王存文,孟 陽,汪鐵林,呂仁亮*,王成成,張艷芳
[1.武漢工程大學(xué)化工與制藥學(xué)院,湖北 武漢 430074;2.綠色化工過程教育部重點(diǎn)實(shí)驗(yàn)室(武漢工程大學(xué)),湖北 武漢 430074]
生物柴油作為一種可再生的環(huán)保能源,在過去幾十年里引起了全世界的廣泛關(guān)注[1].植物油、動(dòng)物脂肪和微生物油脂是生產(chǎn)生物柴油的主要原料[2-3].其中,微生物油脂的脂質(zhì)產(chǎn)量高,而且與傳統(tǒng)農(nóng)業(yè)相比,微生物細(xì)胞增殖快、生產(chǎn)周期短、生產(chǎn)成本低、生長(zhǎng)所需的原料來源廣泛[4].在眾多的微生物中,微藻的油脂成分較為單一、組成與普通植物油相似,且產(chǎn)率較高(在特定培養(yǎng)條件下可達(dá)到自身干重質(zhì)量分?jǐn)?shù)的85%)[5].微藻適應(yīng)環(huán)境的能力很強(qiáng),在整個(gè)生物圈均有分布,不會(huì)與農(nóng)作物爭(zhēng)搶良田[6].微藻具有較高的光合效率,可以提供更有效的方法來回收營(yíng)養(yǎng)物質(zhì)[7],其代謝產(chǎn)物量比傳統(tǒng)微生物要高得多[8].用葡萄糖異養(yǎng)發(fā)酵培養(yǎng)微藻可達(dá)到51.2 g/L的生物量[9],而富油微藻能夠產(chǎn)生大量的單細(xì)胞油脂(SCOs),產(chǎn)量可超過其干重質(zhì)量分?jǐn)?shù)的20%[10],這些單細(xì)胞油脂的主要成分是非常適合于生產(chǎn)生物柴油的甘油三酯(TAGs)[11].其中,蛋白核小球藻因繁殖能力強(qiáng)、用途廣泛而受到廣泛的關(guān)注,本研究選取蛋白核小球藻作為研究對(duì)象.
微藻在培養(yǎng)過程中通常會(huì)受到其他微生物的污染.這些微生物會(huì)對(duì)其生長(zhǎng)速度及藻密度產(chǎn)生影響,其中細(xì)菌的影響較為顯著.可與微藻共同生存的細(xì)菌被稱為共生菌,存在競(jìng)爭(zhēng)關(guān)系的則被稱為非共生菌[12].非共生菌對(duì)微藻的生長(zhǎng)是有害的,甚至有些具有溶藻性的細(xì)菌對(duì)微藻來說是致命的[13].抑菌劑對(duì)于細(xì)菌具有良好的抑制作用,采用抑菌劑可消除非共生菌對(duì)微藻生長(zhǎng)的影響[14].關(guān)于抑菌劑在微藻培養(yǎng)中的應(yīng)用的報(bào)道主要集中在藻類遺傳轉(zhuǎn)化中的選擇性標(biāo)記[15].微藻在培養(yǎng)過程中通常會(huì)受到放線菌和霉菌的污染.孟加拉紅、制霉菌素和硫酸鏈霉素能夠有效抑制放線菌和霉菌的繁殖線菌[16-17].據(jù)筆者所知,至今未見孟加拉紅對(duì)小球藻生長(zhǎng)影響的報(bào)道.
本實(shí)驗(yàn)選用孟加拉紅、制霉菌素和硫酸鏈霉素作為抑菌劑,研究其對(duì)蛋白核小球藻生長(zhǎng)的影響,旨在尋找可抑制或消滅微藻非共生菌而對(duì)微藻本身影響較小或有促進(jìn)作用的抑菌劑.
孟加拉紅(生物純級(jí))購(gòu)自阿拉丁試劑,硫酸鏈霉素[Amresco 0382,Potency(dry basis):650~850 mcg/mg]和制霉菌素[Amresc 0418,Potency(anhydrous):4 400 u/mg]購(gòu)自武漢華順生物技術(shù)有限公司.BG-11培養(yǎng)基根據(jù)文獻(xiàn)[18]配置,所用試劑全部為分析純級(jí).蛋白核小球藻購(gòu)自中國(guó)科學(xué)院武漢水生生物研究所.
培養(yǎng)溫度為25℃,將微藻置于100 m L錐形瓶中培養(yǎng),培養(yǎng)基為BG-11培養(yǎng)基,并用強(qiáng)度為4 000 lx的冷白光燈對(duì)微藻進(jìn)行光照,光暗周期L∶D=12 h∶12 h.同時(shí)每天搖動(dòng)培養(yǎng)瓶數(shù)次,以防止微藻下沉或附壁.在實(shí)驗(yàn)組中加入抑菌劑,依文獻(xiàn)選取3種抑菌劑的質(zhì)量濃度分別為:孟加拉紅23 mg/L、硫酸鏈霉素30 mg/L和制霉菌素25 mg/L[19-21].每個(gè)實(shí)驗(yàn)都包括實(shí)驗(yàn)組和不加抑菌劑的對(duì)照組,兩組的其它培養(yǎng)條件相同.
微藻細(xì)胞密度采用紫外分光光度計(jì)(天津拓普WFZ-26A)和托馬血細(xì)胞計(jì)數(shù)器(上海求精生化試劑儀器有限公司,滬制02270113號(hào))測(cè)定.利用紫外分光光度計(jì)測(cè)定蛋白核小球藻在680 nm處的吸光度,并用托馬血細(xì)胞計(jì)數(shù)器測(cè)得細(xì)胞數(shù),可得到細(xì)胞數(shù)和吸光度的關(guān)系曲線[22].經(jīng)測(cè)試,孟加拉紅、制霉菌素和硫酸鏈霉素在680 nm下均無吸收.本實(shí)驗(yàn)測(cè)得蛋白核小球藻的藻密度與吸光度之間的關(guān)系如圖1所示.實(shí)驗(yàn)過程中測(cè)定樣品在680 nm處的吸光度即可根據(jù)標(biāo)準(zhǔn)曲線得到微藻的細(xì)胞密度.
圖1 微藻細(xì)胞密度標(biāo)準(zhǔn)曲線Fig.1 The standard curve of algal cell density
2.1.1 孟加拉紅的影響 孟加拉紅對(duì)蛋白核小球藻生長(zhǎng)情況的影響如圖2所示.在初始24 h內(nèi),實(shí)驗(yàn)組的微藻密度略有下降,由1.229×107cells/mL減少至1.172×107cells/m L.微藻對(duì)孟加拉紅有一個(gè)適應(yīng)的過程,從而導(dǎo)致在培養(yǎng)初期藻密度會(huì)有所降低.隨著培養(yǎng)時(shí)間的增加,微藻逐漸適應(yīng)孟加拉紅,藻密度逐漸增加.培養(yǎng)96 h后,藻密度增加至1.790×107cells/m L.隨后藻密度急劇增加,培養(yǎng)時(shí)間為120 h時(shí)增加至2.264×107cells/mL,到168 h,達(dá)到4.216×107cells/m L,而不經(jīng)處理的對(duì)照組小球藻細(xì)胞密度僅為3.325×107cells/mL.這是因?yàn)榈蜐舛鹊幕钚匝蹩杉せ畹鞍酌福{(diào)節(jié)基因表達(dá)的合成和誘導(dǎo),導(dǎo)致細(xì)胞增殖[23-24],可出現(xiàn)毒物興奮效應(yīng)[25],即低含量的毒性介質(zhì)所產(chǎn)生的刺激作用促使微藻生長(zhǎng)率顯著增加.隨著毒性介質(zhì)濃度的降低,微藻細(xì)胞的生長(zhǎng)得到恢復(fù)和促進(jìn).結(jié)果表明,較低濃度的孟加拉紅能夠明顯促進(jìn)蛋白核小球藻的生長(zhǎng),提高藻密度.
圖2 加入孟加拉紅后小球藻的生長(zhǎng)曲線Fig.2 Growth curve of Chlorella pyrenoidosa after exposure to Rose Bengal
2.1.2 制霉菌素的影響 如圖3所示,在加入了制霉菌素的實(shí)驗(yàn)組中,藻密度隨著培養(yǎng)時(shí)間的增長(zhǎng)而降低,從1.192×107cells/mL下降至5.23×106cells/m L.微藻的顏色也從綠色轉(zhuǎn)變?yōu)樽攸S色.一定濃度的制霉菌素對(duì)蛋白核小球藻具有毒害作用,會(huì)導(dǎo)致大量藻細(xì)胞死亡,從而導(dǎo)致藻密度降低、藻細(xì)胞顏色改變,抑制蛋白核小球藻的生長(zhǎng)[26].雖沒有直接的證據(jù)證明制霉菌素影響小球藻的代謝過程,但可能因?yàn)橹泼咕匚誎+,導(dǎo)致輔因子從細(xì)胞中滲漏,最終導(dǎo)致代謝停止[27].制霉菌素對(duì)蛋白核小球藻的生長(zhǎng)具有非常明顯的抑制作用.
圖3 加入制霉菌素后小球藻的生長(zhǎng)曲線Fig.3 Growth curve of Chlorella pyrenoidosa after exposure to Nystatin
2.1.3 硫酸鏈霉素的影響 如圖4所示,實(shí)驗(yàn)組和對(duì)照組中蛋白核小球藻的生長(zhǎng)趨勢(shì)基本相同,但實(shí)驗(yàn)組的藻密度始終高于對(duì)照組,藻密度的最大值分別為3.512×107cells/m L和3.325×107cells/m L.培養(yǎng)120 h后,兩組微藻都進(jìn)入穩(wěn)定期,對(duì)照組的藻密度保持穩(wěn)定,而實(shí)驗(yàn)組的藻密度則略有下降.144 h后兩組的藻密度趨于相等.在培養(yǎng)初期,實(shí)驗(yàn)組中的蛋白核小球藻的生長(zhǎng)速率比對(duì)照組要高得多.這主要是因?yàn)榱蛩徭溍顾貙?duì)微藻生長(zhǎng)產(chǎn)生促進(jìn)作用,在微藻進(jìn)入穩(wěn)定生長(zhǎng)期后,硫酸鏈霉素的濃度降低,促進(jìn)生長(zhǎng)的作用減弱.
圖4 加入硫酸鏈霉素后小球藻的生長(zhǎng)曲線Fig.4 Growth curve of Chlorella pyrenoidosa after exposure to Streptomycin Sulphate
單一抑菌劑孟加拉紅和硫酸鏈霉素均對(duì)微藻生長(zhǎng)具有一定的促進(jìn)作用,但在蛋白核小球藻的不同培養(yǎng)階段產(chǎn)生的效果不同.本實(shí)驗(yàn)將這兩種抑菌劑配合使用,研究了混合抑菌劑對(duì)蛋白核小球藻生長(zhǎng)的影響.抑菌劑采用以下3種方式加入:A.實(shí)驗(yàn)初期同時(shí)加入兩種抑菌劑;B.實(shí)驗(yàn)初期加入孟加拉紅,96 h后加入硫酸鏈霉素;C.實(shí)驗(yàn)初期加入硫酸鏈霉素,96 h后加入孟加拉紅.
如圖5所示,按3種方式加入抑菌劑后,小球藻的生長(zhǎng)均受到程度不一的抑制,嚴(yán)重的甚至導(dǎo)致死亡.可見混合抑菌劑比單一抑菌劑對(duì)蛋白核小球藻的毒性作用更大,且由于抑菌劑擁有各自的抗菌譜圖,當(dāng)將抑菌劑進(jìn)行混合后,它們對(duì)微藻的影響也更為復(fù)雜[19,21,28].藻的細(xì)胞膜可能會(huì)被破壞,最終導(dǎo)致代謝停止.
本實(shí)驗(yàn)利用超臨界CO2萃取法和索氏提取法對(duì)實(shí)驗(yàn)組(在培養(yǎng)基中加入單一的孟加拉紅或硫酸鏈霉素)和對(duì)照組的微藻進(jìn)行脂質(zhì)含量測(cè)定.超臨界CO2萃取法的實(shí)驗(yàn)條件為:萃取溫度45℃,壓力30 MPa,萃取時(shí)間120 min[29];索氏提取法采用無水乙醚作為提取劑,每小時(shí)虹吸6次,持續(xù)12 h,提取劑提取藻粉時(shí)已經(jīng)無色可視為提取完全[30].
圖5 不同的抑菌劑混合方式對(duì)微藻生長(zhǎng)的影響Fig.5 The effect of mixed antibiotics on microalgae
表1列出了經(jīng)超臨界CO2萃取法和索氏提取法得出的微藻油脂含量,油脂含量用藻細(xì)胞干重的百分?jǐn)?shù)表示.由表1可知,無論是否經(jīng)孟加拉紅或硫酸鏈霉素處理,微藻的脂質(zhì)含量幾乎沒有受到影響.與對(duì)照組相比,在加入孟加拉紅和硫酸鏈霉素后,雖然小球藻的脂質(zhì)含量都略有下降但變化不大,對(duì)這兩種油脂提取方法而言,孟加拉紅實(shí)驗(yàn)組相對(duì)于對(duì)照組的油脂含量均下降了0.5%,下降幅度分別為2.12%和2.18%;硫酸鏈霉素實(shí)驗(yàn)組相對(duì)于對(duì)照組的油脂含量分別下降了0.1%和0.8%,下降幅度分別為0.42%和3.49%.
表1 微藻細(xì)胞內(nèi)油脂含量Table 1 The lipid content of microalgae
本實(shí)驗(yàn)研究了孟加拉紅,制霉菌素和硫酸鏈霉素對(duì)蛋白核小球藻生長(zhǎng)情況的影響,并利用超臨界CO2萃取法和索氏提取法從微藻中提取了油脂.結(jié)果表明,單獨(dú)加入孟加拉紅或硫酸鏈霉素對(duì)蛋白核小球藻的脂質(zhì)含量幾乎沒有影響,其藻密度的最大值分別可達(dá)到4.216×107cells/m L、3.512×107cells/m L,高于對(duì)照組的 3.325×107cells/m L.制霉菌素會(huì)抑制蛋白核小球藻的生長(zhǎng),孟加拉紅和硫酸鏈霉素可以促進(jìn)微藻的生長(zhǎng),但孟加拉紅和硫酸鏈霉素的混合物對(duì)微藻生長(zhǎng)有抑制作用.
致謝
感謝綠色化工過程教育部重點(diǎn)實(shí)驗(yàn)室及武漢工程大學(xué)化工與制藥學(xué)院提供的實(shí)驗(yàn)平臺(tái)!
[1]VASUDEVAN P T,BRIGGS M.Biodiesel productioncurrent state of the art and challenges[J].Journal of Industrial Microbiology & Biotechnology,2008,35(5):421-430.
[2]HIMMEL M E,DING S Y,JOHNSON D K,et al.Biomass recalcitrance:engineering plants and enzymes for biofuels production[J].Science,2007,315(5813):804-807.
[3]MATA T M,MARTINS A A,CAETANO N S.Microalgae for biodiesel production and other applications:a review[J].Renewable and Sustainable Energy Reviews,2010,14(1):217-232.
[4]PRíOS S D,TORRES C M,TORRAS C,et al.Microalgae-based biodiesel:economic analysis of downstream process realistic scenarios[J].Bioresource Technology,2013,136:617-625.
[5]MENG X,YANG J,XU X,et al.Biodiesel production from oleaginous microorganisms[J].Renewable Energy,2009,34(1):1-5.
[6]AMARO H M,GUEDES A C,MALCATA F X.Antimicrobial activities of microalgae:an invited review[J].Science Against Microbial Pathogens:Communicating Current Research and Technological Advances,2011(3):1272-1284.
[7]DEBOER K,MOHEIMANI N R,BOROWITZKA M A,et al.Extraction and conversion pathways for microalgae to biodiesel:a review focused on energy consumption[J].Journal of Applied Phycology,2012,24(6):1681-1699.
[8]OLAIZOLA M.Commercial development of microalgal biotechnology:from the test tube to the marketplace[J].Biomolecular Engineering,2003,20(4):459-466.
[9]XIONG W,LI X,XIANG J,et al.High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production[J].Applied Microbiology and Biotechnology,2008,78(1):29-36.
[10]PRUVOST J,VAN VOOREN G,LE GOUIC B,et al.Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application[J].Bioresource Technology,2011,102(1):150-158.
[11]KOSA M,RAGAUSKAS A J.Lipids from heterotrophic microbes:advances in metabolism research[J].Trends in Biotechnology,2011,29(2):53-61.
[12]CROFT M T,LAWRENCE A D,RAUX-DEERY E,et al.Algae acquire vitamin B12 through a symbiotic relationship with bacteria[J].Nature,2005,438(7064):90-93.
[13]傅麗君,安新麗,鄭天凌.環(huán)境中放線菌及其抑藻活性物質(zhì)研究的若干進(jìn)展[J].地球科學(xué)進(jìn)展,2010(9):960-965.FU Li-jun,AN Xin-li,ZHENG Tian-ling.Advances in algicidal substances produced by algae-lysing actinomycetes [J].Advances in Earth Science,2010(9):960-965.(in Chinese)
[14]COTTRELL M T,SUTTLE C A.Production of axenic cultures of micromonas pusilla(prasinophyceae)using antibiotic 1[J].Journal of Phycology,1993,29(3):385-387.
[15]WALKER T L,COLLET C,PURTON S.Algal transgenics in the genomic era[J].Journal of Phycology,2005,41(6):1077-1093.
[16]司美茹,薛泉宏,來航線.放線菌分離培養(yǎng)基篩選及雜菌抑制方法研究[J].微生物學(xué)通報(bào),2004,31(2):61-65.SI Mei-ru,XUE Quan-h(huán)ong,LAI Hang-xian.Studies on selection of the isolation medium for actinomycetes and inhabiti on methods to miscellaneousmicroorganism[J].Microbiology,2004,31(2):61-65.(in Chinese)
[17]沈萍,范秀容,李廣武.微生物學(xué)實(shí)驗(yàn) [M].3版.北京:高等教育出版社,1999.SHEN Ping,F(xiàn)AN Xiu-rong,LI Guang-wu.Experiment of microbiology[M].3rd ed.Beijing:Higher Education Press,1999.(in Chinese)
[18]STANIER R,KUNISAWA R,MANDEL M,et al.Purification and properties of unicellular blue-green algae(order Chroococcales)[J].Bacteriological Reviews,1971,35(2):171-205.
[19]黃健,宮相忠,唐學(xué)璽,等.鏈霉素對(duì)海洋微藻的毒物刺激效應(yīng)[J].青島海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2000,30(4):642-644.HUANG Jian,GONG Xiang-zhong,TANG Xue-xi,et al.Hormesis of streptomycin on 6 species of marine microalgae[J].Journal of Ocean University of Qingdao,2000,30(4):642-644.(in Chinese)
[20]趙培,王雪青,朱潮峰,等.3種常用抗生素應(yīng)用于海洋微藻無菌化培養(yǎng)的研究[J].天津師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,27(2):27-30.ZHAO Pei,WANG Xue-qing,ZHU Chao-feng,et al.Study of three commonly antibiotics in the axenic culture of marine-microalgae[J].Journal of Tianjin Normal University:Natural Science Edition,2007,27(2):27-30.(in Chinese)
[21]劉衛(wèi)東,蘇浩,虞星炬.培養(yǎng)基瓊脂濃度及抗生素對(duì)3種海洋微藻生長(zhǎng)的影響[J].生物技術(shù),2007,16(6):75-77.LIU Wei-dong,SU Hao,YU Xing-ju.Effects of agar concentration and antibiotics on the growth of three marine microalgae[J].Biology Technology,2007,16(6):75-77.(in Chinese)
[22]沈萍萍,王朝暉,齊雨藻,等.光密度法測(cè)定微藻生物量[J].暨南大學(xué)學(xué)報(bào):自然科學(xué)與醫(yī)學(xué)版,2001,22(3):115-119.SHEN Ping-ping,WANG Zhao-h(huán)ui,QI Yu-zao,et al.An opticaldensity method for determination of micro algal biomass[J].Journal of Jinan University:Natural Science,2001,22(3):115-119.(in Chinese)
[23]DYPBUKT J M,ANKARCRONA M,BURKITT M,et al.Different prooxidant levels stimulate growth,trigger apoptosis,or produce necrosis of insulin-secreting RINm5F cells.The role of intracellular polyamines[J].The Journal of Biological Chemistry,1994,269(48):30553-30560.
[24]SCHRECK R,RIEBER P,BAEUERLE P A.Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1[J].The EMBO Journal,1991,10(8):2247.
[25]STEBBING A R D.Hormesis-the stimulation of growth by low levels of inhibitors[J].The Science of the Total Environment,1982,22:213-234.
[26]ROBINSON A.The effect of anti-fungal antibiotics on the nodulation of Trifolium subterraneum and the estimation of Rhizobium trifolii populations[J].Animal Production Science,1968,8(32):327-331.
[27]DONG Z Z,DONG Z F,DING D W.A method of quick determination of algal biomass[J].Marine Sciences,2004,28(11):1-2.
[28]黃健,唐學(xué)璽,宮相忠,等.低濃度毒物對(duì)海洋微藻生長(zhǎng)刺激效應(yīng)的初步研究[J].應(yīng)用生態(tài)學(xué)報(bào),2002,13(11):1516-1518.HUANG Jian,TANG Xue-xi,GONG Xiang-zhong,et al.Preliminary study on the growth stimulation of marine microalgae stimulated by low level of toxicant[J].Chinese Journal of Applied Ecology,2002,13(11):1516-1518.(in Chinese)
[29]MENDES R L,COELHO J P,F(xiàn)ERNANDES H L,et al.Applications of supercritical CO2extraction to microalgae and plants[J].Journal of Chemical Technology and Biotechnology,1995,62(1):53-59.
[30]RAO A R,DAYANANDA C,SARADA R,et al.Effect of salinity on growth of green alga Botryococcus braunii and its constituents[J].Bioresource Technology,2007,98(3):560-564.