• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fe-Si-Mn-Oxyhydroxide Encrustations on Basalts at East Pacific Rise near 13?N: An SEM – EDS Study

    2014-04-26 10:54:36WANGXiaoyuanZENGZhigangQIHaiyanCHENShuaiYINXueboandYANGBaoju
    Journal of Ocean University of China 2014年6期

    WANG Xiaoyuan, ZENG Zhigang,, QI Haiyan, CHEN Shuai, YIN Xuebo, and YANG Baoju,

    1) Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Fe-Si-Mn-Oxyhydroxide Encrustations on Basalts at East Pacific Rise near 13?N: An SEM – EDS Study

    WANG Xiaoyuan1), ZENG Zhigang1),*, QI Haiyan1), CHEN Shuai1), YIN Xuebo1), and YANG Baoju1),2)

    1) Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13?N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe-Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn- oxyhydroxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrustations on pillow basalts are 1–2 mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrustations are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+Al) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrothermalism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.

    East Pacific Rise; Fe-Si-Mn encrustations; origin; pillow basalt

    1 Introduction

    Hydrothermal Fe-Si-Mn-oxyhydroxide deposits on the seafloor form in a range of geotectonic settings such as mid-ocean ridges (MOR) (e.g., Scott et al., 1974; Moore and Vogt, 1976; Corliss et al., 1979; Lonsdale et al., 1980; Grill et al., 1981; Hékinian et al., 1993; Nath et al., 1997; Dekov et al., 2010), volcanic arc-back-arc basins (e.g., Cronan et al., 1982; Moorby et al., 1984; Usui et al., 1986; Bolton et al., 1988; Hein et al., 1990; Herzig et al., 1990; Murphy et al., 1991; Binns et al., 1993; Sun et al., 2011, 2012; Zeng et al., 2012), intraplate submarine volcanoes and continental margins (e.g., Alt, 1988; Puteanus et al., 1991; Stoffers et al., 1993). The geotectonic settings occur as pavements coating volcanic and sedimentary substrates, as chimneys, as irregularly shaped edifices and mounds, as secondary alteration products of seafloor hydrothermal sulfide deposits, as primary precipitates from hydrothermal fluids, or as interstitial precipitates filling cracks between lava flows (Miriam and Rachel, 1986; Alt, 1988; Hannington and Scott, 1988; Herzig et al., 1991; Puteanus et al., 1991; Hékinian et al., 1993; Mills and Elderfield, 1995; Boyd and Scott, 1999; Bach et al., 2003; Benjamin and Haymon, 2006; Zeng et al., 2008). Major mineral phases in Fe-Si-Mn- oxyhydroxide crusts are todorokite, birnessite, vernadite, goethite, pyrolusite, and asbolane along with clay minerals such as nontronite and hisingerite (Varentsov et al., 1991; Mills et al., 2001; Glasby et al., 2006).

    Some Fe-Si-Mn oxyhydroxide crusts are formed by a combination of hydrogenetic and hydrothermal processes (Glasby, 1988; Varentsov et al., 1991; Gibbs et al., 1993; Hein et al., 1997; Usui and Someya, 1997; Van de Flierdt et al., 2004). Growth rates of these deposits are large, up to 105 mm Myr-1(Hein et al., 1997). The Fe/Mn ratio and trace element content of hydrothermal Fe-Si-Mn deposits vary widely. The latter reflects local hydrothermal inputs and complex particle-scavenging reactions that occur near hydrothermal vents (Hein et al., 1997). In general, hydrothermal Fe-Mn deposits have lower trace metal contents and larger varying Fe/Mn ratios than their hydrogenous counterparts (Hein et al., 1997). It has been suggested that exhalative Fe-Si-Mn oxyhydroxide accumulations in seafloor hydrothermal fields are protoliths for Fe and/orMn-rich exhalites in ancient volcanic-hosted massive sulfide (VHMS) deposits (Heath et al., 2000). Understanding the mineralogy, geochemistry and formation of Fe-Si-Mn oxyhydroxides in seafloor geological environments is important for mineral exploration of ancient VHMS deposits.

    In order to shed more light on the origin of Fe-Si-Mnoxyhydroxide encrustations on MOR basalts and evaluate the role that hydrothermal and hydrogenetic processes play in the formation of these encrustations, basalt samples from the seafloor at the EPR near 13?N by SEMEDS are studied in the present work.

    2 Geological Setting

    The study area lies on the fast-spreading EPR with a spreading rate of 10–12 cm yr-1(Hekinian et al., 1983) between 12?30?N and 13?N (Fig.1). The mid-ocean ridge here consists of an axial graben structure striking 345?±5?. The graben is 200–600 m wide and 20–50 m deep; the average water depth in the graben is 2630 m (Hékinian et al., 1983). The bottom of the graben is flat with many fissures at the center and the faults near the axis. These fissures are filled by fresh basaltic sheet lava flows (Gente et al., 1986).

    About twenty active and more than sixty inactive hydrothermal vents had been found within a narrow graben averaging about 300 m in width along a 20 km long segment of the ridge crest (Hékinian et al., 1983). Most hydrothermal activities occur in three structural environments: 1) axial graben, 2) graben fault, and 3) off-axis segment (Fouquet et al., 1996). Active and inactive vents and extensive mounds of mature sulfides are distributed in the central part of the graben, the graben faults, the marginal high and the SE seamount (Fouquet et al., 1996). The active hydrothermal vents range from low-temperature vents to high-temperature (up to 380℃) ‘black smo kers’ with polymetallic sulfide deposits (Charlou et al., 1991; Zeng et al., 2010) and hydrothermal Fe and Si oxyhydroxides associated with or occurring close to sulfide formation on axial and off-axial structures (Hékinian et al., 1993; Zeng et al., 2008).

    On the EPR near 13?N, the older ‘fissural domain’hosts inactive hydrothermal deposits rich in Fe-Mn- oxyhydroxides and is characterized by altered pillow and massive basaltic flows (Moss and Scott, 1996). Extinct hydrothermal chimneys and formless deposits made up essentially of Fe- and Si-rich hydrothermal products are frequently found (Hékinian and Fouquet, 1985). There are small (<30 cm in height), purple-red low-temperature Fe oxyhydroxide chimneys that are partly covered by located lava flows (Hékinian et al., 1993). Yellow coral-like structures are growing through sediment or on less than 1 mhigh Fe oxide mounds resulting from the oxidation of sulfide blocks. In the sulfide area, Mn-oxide is represented only by a thin layer (<1 mm thick) on the surface of sulfides and oxides, and at the top of the seamount on the EPR near 13?N,whereas deposits are represented by thick (up to 6 cm) Mn crusts growing directly on the basalt or around a nontronitic core (Hékinian et al., 1983; Fouquet et al., 1988).

    Fig.1 a, Bathymetric map of the EPR segment near 13?N. Sampling site is indicated by a solid dot with dredge site number. Depth contours are in meters. b, The hydrothermal vents near E11 station (the solid dot) on EPR. The active hydrothermal vents are marked with open triangles, and the inactive hydrothermal vents are marked with open circles. The locations of hydrothermal vents are from Fouquet et al. (1988).

    3 Samples and Methods

    The samples studied were obtained from station E11 (103?57?W, 12?50?N, 2626 m) on the EPR near 13?N (less than 1 km away from the nearest vent) during the DY105-12 cruise (R/V DAYANG YIHAO, November 4, 2003) (Fig.1). They include fragments of pillow basalts (up to30 cm across) covered with thin (up to 1–2 mm) tan encrustations (Fig.2).

    Fig.2 A dark brown Fe-Si-Mn-oxyhydroxide coating is on pillow basalt from station E11.

    Petrographic analysis of the encrustations was performed on polished thin sections under an optical microscope (Nikon). Then the polished thin sections were investigated with a scanning electron microscope (SEM): TESCAN VEGA 3 LMH SEM with an Oxford INCA XMax energy dispersive spectrometer (EDS). Olivine, pyroxene, enstatite, diopside, anorthoclase, basaltic glass, calderite and anhydrite were used for standardization, and the results were corrected by the XPP method.

    4 Results

    The analysis of the thin sections by optical microscope shows that all samples contain phenocrysts of olivine, clinopyroxene and plagioclase, basaltic glass and Fe-Si-Mn-oxyhydroxides. The Fe-Si-Mn-oxyhydroxide encrustations occur as fine layers, micro-veins and coatings around minerals (Figs.3a, b and c) with globular particles scattered on the surface (Figs.3d, e and f). The encrustations are composed mainly of amorphous Fe-Si-Mn- oxyhydroxides (Fig.4), with scarce crystals of feldspar, quartz, anhydrite and nontronite, and biogenic debris (Fig.4, Figs. 5a–e). The Fe-Si-Mn-oxyhydroxides also have a framboidal structure (Fig.5f) with the major contents of Fe, Si, and Mn, and the trace contents of Na, K, Ca, Al, Mg, Ti, P, S, Cl, Cu, Zn, Co, Ni, and Cr (EDS studies).

    Two types of oxyhydroxides have been distinguished according to their chemical composition: Fe-Si-oxyhydroxides with low Mn content (Table 1) and Fe-Si-Mnoxyhydroxides. Fe-Si-oxyhydroxides coat basaltic glass and plagioclase crystals (Fig.6b, Fig.7), and some fill microcracks in the basaltic glass (Fig.6a). Fe-Si-Mnoxyhydroxides occur near Fe-Si-oxyhydroxides and those with Cu and Ni occur between Fe-Si-Mn oxyhydroxides (Figs.6b, c). Fe-Si-Mn-oxyhydroxide encrustations have a laminated texture (Figs.8a, c) with some layers having the minor contents of Ni, Cu and Zn (Figs.8b, d). Concentric layers are composed of Fe-Si- and Fe-Si-Mn-oxyhydroxides that constitute the dense core, and the loose and porous margin of the layers, respectively (Figs.9a, b).

    Fig.3 a, Fe-Si-Mn-oxyhydroxide (FSM) encrustations covering the surface of basaltic glass (Gl). b, Fe-Si-Mn-oxyhydroxide vein filling micro-crack of basaltic glass. c, Fe-Si-Mn-oxyhydroxide coatings on pyroxene (PX). d, Globular particles on the surface of Fe-Si-Mn-oxyhydroxide encrustations. e, Apophysis on the surface of Fe-Si-Mn-oxyhydroxide encrustations. f, EDS spectrum of globular particles.

    Fig.4 XRD pattern of Fe-Si-Mn-oxyhydroxide encrustation on pillow basalt.

    Fig.5 a, b, Anhydrite (An) in Fe-Si-Mn-oxyhydroxide encrustations. c, honeycomb texture formed by flakes of nontronite (No) crystals in Fe-Si-Mn-oxyhydroxide encrustation. d, e, Biogenic debris in Fe-Si-Mn-oxyhydroxide encrustations. f, Feldspar micro-particles and framboidal Fe-Si-Mn oxyhydroxides.

    Table 1 Contents of Si, Mn and Fe in Fe-Si-Mn-oxhydroxide encrustations

    Fig.6 a, Micro-vein of Fe-Si-oxyhydroxides (FS). b, Fe-Si-oxyhydroxides and Fe-Si-Mn oxyhydroxides (FSM) close to the basaltic glass (Gl). Nos. 1, 2, 3, and 4 are the points where EDS analyses are conducted. c, EDS spectrum of Fe-Si-Mn-oxyhydroxides with the trace contents of Cu and Ni at point 4 (Fig.6b).

    Fig.7 Fe-Si-oxyhydroxides (FS) and Fe-Si-Mn-oxyhydroxides (FSM) close to the plagioclase crystals (Pl). Nos. 1, 2, 3 and 4 are the points where EDS analyses are conducted.

    5 Discussion

    5.1 Thickness of Fe-Si-Mn-Oxyhydroxide Encrustations

    The estimated age of the basalt samples is about 10 kyr, according to the distance from the axial central graben to the sampling site (nearly 1 km) and the spreading rate of about 10–12 cm yr-1(Hékinian et al., 1983). The growth rate of ferromanganese crusts (hydrogenetic) is about 15–27 mm Myr-1in the survey area on EPR 13?N (Manheim and Lane- Bostwick, 1988). Therefore the Fe-Si-Mn- oxyhydroxide encrustations (hydrogenetic) should be 0.15–0.27 mm thick. However, the thickness of the Fe-Si- Mnoxyhydroxide encrustations is 1–2 mm thick based on the samples. So it is unlikely that these encrustations have been a result of hydrogenetic deposition alone and there must be other factors dominating the formation of Fe-Si-Mn-oxyhydroxide encrustations.

    5.2 Anhydrite and Nontronite in Fe-Si-Mn-Oxyhydroxide Encrustations

    Generally, there are two mechanisms for anhydrite precipitation under seafloor conditions: 1) mixing of Caenriched hydrothermal fluid with sulfate-enriched seawater at temperatures higher than 150℃ (Teagle et al., 1998; Amini et al., 2008), and 2) increasing of seawater temperature to 150℃ (Blount and Dickson, 1969; Bischoff and Seyfried, 1978). Both scenarios suggest that anhydrite is formed at temperatures above 150℃. The anhydrite particles inter-grown with the studied Fe-Si-Mnoxyhydroxides (Figs.5a, b) indicate that the Fe-Si-Mnoxyhydroxide encrustations probably form under hydro-thermal conditions.

    Nontronite is often formed by direct precipitation from hydrothermal fluids above the seafloor (Keeling et al., 2000) such as in the hydrothermal systems in the Red Sea, Galapagos Rift, Mariana Trough, Juan de Fuca Ridge, and Manus Basin (Cole and Shaw, 1983; Murnane and Clague, 1983; Singer and Stoffers, 1987; Kohler et al., 1994; Zeng et al., 2012). At an oxidation potential (Eh) range between -0.1 and -0.8 V, and a pH of 7–10, nontronite could be synthesized by co-precipitation of Feoxyhydroxide and silica from solutions that contain Fe2+and Si at a temperature lower than 96℃. A higher temperature will inhibit nontronite formation in favor of Fe-oxyhydroxide (Harder, 1978; de Carlo et al., 1983). In the studied Fe-Si-Mn-oxyhydroxide encrustations, a fine honeycomb texture formed by flakes of nontronite crystals (Fig.5c) implies that the encrustations may have formed under reduced hydrothermal conditions (T<96℃).

    Fig.8 a, c, Laminated Fe-Si-Mn-oxyhydroxide encrustations. The points analyzed by EDS are marked by crosses. b, EDS spectrum of the point marked by the cross in (a). d, EDS spectrum of point 5 in (c).

    Fig.9 a, Concentric texture of Fe-Si-oxyhydroxides. Nos. 1, 2, 3, 4, 5 and 6 are the points where EDS analyses are conducted. b, Fe-Si-Mn oxyhydroxides close to the concentric texture of Fe-Si-oxyhydroxides.

    5.3 Laminated Fe-Si-Mn-Oxyhydroxide Encrustations

    Ferromanganese oxyhydroxides can be divided into three types according to their origins: diagenetic, hydrogenetic and hydrothermal (Halbach, 1986). However, these processes seldom occur in isolation and each may play a key role in the precipitation of Fe-Mn oxyhydroxides at different stages (Varentsov et al., 1991). The Fe/ Mn and Fe/(Fe+Mn+Al) ratios of Fe-Mn- oxyhydroxides are good indicators of their origins. Hydrogenetic Fe-Mn crusts have a stable Fe/Mn ratio, and a mean value of 0.7 has been estimated for the open-ocean seamount crusts (Hein et al., 1997). Fe/(Fe+Mn+Al) ratio exceeding 0.78 indicates a hydrothermal input (Edmonds and German, 2004).

    In this study the laminated Fe-Si-Mn-oxyhydroxide encrustations have varying Fe/Mn ratios (Fig.8c, Table 1). The maximum is up to 7.73 with a Fe/(Fe+Mn+Al) ratio of 0.87, indicating a hydrothermal input. The minimum Fe/Mn ratio is 0.22, which indicates a hydrogenic origin. The high Ni (about 1.8%), Cu (about 1.8%), and Zn (about 0.9%) contents in some layers (Figs.8b, d) also imply a hydrogenic influence, as Ni, Cu and Zn can be scavenged from seawater by adsorption during Fe-Si-Mn-oxyhydroxide formation (Krauskopf, 1956; Loganathan and Burau, 1973; Moore and Vogt, 1976; Varentsov et al., 1991; Koschinsky and Halbach, 1995; Hein et al., 1997; Koschinsky and Hein, 2003; Dekov et al., 2007). Thus, the laminated Fe-Si-Mn-oxyhydroxide encrustations have hydrothermal-hydrogenic origin, and the Fe-Si-Mn-oxyhydroxides can be contemporaneously deposited on the surface of the seafloor pillow basalts.

    5.4 Initial Formation of Fe-Si-Mn-Oxyhydroxide Encrustations

    During the formation process of Fe-Si-Mn- oxyhydroxide encrustations, it is obvious that Fe-Si-oxyhydroxides first deposited, and then relatively loose Fe-Si-Mn-oxyhydroxides settled on the top of Fe-Si-oxyhydroxides, either on the surface of basaltic glass (Fig.6b), or on the surface of feldspar particles (Fig.7), or forming a concentric ring (Fig.9a). Moreover, from Fe-Si-oxyhydroxides to Fe-Si-Mn-oxyhydroxides, the contents of Mn and Fe increase, whereas the Si contents decrease (Table 1). This suggests that the initial hydrothermal fluid is relatively reduced so that Fe-Si-oxyhydroxides are easy to precipitate (Krauskopf, 1957), and as the the degree of oxidation of hydrothermal fluid increases, Mn-oxides precipitate with Fe-oxyhydroxides while Si-oxides are inhibited.

    6 Conclusions

    The surfaces of pillow basalts from the EPR near 13?N are covered with Fe-Si-Mn encrustations that largely consist of amorphous Fe-Si-Mn-oxyhydroxides with anhydrite, nontronite, feldspar and biogenic debris. The laminated Fe-Si-Mn-oxyhydroxide encrustations have varying Fe/Mn ratios with relatively high Fe/(Fe+Mn+Al) ratios and high Ni, Cu, and Zn contents in some layers, which indicates a hydrothermal input with a hydrogenic origin. At the initial formation process, Fe-Si-oxyhydroxides first deposite from a relatively reduced hydrothermal fluid, and then Fe-Si-Mn-oxyhydroxides deposite on the Fe-Sioxyhydroxides. During the precipitation of Mn-oxides with Fe-oxyhydroxides, Si-oxides are inhibited.

    Acknowledgements

    We would like to thank the crew of the DY105-12 cruise for helping us collect samples. This work was supported by the National Key Basic Research Program of China (2013CB429700), the Shandong Province Natural Science Foundation for Distinguished Young Scholars (JQ200913), the National Natural Science Foundation of China (40830849), and the National Special Fund for the Eleventh Five-Year Plan of COMRA (DY125-12-R-02 and DY125-11-R-05).

    Alt, J. C., 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology,81: 227-239.

    Amini, M., Eisenhauer, A., B?hma, F., Fietzke, J., Banch, W., Garbe-Sch?nberg, D., Rosner, M., Bock, B., Lackschewitz, K.S., and Hauff, F., 2008. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14?50?N). Geochimica et Cosmochimica Acta,72: 4107-4122.

    Bach, W., Roberts, S., Vanko, D., Binns, R., Yeats, C., Craddock, P., and Humphris, S., 2003. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Mineralium Deposita,38: 916-935.

    Benjamin, S. B., and Haymon, R. M., 2006. Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochemistry Geophysics Geosystems,7, Q05002, DOI: 10.1029/2005GC001011.

    Binns, R. A., Scott, S. D., Bogdanov, Y. A., Lisitzin, A. P., Gordeev, V. V., Gurvich, E. G., Finlayson, E. J., Boyd, T., Dotter, L. E., Wheller, G. E., and Muravyev, K. G., 1993. Hydrothermal oxide and Gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua-New-Guinea. Economic Geology,88: 2122-2153.

    Bischoff, J. L., and Seyfried, W. E., 1978. Hydrothermal chemistry of seawater from 25℃ to 350℃. American Journal of Science,278: 838-860.

    Blount, C. W., and Dickson, F. W., 1969. The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450℃ and 1 to 1000 bars. Geochimica et Cosmochimica Acta,33: 227-245.

    Bolton, B. R., Both, R., Exon, N. F., Hamilton, T. F., Oswald, J., and Smith, J. D., 1988. Geochemistry and mineralogy of seafloor hydrothermal and hydrogenetic Mn oxide deposits from the Manus Basin and Bismarck Archipelago region of the southwest Pacific Ocean. Marine Geology,85: 65-87.

    Boyd, T., and Scott, S. D., 1999. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea. Canadian Mineralogist,37: 973-990.

    Charlou, J. L., Bougault, H., Appriou, P., Jean-Baptiste, P., Etoubleau, J., and Birolleau, A., 1991. Water column anomalies associated with hydrothermal activity between 11?40? and 13?N on the East Pacific Rise: Discrepancies between tracers. Deep-Sea Research I,38: 569-596.

    Cole, T. G., and Shaw, H. F., 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay and Clay Miner,18: 239-252.

    Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979. Submarine thermal springs on the Galapagos rift. Science,203: 1073-1083.

    Cronan, D. S., Glasby, G. P., Moorby, S. A., Thomson, J., Knedler, K. E., and McDougall, J. C., 1982. A submarine hydrothermal manganese deposit from the southwest Pacific island arc. Nature,298: 456-458.

    de Carlo, E. H., McMurtry, G. M., and Yeh, H. W., 1983. Geochemistry of hydrothermal deposits from Loihi submarine volcano, Hawaii. Earth and Planetary Science Letters,66: 438-449.

    Dekov, V. M., Scholten, J. C., Botz, R., Garbe-Schonberg, C.-D., and Stoffers, P., 2007. Fe-Mn- (hydr) oxide-carbonate crusts from the Kebrit Deep, Red Sea: Precipitation at the seawater/ brine redoxcline. Marine Geology,236: 95-119.

    Dekov, V. M., Petersen, S., Garbe-Sch?nberg, C. D., Kamenov, G. D., Perner, M., Kuzmann, E., and Schmidt, M., 2010. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9?33?S, Mid-Atlantic Ridge). Chemical Geology,278: 186-200.

    Edmonds, H. N., and German, C. R., 2004. Particle geochemistry in the Rainbow hydrothermal plume, Mid- Atlantic ridge. Geochimica et Cosmochimica Acta,68: 759-772.

    Fouquet, Y., Auclair, G., Cambon, P., and Etoubleau, J., 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13?N on the East Pacific Rise. Marine Geology,84: 145-178.

    Fouquet, Y., Knott, R., Cambon, P., Cambon, P., Fallick, A., Rickard, D., and Desbruyeres, D., 1996. Formation of large sulfide mineral deposits along fast spreading ridges: Example from off-axial deposits at 12?43′N on the East Pacific Rise. Earth and Planetary Science Letters,144: 147-162.

    Gente, P., Auzende, J. M., Renard, V., Fouquet, Y., and Bideau, D., 1986. Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13?N. Earth and Planetary Science Letters,78: 224-236.

    Gibbs, A. E., Hein, J. R., Lewis, S. D., and McCulloch, D. S., 1993. Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone. Marine Geology,115: 47-65.

    Glasby, G. P., 1988. Hydrothermal manganese deposits in island arcs and related to subduction processes: A possible model for genesis. Ore Geology Reviews,4: 145-153.

    Glasby, G. P., Cherkashov, G. A., Gavrilenko, G. M., Rashidov, V. A., and Slovtsov, I. B., 2006. Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian island arcs, N.W. Pacific. Marine Geology,231: 163-180.

    Grill, E. V., Chase, R. L., Macdonald, R. D., and Murray, J. W., 1981. A hydrothermal deposit from explorer ridge in the Northeast Pacific Ocean. Earth and Planetary Science Letters,52: 142-150.

    Halbach, P., 1986. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geologische Rundschau,75: 235-247.

    Hannington, M. D., and Scott, S. D., 1988. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Canadian Mineralogist,26: 603-625.

    Harder, H., 1978. Synthesis of iron layer silicate minerals under natural conditions. Clay and Clay Miner,26: 65-72.

    Heath, S., Yeats, C. J., and Binns, R. A., 2000. Fe-Si-Mn oxides of the PACMANUS seafloor massive sulfide field, Eastern Manus Basin, Papua New Guinea. Geological Society of Australia (Abstracts),59: 217.

    Hein, J. R., Schulz, M. S., and Kang, J.-K., 1990. Insular and submarine ferromanganese mineralization of the Tonga-Lau region. Marine Mining,9: 305-354.

    Hein, J. R., Koschinsky, A., Halbach, P., Manheim, F. T., Bau, M., Kang, J. K., and Lubick, N., 1997. Iron and manganese oxide mineralization in the Pacific. Geological Society, London, Special Publications,119: 123-138.

    Hékinian, R., Francheteau, J., Renard, V., Ballard, R. D., Choukroune, P., Cheminee, J. L., Albarede, F., Minster, J. F., Charlou, J. L., Marty, J. C., and Boulegue, J., 1983. Intense hydrothermal activity at the axis of the East Pacific Rise near 13?N: Submersible witnesses the growth of sulfide chimney. Marine Geophysical Researches,6: 1-14.

    Hékinian, R., and Fouquet, Y., 1985. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13?N. Economic Geology,80: 221-243.

    Hékinian, R., Hoffert, M., Larque, P., Cheminee, J. L., Stoffers, P., and Bideau, D., 1993. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Economic Geology,88: 2099-2121.

    Herzig, P. M., von Stackelberg, U., and Petersen, S., 1990. Hydrothermal mineralization from the Valu Fa Ridge, Lau back-arc Basin (SW Pacific). Marine Mining,9: 271-301.

    Herzig, P. M., Hannington, M. D., Scott, S. D., Maliotis, G., Rona, P. A., and Thompson, G., 1991. Gold-rich sea-floor gossans in the Troodos ophiolite and on the Mid-Atlantic Ridge. Economic Geology,86: 1747-1755.

    Keeling, J. L., Raven, M. D., and Gates, W. P., 2000. Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clay and Clay Miner,48: 537-548.

    Kohler, B., Singer, A., and Stoffers, P., 1994. Biogenic nontronite from marine white smoker chimneys. Clay and Clay Miner,42: 689-701.

    Koschinsky, A., and Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta,59: 5113-5132.

    Koschinsky, A., and Hein, J. R., 2003. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation. Marine Geology,198: 331-351.

    Krauskopf, K., 1956. Factors controlling the concentrations of thirteen rare metals in sea water. Geochimica et Cosmochimica Acta,9: 1-32B.

    Krauskopf, K. B., 1957, Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta,12: 61-84.

    Loganathan, P., and Burau, R. G., 1973. Sorption of heavy metal ions by a hydrous manganese oxide. Geochimica et Cosmo-chimica Acta,37: 1277-1293.

    Lonsdale, P., Burns, V. M., and Fisk, M., 1980. Nodules of hydrothermal birnessite in the caldera of a young seamount. Journal of Geology,88: 611-618.

    Manheim, F. T., and Lane-Bostwick, C. M., 1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific seafloor. Nature,335: 59-62.

    Mills, R. A., and Elderfield, H., 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26?N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta,59: 3511-3524.

    Mills, R. A., Wells, D. M., and Roberts, S., 2001. Genesis of ferromanganese crusts from the TAG hydrothermal field. Chemical Geology,176: 283-293.

    Miriam, H., and Rachel, M., 1986. The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific Rise axis at 21?N. Geochimica et Cosmochimica Acta,50: 1933-1939.

    Moorby, S. A., Cronan, D. S., and Glasby, G. P., 1984. Geochemistry of hydrothermal Mn-oxide deposits from the SW Pacific island arc. Geochimica et Cosmochimica Acta,48: 433-441.

    Moore, W. S., and Vogt, P. R., 1976. Hydrothermal manganese crusts from two sites near the Galapagos spreading axis. Earth and Planetary Science Letters,29: 349-356.

    Moss, R., and Scott, S. D., 1996. Silver in sulfide chimneys and mounds from 13?N and 21?N, East Pacific Rise. Canadian Mineralogist,34: 697-716.

    Murnane, R., and Clague, D. A., 1983. Nontronite from a lowtemperature hydrothermal system on the Juan de Fuca Ridge. Earth and Planetary Science Letters,65: 343-352.

    Murphy, E., Mcmurtry, G. M., Kim, K. H., and de Carlo, E. H., 1991. Geochemistry and geochronology of a hydrothermal ferromanganese deposit from the N. Fiji Basin. Marine Geology,98: 297-312.

    Nath, B. N., Plüger, W. L., and Roelandts, I., 1997. Geochemical constraints on the hydrothermal origin of ferromanganese encrustation from the Rodriguez Triple Junction, Indian Ocean. In: Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Nicholson, K., et al., eds., Geological Society Special Publication,119: 199-211.

    Puteanus, D., Glasby, G. P., Stoffers, P., and Kunzendorf, H., 1991. Hydrothermal iron-rich deposits from the Teahitia-Mehitia and Macdonald hot spot areas, Southwest Pacific. Marine Geology,98: 389-409.

    Scott, R. M., Scott, R. B., Rona, P. A., Butler, L. W., and Nalwalk, A. J. 1974. Rapidly accumulating manganese deposit from the median valley of the Mid-Atlantic ridge. Geophysical Research Letters,1: 355-358.

    Singer, A., and Stoffers, P., 1987. Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea. Clay and Clay Miner,22: 251-267.

    Stoffers, P., Glasby, G. P., Stuben, D., Renner, R. M., Pierre, T. G., Webb, J., and Cardile, C. M., 1993. Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-mehetia, and Macdonald hot spot areas of the SW Pacific. Marine Georesources & Geotechnology,11: 45-86.

    Sun, Z. L., Zhou, H. Y., Yang, Q. H., Sun, Z. X., Bao, S. X., and Yao, H. Q., 2011. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin. Applied Geochemistry,26: 1192-1204.

    Sun, Z. L., Zhou, H. Y., Glasby, G. P., Yang, Q. H., Yin, X. J., Li, J. W., and Chen, Z. Q., 2012. Formation of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. Journal of Asian Earth Sciences,43: 64-76.

    Teagle, D. A. H., Alt, J. C., Chiba, H., Humphris, S. E., and Halliday, A. N., 1998. Strontium and oxygen isotopic constraints on fluid mixing, alteration and mineralization in the TAG hydrothermal deposit. Chemical Geology,149: 1-24.

    Usui, A., and Someya, M., 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Nicholson, K., et al., eds., Geological Society Special Publication,119: 177-198.

    Usui, A., Yuasa, M., Yokota, S., Nohara, M., Nishimura, A., and Murakami, F., 1986. Submarine hydrothermal manganese deposits from the Ogasawara (Bonin) Arc, off the Japan Islands. Marine Geology,73: 311-322.

    Van de Flierdt, T., Frank, M., Halliday, A. N., Hein, J. R., Hattendorf, B., Günther, D., and Kubik, P. W., 2004. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget–a combined Pb-Hf-Nd isotope approach. Earth and Planetary Science Letters,222: 259-273.

    Varentsov, I. M., Drits, V. A., Gorshkov, A. I., Sivtsov, A. V., and Sakharov, B. A., 1991. Mn-Fe oxyhydroxide crusts from Krylov Seamount (Eastern Atlantic): Mineralogy, geochemistry and genesis. Marine Geology,96: 53-70.

    Zeng, Z. G., Wang, X. Y., Zhang, G. L., Yin, X. B., Chen, D. G., and Wang, X. M., 2008. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13?N: Evidence from mineralogical and geochemical data. Science in China Series D: Earth Sciences,51: 206-215.

    Zeng, Z. G., Chen, D. G., Yin, X. B., Wang, X. Y., Zhang, G. L., and Wang, X. M., 2010. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13?N. Science in China Series D: Earth Sciences,53: 253-266.

    Zeng, Z. G., Ouyang, H. G., Yin, X. B., Chen, S., Wang, X. Y., and Wu, L., 2012. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. Journal of Asian Earth Sciences,60: 130-146.

    (Edited by Xie Jun)

    (Received April 2, 2013; revised May 3, 2013; accepted February 13, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82898525

    E-mail: zgzeng@qdio.ac.cn

    99热只有精品国产| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 亚洲国产欧美网| 欧美色视频一区免费| 国产精品爽爽va在线观看网站| 午夜免费成人在线视频| 天堂影院成人在线观看| 搡老妇女老女人老熟妇| 免费在线观看完整版高清| 国产一区二区在线观看日韩 | 少妇熟女aⅴ在线视频| 日韩欧美在线乱码| 亚洲成人久久爱视频| www.自偷自拍.com| 91在线观看av| 日韩欧美国产在线观看| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 欧美一级毛片孕妇| 久久精品国产亚洲av高清一级| 国产不卡一卡二| 亚洲欧洲精品一区二区精品久久久| 一本久久中文字幕| 香蕉av资源在线| 日本成人三级电影网站| 免费在线观看亚洲国产| 国产av不卡久久| 亚洲,欧美精品.| 国产精品久久久人人做人人爽| 国产三级在线视频| 国产蜜桃级精品一区二区三区| 激情在线观看视频在线高清| 久久这里只有精品中国| 中亚洲国语对白在线视频| 黄色女人牲交| 精品国产超薄肉色丝袜足j| 夜夜躁狠狠躁天天躁| 免费看十八禁软件| 国产欧美日韩精品亚洲av| 男人舔奶头视频| 亚洲一区二区三区不卡视频| www.精华液| 毛片女人毛片| 99国产综合亚洲精品| 男人舔女人下体高潮全视频| 欧美午夜高清在线| 免费看a级黄色片| 午夜福利18| 欧美日本亚洲视频在线播放| 国产一区二区在线观看日韩 | 少妇的丰满在线观看| 免费看十八禁软件| 老汉色av国产亚洲站长工具| 波多野结衣高清无吗| 国产视频一区二区在线看| 法律面前人人平等表现在哪些方面| 久99久视频精品免费| 一夜夜www| 久久中文字幕一级| 舔av片在线| 男女视频在线观看网站免费 | 日日摸夜夜添夜夜添小说| 久久久久久亚洲精品国产蜜桃av| 日韩大码丰满熟妇| 久久人妻福利社区极品人妻图片| 亚洲国产欧洲综合997久久,| 91成年电影在线观看| 亚洲国产高清在线一区二区三| 日本在线视频免费播放| 国产精华一区二区三区| 嫁个100分男人电影在线观看| av福利片在线观看| 国产激情欧美一区二区| 亚洲av中文字字幕乱码综合| 一级毛片高清免费大全| 在线国产一区二区在线| 丰满人妻熟妇乱又伦精品不卡| 1024手机看黄色片| 丝袜美腿诱惑在线| 男女做爰动态图高潮gif福利片| 亚洲全国av大片| 午夜激情av网站| 五月玫瑰六月丁香| 国产探花在线观看一区二区| 久久热在线av| 精品一区二区三区av网在线观看| 国产单亲对白刺激| 俺也久久电影网| 国产私拍福利视频在线观看| 男人舔奶头视频| 麻豆久久精品国产亚洲av| 国产乱人伦免费视频| 制服人妻中文乱码| 九色国产91popny在线| 国产在线精品亚洲第一网站| 欧美一级毛片孕妇| 免费在线观看成人毛片| 国产av又大| 国产精品美女特级片免费视频播放器 | 亚洲aⅴ乱码一区二区在线播放 | 欧美色欧美亚洲另类二区| 舔av片在线| 一二三四社区在线视频社区8| 成人三级黄色视频| 悠悠久久av| 国产精品99久久99久久久不卡| 欧美最黄视频在线播放免费| 欧美日韩亚洲国产一区二区在线观看| 好男人在线观看高清免费视频| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产99精品国产亚洲性色| 人成视频在线观看免费观看| 国产黄a三级三级三级人| 国产成人系列免费观看| 99久久久亚洲精品蜜臀av| 欧美日韩精品网址| 国产亚洲精品av在线| 男女那种视频在线观看| 老司机午夜福利在线观看视频| 在线观看日韩欧美| 久久精品91无色码中文字幕| 成在线人永久免费视频| 美女高潮喷水抽搐中文字幕| 日本 av在线| 在线视频色国产色| 美女午夜性视频免费| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区视频了| 黑人操中国人逼视频| 国产又黄又爽又无遮挡在线| 人人妻人人看人人澡| 成人国产综合亚洲| 欧美成人午夜精品| 一区二区三区高清视频在线| 美女免费视频网站| 男人舔奶头视频| 波多野结衣高清无吗| 精品电影一区二区在线| 日韩成人在线观看一区二区三区| 亚洲国产看品久久| 久久精品国产清高在天天线| 人人妻人人澡欧美一区二区| 黄色 视频免费看| 老熟妇乱子伦视频在线观看| 亚洲 欧美 日韩 在线 免费| 国产午夜福利久久久久久| 夜夜看夜夜爽夜夜摸| 成人av一区二区三区在线看| 最好的美女福利视频网| 国产又色又爽无遮挡免费看| 亚洲全国av大片| 成人三级黄色视频| 男女床上黄色一级片免费看| 听说在线观看完整版免费高清| 99国产精品一区二区蜜桃av| 国产av不卡久久| 国产精品久久久久久精品电影| 亚洲片人在线观看| 亚洲成人精品中文字幕电影| 18禁观看日本| 国产精品综合久久久久久久免费| 亚洲电影在线观看av| 国产黄片美女视频| 亚洲一区中文字幕在线| 老司机深夜福利视频在线观看| 国产亚洲精品综合一区在线观看 | 久久欧美精品欧美久久欧美| 亚洲成人久久性| 在线a可以看的网站| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区三区| 中文在线观看免费www的网站 | 久久婷婷成人综合色麻豆| 神马国产精品三级电影在线观看 | av片东京热男人的天堂| 国产片内射在线| 国产av麻豆久久久久久久| 欧美不卡视频在线免费观看 | 麻豆成人av在线观看| 国产精品永久免费网站| xxxwww97欧美| 免费看日本二区| 人成视频在线观看免费观看| 久久久久久久午夜电影| 国产高清视频在线观看网站| 国产精品av视频在线免费观看| 午夜a级毛片| 日本 av在线| 国产蜜桃级精品一区二区三区| 国产黄a三级三级三级人| АⅤ资源中文在线天堂| 黄色视频不卡| 亚洲av美国av| 国产精品香港三级国产av潘金莲| 999久久久精品免费观看国产| 亚洲人成网站在线播放欧美日韩| 999久久久精品免费观看国产| 亚洲一区二区三区不卡视频| 国产精品电影一区二区三区| 国产探花在线观看一区二区| 国产99久久九九免费精品| 级片在线观看| 黄色丝袜av网址大全| 欧美另类亚洲清纯唯美| 国产成人啪精品午夜网站| 国产精品亚洲av一区麻豆| 97超级碰碰碰精品色视频在线观看| 三级毛片av免费| 在线观看免费日韩欧美大片| 国产精品香港三级国产av潘金莲| 亚洲乱码一区二区免费版| 免费在线观看影片大全网站| 成人特级黄色片久久久久久久| 日韩国内少妇激情av| 老熟妇乱子伦视频在线观看| 亚洲人成网站高清观看| 国产精品野战在线观看| netflix在线观看网站| 免费无遮挡裸体视频| 日本免费一区二区三区高清不卡| 天天躁夜夜躁狠狠躁躁| 丰满的人妻完整版| 最好的美女福利视频网| 国产午夜福利久久久久久| 妹子高潮喷水视频| 国产野战对白在线观看| 精品乱码久久久久久99久播| 欧美日韩亚洲综合一区二区三区_| 亚洲一区二区三区色噜噜| 精品少妇一区二区三区视频日本电影| 无限看片的www在线观看| 看黄色毛片网站| 黑人欧美特级aaaaaa片| 亚洲va日本ⅴa欧美va伊人久久| 精品国产亚洲在线| 午夜免费成人在线视频| 亚洲精品在线观看二区| 亚洲美女黄片视频| 国产精品,欧美在线| 国产精品av久久久久免费| 欧美日韩亚洲综合一区二区三区_| 欧美成人性av电影在线观看| 大型av网站在线播放| 嫁个100分男人电影在线观看| 国产精华一区二区三区| 女警被强在线播放| 亚洲一区高清亚洲精品| 日本三级黄在线观看| 日本一本二区三区精品| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 麻豆成人av在线观看| 一区二区三区高清视频在线| 亚洲乱码一区二区免费版| 国产精品av视频在线免费观看| 深夜精品福利| 中文字幕熟女人妻在线| 人成视频在线观看免费观看| 国产精品美女特级片免费视频播放器 | 黄色毛片三级朝国网站| 又紧又爽又黄一区二区| 亚洲成人精品中文字幕电影| 琪琪午夜伦伦电影理论片6080| 麻豆av在线久日| 欧美中文日本在线观看视频| 色综合婷婷激情| 好看av亚洲va欧美ⅴa在| 国产黄片美女视频| 村上凉子中文字幕在线| 国产精品九九99| 一本久久中文字幕| 校园春色视频在线观看| 久久久精品大字幕| 免费在线观看视频国产中文字幕亚洲| 午夜激情av网站| 悠悠久久av| 国产精品久久久人人做人人爽| 日韩欧美三级三区| 国产成人精品久久二区二区91| 最近在线观看免费完整版| 法律面前人人平等表现在哪些方面| 中文字幕高清在线视频| 国产精品免费视频内射| 波多野结衣高清无吗| 88av欧美| 1024视频免费在线观看| 非洲黑人性xxxx精品又粗又长| 欧美日韩亚洲国产一区二区在线观看| 淫妇啪啪啪对白视频| 国产亚洲精品一区二区www| 久久国产精品影院| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| xxxwww97欧美| 天堂影院成人在线观看| 在线播放国产精品三级| 亚洲国产欧美网| 国产亚洲av高清不卡| 男人舔奶头视频| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 色精品久久人妻99蜜桃| 99热6这里只有精品| 国产人伦9x9x在线观看| 好看av亚洲va欧美ⅴa在| 久久香蕉精品热| 日韩成人在线观看一区二区三区| 国产蜜桃级精品一区二区三区| 麻豆国产97在线/欧美 | 黄色视频,在线免费观看| 后天国语完整版免费观看| 亚洲avbb在线观看| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 久久午夜亚洲精品久久| 蜜桃久久精品国产亚洲av| 欧美高清成人免费视频www| 中文亚洲av片在线观看爽| 美女大奶头视频| 久久久久亚洲av毛片大全| 三级国产精品欧美在线观看 | 国产成人一区二区三区免费视频网站| 别揉我奶头~嗯~啊~动态视频| 欧美色视频一区免费| 国产97色在线日韩免费| 午夜老司机福利片| 国产精华一区二区三区| 1024视频免费在线观看| x7x7x7水蜜桃| 国产精品久久电影中文字幕| 搞女人的毛片| 成人国产综合亚洲| 少妇熟女aⅴ在线视频| 搞女人的毛片| 黄色成人免费大全| 老汉色∧v一级毛片| 在线观看一区二区三区| 国产av不卡久久| 无人区码免费观看不卡| 精品一区二区三区av网在线观看| 国产伦在线观看视频一区| 亚洲中文字幕一区二区三区有码在线看 | 成年女人毛片免费观看观看9| 亚洲精品av麻豆狂野| 久久香蕉精品热| 色综合亚洲欧美另类图片| 欧美zozozo另类| 国产69精品久久久久777片 | 国产精品亚洲av一区麻豆| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 亚洲国产看品久久| 久久人妻福利社区极品人妻图片| 久99久视频精品免费| 两个人看的免费小视频| 不卡av一区二区三区| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| www.www免费av| 蜜桃久久精品国产亚洲av| 欧美日韩国产亚洲二区| 国内少妇人妻偷人精品xxx网站 | 999精品在线视频| 日韩欧美一区二区三区在线观看| 少妇裸体淫交视频免费看高清 | 色尼玛亚洲综合影院| 国产伦在线观看视频一区| 免费在线观看影片大全网站| 欧美黄色片欧美黄色片| 亚洲黑人精品在线| 欧美3d第一页| 欧美日本视频| 人人妻,人人澡人人爽秒播| 90打野战视频偷拍视频| 午夜免费激情av| 亚洲欧洲精品一区二区精品久久久| 搡老熟女国产l中国老女人| 国产亚洲av高清不卡| 国内揄拍国产精品人妻在线| 欧美一区二区国产精品久久精品 | 国产成人一区二区三区免费视频网站| 亚洲精品国产一区二区精华液| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 国产在线观看jvid| 欧美性猛交╳xxx乱大交人| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| 久久婷婷人人爽人人干人人爱| 国产成人一区二区三区免费视频网站| 国产又黄又爽又无遮挡在线| 国产精品1区2区在线观看.| 1024香蕉在线观看| 一夜夜www| 国产又黄又爽又无遮挡在线| 神马国产精品三级电影在线观看 | 国产伦在线观看视频一区| 国产私拍福利视频在线观看| 99在线视频只有这里精品首页| 看片在线看免费视频| 男女做爰动态图高潮gif福利片| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品一区二区www| 97人妻精品一区二区三区麻豆| 国产精品久久久久久人妻精品电影| 成人欧美大片| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 窝窝影院91人妻| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 亚洲午夜理论影院| 国产精品一及| 三级毛片av免费| 在线观看免费视频日本深夜| 丝袜美腿诱惑在线| 免费观看精品视频网站| 亚洲男人天堂网一区| 国产精品久久久人人做人人爽| 在线看三级毛片| 国产一区二区三区视频了| 日本a在线网址| 久久久久久久久中文| 岛国视频午夜一区免费看| 日本三级黄在线观看| 搡老岳熟女国产| 久久香蕉激情| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 麻豆一二三区av精品| 国产成年人精品一区二区| 国产成人啪精品午夜网站| av天堂在线播放| 欧美色视频一区免费| 女同久久另类99精品国产91| 久久中文字幕一级| 欧美一级a爱片免费观看看 | 12—13女人毛片做爰片一| 久久亚洲真实| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费日韩欧美大片| 成年版毛片免费区| 日韩欧美免费精品| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 欧美一级毛片孕妇| 国内少妇人妻偷人精品xxx网站 | 成人手机av| 777久久人妻少妇嫩草av网站| 国产精品精品国产色婷婷| 国产激情欧美一区二区| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 麻豆久久精品国产亚洲av| 岛国在线免费视频观看| 国内精品久久久久精免费| 日本 av在线| 久久久国产成人精品二区| 免费在线观看影片大全网站| 国产精品 国内视频| 国产成+人综合+亚洲专区| 亚洲熟妇中文字幕五十中出| 亚洲国产精品久久男人天堂| 无遮挡黄片免费观看| 一边摸一边抽搐一进一小说| www日本在线高清视频| 国产精品自产拍在线观看55亚洲| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 日本免费一区二区三区高清不卡| 亚洲欧美日韩高清专用| 中文亚洲av片在线观看爽| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影| 欧美日韩亚洲综合一区二区三区_| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| 久久久精品大字幕| 1024香蕉在线观看| 成人三级做爰电影| 亚洲真实伦在线观看| 国产熟女午夜一区二区三区| 国产一级毛片七仙女欲春2| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 制服丝袜大香蕉在线| 亚洲午夜理论影院| videosex国产| 人妻丰满熟妇av一区二区三区| 免费在线观看完整版高清| 欧美大码av| 一进一出好大好爽视频| xxx96com| 亚洲精品色激情综合| 精品一区二区三区av网在线观看| 我要搜黄色片| 成人高潮视频无遮挡免费网站| 久久久久九九精品影院| 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| avwww免费| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| 91九色精品人成在线观看| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 可以在线观看的亚洲视频| 国产乱人伦免费视频| 亚洲成av人片免费观看| 亚洲国产精品sss在线观看| 精品欧美一区二区三区在线| 日韩欧美三级三区| 无限看片的www在线观看| 亚洲国产精品合色在线| 夜夜爽天天搞| 亚洲专区字幕在线| 狠狠狠狠99中文字幕| 欧美乱色亚洲激情| 极品教师在线免费播放| 日韩中文字幕欧美一区二区| 亚洲人成伊人成综合网2020| 无遮挡黄片免费观看| 亚洲国产精品久久男人天堂| 黄片小视频在线播放| 看黄色毛片网站| 欧美成人性av电影在线观看| 国产熟女xx| 精品久久久久久久末码| 老汉色∧v一级毛片| 国产成人av教育| 久久久国产欧美日韩av| 特大巨黑吊av在线直播| 美女高潮喷水抽搐中文字幕| 亚洲av成人一区二区三| 久久久精品欧美日韩精品| 亚洲精品一卡2卡三卡4卡5卡| 香蕉丝袜av| 亚洲熟女毛片儿| 成年人黄色毛片网站| 国产三级中文精品| 天堂影院成人在线观看| 免费av毛片视频| 男男h啪啪无遮挡| 麻豆av在线久日| av免费在线观看网站| 男人的好看免费观看在线视频 | 国模一区二区三区四区视频 | 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看 | 国产亚洲av高清不卡| 精品一区二区三区四区五区乱码| 91麻豆精品激情在线观看国产| 午夜成年电影在线免费观看| 他把我摸到了高潮在线观看| 9191精品国产免费久久| 国产精品久久视频播放| 欧美三级亚洲精品| 老司机福利观看| 男女下面进入的视频免费午夜| 欧美最黄视频在线播放免费| 亚洲国产欧美一区二区综合| 国产精品综合久久久久久久免费| 久久伊人香网站| 九九热线精品视视频播放| 欧美性长视频在线观看| 给我免费播放毛片高清在线观看| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 琪琪午夜伦伦电影理论片6080| 无限看片的www在线观看| 久久久国产成人免费| av国产免费在线观看| 国产成人av激情在线播放| 精品免费久久久久久久清纯| 日本黄色视频三级网站网址| 久久精品国产99精品国产亚洲性色| 长腿黑丝高跟| www日本在线高清视频| 狂野欧美白嫩少妇大欣赏| 日韩欧美一区二区三区在线观看| 精品国产乱子伦一区二区三区| 亚洲av熟女| 999久久久国产精品视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲九九香蕉| 久久精品91蜜桃| 国产单亲对白刺激| 哪里可以看免费的av片| 亚洲自偷自拍图片 自拍| 1024视频免费在线观看| 欧美av亚洲av综合av国产av| 91老司机精品| 久久亚洲真实| 97碰自拍视频| 最近最新中文字幕大全电影3| 欧美成人性av电影在线观看| 精品电影一区二区在线| 国产aⅴ精品一区二区三区波| 午夜亚洲福利在线播放| 午夜视频精品福利| 99久久综合精品五月天人人| 香蕉av资源在线| 国产免费男女视频| 亚洲人与动物交配视频| 1024香蕉在线观看| 日韩精品中文字幕看吧| 久99久视频精品免费| 黄片小视频在线播放|