| 少妇熟女aⅴ在线视频| 久久热精品热| 91麻豆精品激情在线观看国产| 亚洲av一区综合| 可以在线观看的亚洲视频| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 日本与韩国留学比较| 变态另类丝袜制服| 一级毛片我不卡| 韩国av在线不卡| 大又大粗又爽又黄少妇毛片口| 1000部很黄的大片| 美女国产视频在线观看| 嫩草影院新地址| 午夜激情福利司机影院| 亚洲在线自拍视频| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 国模一区二区三区四区视频| 热99在线观看视频| 日本-黄色视频高清免费观看| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 国产色爽女视频免费观看| www.av在线官网国产| 男人舔奶头视频| 哪里可以看免费的av片| 性色avwww在线观看| 亚洲久久久久久中文字幕| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 我要搜黄色片| 久久精品夜色国产| 国产色婷婷99| 全区人妻精品视频| 九九久久精品国产亚洲av麻豆| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 搞女人的毛片| 日产精品乱码卡一卡2卡三| 精品久久国产蜜桃| 在现免费观看毛片| 真实男女啪啪啪动态图| av天堂中文字幕网| 少妇的逼好多水| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 99久久九九国产精品国产免费| 深夜a级毛片| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人久久小说 | 免费观看a级毛片全部| 国产精品爽爽va在线观看网站| 听说在线观看完整版免费高清| 亚洲国产色片| 国产探花在线观看一区二区| 日韩三级伦理在线观看| 日日摸夜夜添夜夜爱| 久久精品久久久久久久性| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 国产av不卡久久| 国产亚洲欧美98| 日日摸夜夜添夜夜添av毛片| 国产三级中文精品| 97在线视频观看| 国产美女午夜福利| 天堂av国产一区二区熟女人妻| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区成人| 亚洲av电影不卡..在线观看| 不卡视频在线观看欧美| 亚洲精品成人久久久久久| 搡老妇女老女人老熟妇| 国产v大片淫在线免费观看| 国产精品乱码一区二三区的特点| 精品国产三级普通话版| 久久精品国产亚洲网站| 欧美变态另类bdsm刘玥| 两个人的视频大全免费| 床上黄色一级片| 国产麻豆成人av免费视频| 午夜视频国产福利| 日韩精品青青久久久久久| 天美传媒精品一区二区| 色尼玛亚洲综合影院| 在线a可以看的网站| 亚洲av.av天堂| 在线观看午夜福利视频| 一本精品99久久精品77| 美女脱内裤让男人舔精品视频 | 久99久视频精品免费| 看片在线看免费视频| 日韩精品青青久久久久久| 亚洲精品国产成人久久av| 精品无人区乱码1区二区| 久99久视频精品免费| 丝袜美腿在线中文| 蜜桃久久精品国产亚洲av| 精品不卡国产一区二区三区| 国产精品国产三级国产av玫瑰| 国产亚洲av嫩草精品影院| 天堂网av新在线| 欧美一区二区精品小视频在线| 一级毛片我不卡| 啦啦啦韩国在线观看视频| 大型黄色视频在线免费观看| 噜噜噜噜噜久久久久久91| 国产单亲对白刺激| 白带黄色成豆腐渣| 99久久精品热视频| 国产亚洲精品久久久com| 人妻制服诱惑在线中文字幕| 久久99热这里只有精品18| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 亚洲精品自拍成人| 成人漫画全彩无遮挡| 如何舔出高潮| 成人亚洲欧美一区二区av| 日本免费a在线| 精品久久久久久久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器| 中国美白少妇内射xxxbb| 欧美bdsm另类| 最后的刺客免费高清国语| 91狼人影院| 国产精品三级大全| 老女人水多毛片| 精品久久久久久久久亚洲| 国产69精品久久久久777片| 亚洲精品乱码久久久久久按摩| 成人无遮挡网站| 久久精品国产亚洲av涩爱 | 中文亚洲av片在线观看爽| 亚洲中文字幕日韩| 日韩亚洲欧美综合| 亚洲精品乱码久久久久久按摩| 国产日本99.免费观看| 精华霜和精华液先用哪个| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久精品电影| 人妻久久中文字幕网| 欧美日韩在线观看h| 桃色一区二区三区在线观看| av在线观看视频网站免费| 久久精品夜色国产| 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| 女同久久另类99精品国产91| 我要搜黄色片| 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 人体艺术视频欧美日本| 国产精品人妻久久久影院| 丝袜喷水一区| 九九热线精品视视频播放| 久久精品国产亚洲av涩爱 | 网址你懂的国产日韩在线| 女人十人毛片免费观看3o分钟| 成人永久免费在线观看视频| 色综合站精品国产| 亚洲av成人精品一区久久| 国产精品,欧美在线| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 亚洲欧美精品综合久久99| 久久99精品国语久久久| 熟女人妻精品中文字幕| 在线a可以看的网站| 97热精品久久久久久| 在线a可以看的网站| 噜噜噜噜噜久久久久久91| 又爽又黄a免费视频| 精品久久国产蜜桃| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 亚洲在线观看片| 成人美女网站在线观看视频| 国产精品久久久久久亚洲av鲁大| av卡一久久| 中文字幕av在线有码专区| 久久这里只有精品中国| 可以在线观看的亚洲视频| 欧美不卡视频在线免费观看| 哪里可以看免费的av片| 乱码一卡2卡4卡精品| 3wmmmm亚洲av在线观看| 国产精品一区www在线观看| 老熟妇乱子伦视频在线观看| 哪里可以看免费的av片| 校园春色视频在线观看| 男女啪啪激烈高潮av片| av卡一久久| 中国美白少妇内射xxxbb| 中文精品一卡2卡3卡4更新| 精品久久久久久久久久久久久| 只有这里有精品99| 久久国内精品自在自线图片| 特级一级黄色大片| 欧美精品国产亚洲| 亚洲久久久久久中文字幕| 久久欧美精品欧美久久欧美| 亚洲精品国产av成人精品| 国产精品乱码一区二三区的特点| 在线观看美女被高潮喷水网站| 精品久久久噜噜| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 国产在线男女| 99热只有精品国产| 午夜精品国产一区二区电影 | 两性午夜刺激爽爽歪歪视频在线观看| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 国产淫片久久久久久久久| 看十八女毛片水多多多| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 高清在线视频一区二区三区 | 中国美白少妇内射xxxbb| 天堂√8在线中文| 天堂影院成人在线观看| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 深夜a级毛片| 韩国av在线不卡| 91久久精品电影网| 高清毛片免费观看视频网站| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| 亚洲av免费在线观看| 内地一区二区视频在线| 91麻豆精品激情在线观看国产| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 人妻系列 视频| 日韩一本色道免费dvd| 99在线视频只有这里精品首页| 欧美区成人在线视频| 久久韩国三级中文字幕| 日本熟妇午夜| 国产精品女同一区二区软件| 国产伦理片在线播放av一区 | 美女 人体艺术 gogo| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 欧美日韩综合久久久久久| 日日摸夜夜添夜夜爱| 伊人久久精品亚洲午夜| 老女人水多毛片| 国产毛片a区久久久久| 99九九线精品视频在线观看视频| 国产在线男女| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址| 亚洲av男天堂| 亚洲第一电影网av| avwww免费| 又爽又黄a免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 日日干狠狠操夜夜爽| 欧美人与善性xxx| 国产精品女同一区二区软件| 国产精品不卡视频一区二区| 久久久久久久午夜电影| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 最近视频中文字幕2019在线8| 日韩在线高清观看一区二区三区| 97在线视频观看| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 亚洲丝袜综合中文字幕| 色哟哟·www| 久久久欧美国产精品| a级毛片a级免费在线| 日韩在线高清观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 大香蕉久久网| 欧美zozozo另类| 老熟妇乱子伦视频在线观看| 嫩草影院入口| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 在线观看免费视频日本深夜| 春色校园在线视频观看| 亚洲中文字幕日韩| 在现免费观看毛片| 国产乱人视频| 一级av片app| 久久精品国产自在天天线| 亚洲久久久久久中文字幕| 久久婷婷人人爽人人干人人爱| 国产av一区在线观看免费| 色吧在线观看| 国产日韩欧美在线精品| 有码 亚洲区| 亚洲成av人片在线播放无| 超碰av人人做人人爽久久| 成人高潮视频无遮挡免费网站| 国模一区二区三区四区视频| 我的老师免费观看完整版| 一进一出抽搐动态| 国产av在哪里看| 如何舔出高潮| www.色视频.com|