• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations?

    2014-04-25 01:26:48SHAOShiJing邵士靖GUOPan郭盼ZHAOLiang趙亮andWANGChunLei王春雷
    Nuclear Science and Techniques 2014年2期
    關鍵詞:趙亮春雷

    SHAO Shi-Jing(邵士靖),GUO Pan(郭盼),ZHAO Liang(趙亮),and WANG Chun-Lei(王春雷)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations?

    SHAO Shi-Jing(邵士靖),1,2GUO Pan(郭盼),1,2ZHAO Liang(趙亮),1,2and WANG Chun-Lei(王春雷)1,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental signif i cance in a diverse set of technical and scientif i c contexts,thus have drawn extensive attentions.On certain surfaces,the water monolayer may exhibit an ordered feature,which may result in the novel wetting phenomenon.In this article,based on the molecular dynamics simulations,we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes.We carefully analyze the water density prof i les and potential of mean force,which are the origin of the special hexagonal ordered water structures near the solid surface.The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated.

    Ordered water monolayer,Hydrogen bond,Molecular dynamics simulations

    I.INTRODUCTION

    The complex behaviors of interfacial water[1–9],which are of great importance in research f i elds of protein stability and folding[10],molecular self-assembly[11],manipulating biomolecules[12],rearrangement of immunodef i ciency virus[13]etc.,have drawn extensive attentions[5–7,14], since the molecular structure and dynamics of the interfacial water molecules are usually different from the bulk properties[15].Interfacial water molecules play an important role in biophysical process.For example,water effectively catalyzes chiral interconversion of thalidomide[16],and dewetting transition promotes the amyloid f i brils formation[17]. Owing to the interaction between the interfacial water and the hydrophilic solid substrate,the diffusion of interfacial water[18]is slower,and the lifetime of hydrogen bonds[19]is longer,than that of the bulk water,as having been conf i rmed by experiments[20–22].Recently,ordered structure of the interfacial water conf i ned[23]at one or two dimensions has been studied extensively by both experimental and theoretical methods.In 2009,we reported a liquid water droplet on a water monolayer,termed as“ordered water monolayer does not completely wet water”on a model surface at room temperature[24].Later,similar phenomena were observed by several experiments on sapphire c-plane electrolyte surface[25]and on self-assemble monolayer(SAM)surfaces with the?COOH terminal[26,27].In addition,theoretical simulations found similar phenomenon on hydroxylated metal oxide surfaces of Al2O3and SiO2[4],Talc[28]and Pt(100)metal surfaces[29].We also explored the effect of morphology[30]and the critical length of the charge dipolesof the solid surface[31]on the structures of interfacial water and the surface wetting behaviors.

    In this article,based on molecular dynamics simulations, we investigate the structure and hydrogen bonds to show detail information of the ordered water monolayer on ionic model surface having graphene-like hexagonal lattices with various charges and unit cell sizes.The article is organized as follows.The ordered structure of water monolayer near the surface is described in Sec.III.A.In Sec.III.B,the water density and the potential of mean force(PMF)[28]are studied.InSec.III.C,thenumberofhydrogenbondsiscalculated to show the stable formation of hydrogen bonds network in the ordered water monolayer.Finally,a short conclusion is presented in the last section.

    II.SIMULATION DETAILS

    We conf i gured a hexagonal solid lattice with 1664 solid atoms and the neighbor bond lengthlwas described in Fig.1, the same as our previous studies[24,32].The initial systems for the molecular dynamics simulations contained a water layer of about 4.0nm thick on the ionic model surface, where positive and negative charges were located diagonally in neighboring hexagon,and it was found that the charge had great inf l uence on the f l ux of water molecules in nanotube[12,32].All the simulations were performed atT= 300K(NVT ensemble),with Gromacs 4.5.4[34]by using a time step of 1.0fs.The Lennard-Jones parameters of the solid atoms wereεss=0.105kcal/mol andσss=33.343?A,and SPC/E water model[35]was used.The particle-mesh Ewald method[13]with a real space cutoff of 1nm was adopted for the long-range electrostatic interactions and a 10?A cutoff was used for the van der Waals interactions.The periodic boundary conditions were applied in three directions.The simulation time for every system was 4ns and the last 2ns data was collected for analysis.

    Two series of simulations were performed to investigate the ordered water monolayer formation on a hexagonal polarity solid surface.In the f i rst series of simulations, the chargeqof the solid atoms increased from 0.6e to 1.0e with 0.1e interval and there were 5252 water molecules in the simulation boxes with the volume of 6.395nm×6.816nm×20.110nm.The value of the neighboring bond length of solid atoms was kept as the constant ofl=0.142nm.In the second series of simulations,the bond lengthlwas set at 0.120nm,0.130nm,0.142nm, 0.150nm and 0.160nm,withq=0.8e,and the water layer thickness was kept at about 4.0nm,with the water molecules of 3525,4314,5252,5721 and 6564,in the simulation boxes of 5.404nm×5.760nm×20.110nm,5.854 nm×6.240 nm×20.110 nm,6.395nm×6.816nm×20.110nm, 6.755nm×7.20nm×20.110nmand7.205nm×7.680 nm×20.110 nm,respectively.

    III.RESULTS AND DISCUSSIONS

    A.Structure analysis of the water monolayer

    To study the structure of water molecules in the water monolayer on the solid surface,two angle parametersθand?are introduced as illustrated in Fig.2(c)and 2(d),whereθis def i ned as the angle between a water molecule dipole and z axis,and?is the angle formed between the projection onto x-y plane of a water dipole and a crystallographic direction[30].Here,the def i nition of the water monolayer is the water molecules in the f i rst layer next to the solid surface with an average thickness of 0.4nm,the same as our previous work[24],which is also consistent with the existence of an experimentally observable monolayer[36].The second layer is def i ned as the water molecules with an average thickness of 0.4nm above the water monolayer.

    As shown in Fig.2(e),two peaks of angleθconf i rm the two states,namely,state 1 and state 2 as depicted in Figs.2(a) and 2(b).The left peaks atθ≈60°represent state 1 with oxygen atoms attracted by the positive charged atoms,while the right peaks atθ≈120°represent state 2 with?OH bonds pointing towards the negative charged atoms.Fig.2(f)is the normalized probability distributions of angle?with three peaks at?≈0°,120°and 240°,which demonstrate that the water molecules in the monolayer can form a 2D hexagonal conf i guration(Fig.2(d)),the same as our previous work[24]. Asqincreases from 0.6e to 1.0e,all the peaks in Figs.2(e) and 2(f)become higher and the water molecules in the monolayer become ordered due to the larger binding of the surface charged atoms.However,the peaks are quite different as the bond lengthlincreases.Atl=0.142nm andq=0.8e,the peaks are the highest(Figs.2(g)and 2(h)),hence the most ordered water molecules in the water monolayer.As theldeparts from 0.142nm,the ordered hexagonal water monolayer gradually disappears.These results show that the ordered water structure greatly depends on the surface charge and suitable cell size.

    B.Water density distribution prof i les and PMF curves

    Figures.3(a)and 3(b)show the water density as a function ofzat differentqandl.The referencez=0 corresponds to the solid surface.Two peaks can be seen for all curves locating atz=0.3nm and 0.6nm.Due to the strong binding of charges on the surface,we can observe a quite high density peak near the solid surface forming the monolayer.The density increases with the charge,reaching the largest atq= 0.9eand1.0e.Withincreasingcellsize,thedensityincreases fi rst untill=0.142nm,where it begins to decrease,indicating the formation and break-down of the ordered structure, respectively.

    Thedensityrelatestopotentialofmeanforce(PMF),F(z), by the expression[28],

    Fig.2.(Color online)(a)State 1 with water molecule adsorbed by positive binding charge and three negative neighbor charges marked with A,A’,B.(b)State 2 with water molecule adsorbed by negative binding charge and three positive neighbor charges marked with C,D,D’.(c) Schematic of angleθdef i ned as the angle between a water molecule dipole and z axis.(d)Schematic of angle?def i ned as the angle formed between the projection onto x-y plane of a water dipole and a crystallographic.(e)Probability distribution ofθin the monolayervs.q.(f) Probability prof i le for angle?in the monolayervs.q.(g)Probability prof i les ofθin the monolayervs.l.(h)Probability distribution of?in the monolayervs.l.

    where,kBis the Boltzmann constant andρw=33nm?3is the number density of bulk water.F(z)is the potential of mean force for bringing a water molecule from the bulk to a distancezfrom the solid surface.Figs.3(c)and 3(d)show the PMF curves and for every curve there are two valleys atz= 0.3nm and 0.6nm.The two valleys account for the adsorption of the solid surface.The minimum PMF atz=0.3nm is about?0.9kcal/mol atq≥0.8e andl=0.142nm.The PMF reveals the adsorption interaction of the solid surfaces at the valleys.The adsorption increases with the charge,displaying a wide range of binding strength to attract the water molecules and form the ordered monolayer.This is different from the bulk water.Suitable cell size is quite important for adsorption interaction of the solid surface and formation ofthe monolayer.The PMF results indicate that the distribution of water molecules and formation of the ordered water monolayer are affected by the charge and cell size.

    Fig.3.(Color online)(a)Density prof i le of water molecules away from the surfacevs.q,divided by the number density of bulk water,ρw= 33nm?3.(b)The density prof i levs.l,ρz/ρw.(c)Potential of mean forceF(z)vs.q.(d)F(z)vs.l.

    Fig.4.(Color online)Average number of hydrogen bonds of a water molecule to other water molecules in the same layer(◆),to water molecules in the second layer(?),and their sum(■)as function ofq(a)andl(b).

    C.Hydrogen bonds in the water monolayer

    The ordered water monolayer affects the formation of hydrogen bonds of the water molecules in the interface.We calculated the average hydrogen bonds of a water molecule to its neighboring water molecules in the same monolayer(“in the monolayer”H bonds),and to water molecules in the second layer(“to the second layer”H bonds),as shown in Fig.4. The criteria characterizing existence of hydrogen bond between two water molecules is the geometric def i nition that their O?O distance is less than 3.5?A and simultaneously the angle H?O···O is less than 30°[37].

    In Fig.4(a),the number of hydrogen bonds within the monolayer increases and the number of the hydrogen bonds between the monolayer and the second layer decreases as the increase of charge.Their sum remains at~2.9 whenq≥0.8e,which approaches 3,the maximum number of hydrogen bonds that any water molecule can form in the monolayer[24].The interaction energy between the monolayer and the charged surface is stronger when the charge increases as we calculate in Sec.III(B).The water molecules bound inthe monolayer make it easy to form hydrogen bond with the water molecule in the same layer.There is competition for formation of hydrogen bonds between the“in the monolayer”H bonds and“to the second layer”H bonds.The increase of former leads to the decrease of latter for weaker interaction between the water molecules in the monolayer and water molecules in the second layer.In Fig.4(b),whenl= 0.142nm andq=0.8e,the average number of hydrogen bonds among the water molecules in the monolayer is larger than the others,and the number of hydrogen bonds between the monolayer and the second layer is the smallest.The total number of hydrogen bonds per water molecule in the monolayer is also about 3.Thus,the large charge and the suitable unit cell size(l=0.142nm)make the water molecules in the monolayer prefer to form hydrogen bonds within the water monolayer,rather than form hydrogen bonds between the monolayer and water molecules in the second layer.Clearly, the unit cell size is also the key to the formation of hydrogen bonds of the water molecules near the solid surface.

    IV.CONCLUSION

    In summary,we study the structure,properties of free energy and hydrogen bonds of ordered water monolayer on ionic model surface with graphene-like hexagonal lattices with different charges and unit cell sizes by molecular dynamics simulations.The results indicate that both the charge and unit cell size have a great effect on the water molecular behaviors in the monolayer,such as water molecular conf i gurations and the hydrogen bond network.The charged surface displaying strong adhesive interaction is described by the water density prof i les and potential of mean force.We have also carefully investigated the number of hydrogen bonds of the ordered water monolayer near the solid surface.It is expected that the f i nding in this paper may help to deeply understand the ordered water monolayer on the surface.

    ACKNOWLEDGEMENTS

    We thank Prof.FANG Hai-Ping and Dr.XIU Peng for the helpful discussions and suggestions.

    [1]Stirnemann G,Rossky P J,Hynes J T,et al.Faraday Discuss, 2010,146:263–281.

    [2]Stirnemann G,Castrill′on S R V,Hynes J T,et al.Phys Chem Chem Phys,2011,13:19911–19917.

    [3]Malani A and Ayappa K G.J Chem Phys,2012,136:194701.

    [4]Phan A,Ho T A,Cole D R,et al.J Phys Chem C,2012,116: 15962–15973.

    [5]Ostroverkhov V,Waychunas G A,Shen Y R.Phys Rev Lett, 2005,94:46102.

    [6]Zheng J M,Chin W C,Khijniak E,et al.Adv Colloid Interfac, 2006,127:19–27.

    [7]Sovago M,Campen R K,Wurpel G W H,et al.Phys Rev Lett, 2008,100:173901.

    [8]Zanotti J M,Bellissent-Funel M C,Chen S H.Europhys Lett, 2005,71:91–97.

    [9]Goertz M P,Houston J,Zhu X Y.Langmuir,2007,23:5491–5497.

    [10]Hummer G,Garde S,Garc?a A E,et al.Chem Phys,2000,258: 349–370.

    [11]Vauthey S,Santoso S,Gong H,et al.P Natl Acad Sci USA, 2002,99:5355–5360.

    [12]Xiu P,Zhou B,Qi W P,et al.J Am Chem Soc,2009,131: 2840–2845.

    [13]York D M,Darden T A,Pedersen L G,et al.Biochemistry-US, 1993,32:1443–1453.

    [14]Gragson D E,McCarty B M,Richmond G L.J Am Chem Soc, 1997,119:6144–6152.

    [15]Bandyopadhyay S,Tarek M,Klein M L.Curr Opin Colloid Int, 1998,3:242–246.

    [16]Tian C,Xiu P,Meng Y,et al.Chem-Eur J,2012,18:14305–14313.

    [17]Yang Z,Shi B,Lu H,et al.J Phys Chem B,2011,115:11137–11144.

    [18]Chen S H,Gallo P,Bellissent-Funel M C.Can J Phys,1995,73:703–709.

    [19]Li J,Liu T,Li X,et al.J Phys Chem B,2005,109:13639–13648.

    [20]Riter R E,Willard D M,Levinger N E.J Phys Chem B,1998,102:2705–2714.

    [21]Pal S K,Peon J,Bagchi B,et al.J Phys Chem B,2002,106: 12376–12395.

    [22]Pal S K,Peon J,Zewail A H.P Natl Acad Sci USA,2002,99: 1763–1768.

    [23]Pal S,Balasubramanian S,Bagchi B.J Phys Chem B,2003,107:5194–5202.

    [24]Wang C,Lu H,Wang Z,et al.Phys Rev Lett,2009,103: 137801.

    [25]L¨utzenkirchen J,Zimmermann R,Preoˇcanin T,et al.Adv Colloid Interfac,2010,157:61–74.

    [26]James M,Darwish T A,Ciampi S,et al.Soft Matter,2011,7: 5309–5318.

    [27]James M,Ciampi S,Darwish T A,et al.Langmuir,2011,27: 10753–10762.

    [28]Rotenberg B,Patel A J,Chandler D.J Am Chem Soc,2011,133:20521–20527.

    [29]Limmer D T,Willard A P,Madden P,et al.P Natl Acad Sci USA,2013,110:4200–4205.

    [30]Wang C,Zhou B,Xiu P,et al.J Phys Chem C,2011,115: 3018–3024.

    [31]Wang C,Zhou B,Tu Y,et al.Sci Rep,2012,2:358.

    [32]Ren X P,Zhou B,Li L T,et al.Chin Phys B,2013,22:016801.

    [33]Xu W,Tu Y,Wang C,et al.Nucl Sci Tech,2011,22:307–310.

    [34]Hess B,Kutzner C,van der Spoel D,et al.J Chem Theory Comput,2008,4:435–447.

    [35]Berendsen H J C,Grigera J R,Straatsma T P.J Phys Chem, 1987,91:6269–6271.

    [36]Miranda P B,Xu L,Shen Y R,et al.Phys Rev Lett,1998,81: 5876–5879.

    [37]Luzar A and Chandler D.J Chem Phys,1993,98:8160–8173.

    10.13538/j.1001-8042/nst.25.020502

    (Received January 8,2014;accepted in revised form February 24,2014;published online March 20,2014)

    ?Supported by the National Science Foundation of China(Nos.11290164 and 11204341),the Knowledge Innovation Program of SINAP,the Knowledge Innovation Program of the Chinese Academy of Sciences,Shanghai Supercomputer Center of China and Supercomputing Center of Chinese Academy of Science

    ?Corresponding author,wangchunlei@sinap.ac.cn

    猜你喜歡
    趙亮春雷
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    虎子的周日
    十幾歲(2021年5期)2021-11-22 23:37:22
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    Interannual variation of nutrients along a transect across the Kuroshio and shelf area in the East China Sea over 40 years*
    Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River*
    豐 碑
    春雷
    春雷乍響活驚蟄
    亚洲国产精品国产精品| 一区二区三区乱码不卡18| 韩国av在线不卡| 国产乱人偷精品视频| 18+在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 免费播放大片免费观看视频在线观看| 久久人人爽av亚洲精品天堂| 久久久精品区二区三区| 热99久久久久精品小说推荐| 男女边摸边吃奶| 精品久久蜜臀av无| 亚洲av免费高清在线观看| 成年av动漫网址| 久久av网站| 精品人妻偷拍中文字幕| 亚洲av男天堂| 精品久久久精品久久久| 高清毛片免费看| 亚洲精品美女久久av网站| 天天操日日干夜夜撸| av免费观看日本| 国产精品一区二区在线不卡| 黄色视频在线播放观看不卡| 考比视频在线观看| 婷婷色麻豆天堂久久| 成人国语在线视频| 日韩亚洲欧美综合| 夜夜爽夜夜爽视频| 久久久久久久久久久久大奶| 777米奇影视久久| 人妻人人澡人人爽人人| 99久久人妻综合| 国产成人精品福利久久| 草草在线视频免费看| 日本爱情动作片www.在线观看| 丰满饥渴人妻一区二区三| 人妻 亚洲 视频| 男女免费视频国产| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 国产精品成人在线| 久久影院123| 97精品久久久久久久久久精品| 99久久精品一区二区三区| 边亲边吃奶的免费视频| av一本久久久久| 最近2019中文字幕mv第一页| 亚洲无线观看免费| 免费观看a级毛片全部| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 免费看光身美女| 日本午夜av视频| 黄色怎么调成土黄色| 日本黄色片子视频| 国产欧美亚洲国产| 日韩 亚洲 欧美在线| 久久精品熟女亚洲av麻豆精品| 成人毛片60女人毛片免费| 欧美精品国产亚洲| 秋霞在线观看毛片| 伊人久久精品亚洲午夜| 少妇丰满av| 中文字幕av电影在线播放| 久久久久久久大尺度免费视频| 不卡视频在线观看欧美| 最新中文字幕久久久久| 午夜福利视频精品| 国产免费又黄又爽又色| 蜜臀久久99精品久久宅男| 久久影院123| 久久99热6这里只有精品| 亚洲无线观看免费| 少妇被粗大猛烈的视频| videossex国产| 九九爱精品视频在线观看| 亚洲中文av在线| 草草在线视频免费看| 丰满少妇做爰视频| 日韩欧美一区视频在线观看| 91aial.com中文字幕在线观看| 免费大片18禁| 久久精品国产a三级三级三级| 免费高清在线观看日韩| 一边亲一边摸免费视频| 国产精品一二三区在线看| 尾随美女入室| 久久久久精品久久久久真实原创| 美女cb高潮喷水在线观看| 国产一区有黄有色的免费视频| 久久99一区二区三区| 少妇的逼好多水| 国产 精品1| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 国产亚洲欧美精品永久| 99久久综合免费| 如日韩欧美国产精品一区二区三区 | 美女福利国产在线| 中文字幕免费在线视频6| .国产精品久久| 亚洲av.av天堂| 在现免费观看毛片| 色5月婷婷丁香| 国产 一区精品| 热re99久久国产66热| 97在线人人人人妻| 日韩一本色道免费dvd| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 免费高清在线观看日韩| 久久久精品94久久精品| 香蕉精品网在线| 久久精品人人爽人人爽视色| 久久久久久久久大av| 99久久精品国产国产毛片| 日韩一区二区视频免费看| 只有这里有精品99| 午夜91福利影院| 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 波野结衣二区三区在线| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 午夜福利,免费看| 日韩伦理黄色片| videossex国产| 欧美97在线视频| 午夜日本视频在线| 美女内射精品一级片tv| av专区在线播放| 91国产中文字幕| 一二三四中文在线观看免费高清| 一边摸一边做爽爽视频免费| 婷婷成人精品国产| 最近手机中文字幕大全| 亚洲欧美一区二区三区国产| 精品亚洲成国产av| 在线精品无人区一区二区三| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 我要看黄色一级片免费的| 日韩欧美一区视频在线观看| 视频区图区小说| 久久国内精品自在自线图片| 蜜桃在线观看..| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 熟妇人妻不卡中文字幕| a级毛片在线看网站| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 久久久亚洲精品成人影院| 黄片播放在线免费| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 午夜av观看不卡| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 色吧在线观看| 亚洲精品中文字幕在线视频| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 免费黄网站久久成人精品| av.在线天堂| a级毛片免费高清观看在线播放| 国产精品久久久久久精品古装| 亚洲人成77777在线视频| 少妇的逼好多水| 久热久热在线精品观看| 亚洲第一区二区三区不卡| 国产高清国产精品国产三级| 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 精品久久久精品久久久| 国产探花极品一区二区| 国产男女内射视频| 老熟女久久久| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 18+在线观看网站| 国产伦精品一区二区三区视频9| 亚洲精品日本国产第一区| 久久av网站| 七月丁香在线播放| 亚洲av综合色区一区| 中文字幕人妻丝袜制服| 久久99热这里只频精品6学生| 国产在线一区二区三区精| 日韩一本色道免费dvd| 91精品国产国语对白视频| 一级毛片aaaaaa免费看小| 久久久久网色| 久久久久久久久久成人| 大码成人一级视频| 婷婷成人精品国产| 亚洲av日韩在线播放| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 国产一区二区在线观看日韩| 一边摸一边做爽爽视频免费| 成年美女黄网站色视频大全免费 | 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 国产无遮挡羞羞视频在线观看| 精品国产露脸久久av麻豆| 成人影院久久| 亚洲少妇的诱惑av| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 在线免费观看不下载黄p国产| 久久久国产精品麻豆| 一边亲一边摸免费视频| 国产亚洲精品第一综合不卡 | 观看美女的网站| av在线老鸭窝| 亚洲美女黄色视频免费看| 春色校园在线视频观看| 女性生殖器流出的白浆| 国产片内射在线| 新久久久久国产一级毛片| 一区二区三区精品91| 我要看黄色一级片免费的| 国产成人freesex在线| 亚洲av福利一区| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 一级毛片我不卡| 久久亚洲国产成人精品v| 18禁裸乳无遮挡动漫免费视频| 欧美亚洲日本最大视频资源| 婷婷色麻豆天堂久久| 美女cb高潮喷水在线观看| 不卡视频在线观看欧美| 国产日韩一区二区三区精品不卡 | 最新中文字幕久久久久| 韩国av在线不卡| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 免费不卡的大黄色大毛片视频在线观看| 在线观看www视频免费| 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 纯流量卡能插随身wifi吗| 国产永久视频网站| 99久久精品国产国产毛片| 黄色一级大片看看| 天堂8中文在线网| 男人添女人高潮全过程视频| 色吧在线观看| 狠狠精品人妻久久久久久综合| 91午夜精品亚洲一区二区三区| 精品久久久精品久久久| 黄色配什么色好看| 国产精品一区二区在线不卡| 国产午夜精品一二区理论片| 高清av免费在线| 亚洲av在线观看美女高潮| 91国产中文字幕| 欧美日韩av久久| 高清午夜精品一区二区三区| 99久久综合免费| 91精品三级在线观看| 97在线视频观看| 亚洲av成人精品一区久久| 日韩伦理黄色片| 久久99热6这里只有精品| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | 亚洲,一卡二卡三卡| 久久久欧美国产精品| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 亚洲精品久久久久久婷婷小说| 亚洲精品日本国产第一区| 大陆偷拍与自拍| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 色哟哟·www| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 99久久人妻综合| 婷婷色综合大香蕉| 嘟嘟电影网在线观看| 午夜日本视频在线| 亚洲欧美日韩另类电影网站| 久久久久久久久久久久大奶| 精品一区二区三区视频在线| 亚洲精品aⅴ在线观看| 人妻人人澡人人爽人人| 精品国产露脸久久av麻豆| 毛片一级片免费看久久久久| 国产白丝娇喘喷水9色精品| 观看美女的网站| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 久久久久久人妻| 五月伊人婷婷丁香| 飞空精品影院首页| 日本午夜av视频| 日本黄色片子视频| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 免费观看a级毛片全部| 一边摸一边做爽爽视频免费| 免费高清在线观看视频在线观看| 欧美xxxx性猛交bbbb| 午夜福利网站1000一区二区三区| 热99国产精品久久久久久7| 日韩熟女老妇一区二区性免费视频| 黑人高潮一二区| 亚洲人与动物交配视频| 天天躁夜夜躁狠狠久久av| 综合色丁香网| h视频一区二区三区| 亚洲综合色网址| 欧美精品高潮呻吟av久久| 国产一区二区在线观看av| 99热这里只有精品一区| 国产极品粉嫩免费观看在线 | 国产精品国产三级专区第一集| 国产成人aa在线观看| 中文天堂在线官网| 狂野欧美激情性bbbbbb| 久久久午夜欧美精品| 少妇 在线观看| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| 国产熟女欧美一区二区| 国产精品熟女久久久久浪| 天堂中文最新版在线下载| av电影中文网址| 久久久久久久久久人人人人人人| 亚洲综合精品二区| 免费观看av网站的网址| 色婷婷久久久亚洲欧美| 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 18在线观看网站| 麻豆乱淫一区二区| 如日韩欧美国产精品一区二区三区 | 少妇的逼水好多| 国国产精品蜜臀av免费| 国产又色又爽无遮挡免| 中国国产av一级| 人妻 亚洲 视频| 欧美少妇被猛烈插入视频| 成人午夜精彩视频在线观看| av一本久久久久| 热99久久久久精品小说推荐| 国产综合精华液| 尾随美女入室| 一区二区三区四区激情视频| 亚洲精品国产色婷婷电影| 考比视频在线观看| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区| 国产精品女同一区二区软件| 国产欧美亚洲国产| 精品卡一卡二卡四卡免费| 老司机影院毛片| 美女内射精品一级片tv| 免费观看av网站的网址| 熟女人妻精品中文字幕| 18在线观看网站| 天堂俺去俺来也www色官网| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲网站| 成人手机av| 久久久精品区二区三区| 3wmmmm亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 中文字幕久久专区| 精品一区在线观看国产| 在线精品无人区一区二区三| 国产av国产精品国产| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 99国产综合亚洲精品| 国语对白做爰xxxⅹ性视频网站| 欧美日韩一区二区视频在线观看视频在线| 在线 av 中文字幕| 这个男人来自地球电影免费观看 | 精品久久久久久久久亚洲| 久久久久久久大尺度免费视频| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| av又黄又爽大尺度在线免费看| 男人添女人高潮全过程视频| 制服人妻中文乱码| 黄色一级大片看看| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 少妇人妻精品综合一区二区| 91aial.com中文字幕在线观看| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| 乱码一卡2卡4卡精品| 国产男人的电影天堂91| 国产av一区二区精品久久| 国产亚洲最大av| 人妻一区二区av| av在线播放精品| 老司机影院毛片| 久久国内精品自在自线图片| 日韩av不卡免费在线播放| 久久99热6这里只有精品| 国产熟女午夜一区二区三区 | 亚洲欧洲日产国产| 欧美激情 高清一区二区三区| 久久99热这里只频精品6学生| 日韩熟女老妇一区二区性免费视频| 能在线免费看毛片的网站| 三级国产精品欧美在线观看| 麻豆精品久久久久久蜜桃| 69精品国产乱码久久久| 涩涩av久久男人的天堂| 亚洲欧洲日产国产| 国产毛片在线视频| 亚洲婷婷狠狠爱综合网| 永久免费av网站大全| 免费黄色在线免费观看| 日韩中字成人| 免费黄频网站在线观看国产| a级毛片免费高清观看在线播放| 欧美人与善性xxx| 国产精品久久久久久av不卡| 天堂中文最新版在线下载| 欧美xxxx性猛交bbbb| 久久国产亚洲av麻豆专区| 亚洲图色成人| 一级片'在线观看视频| 两个人免费观看高清视频| 青青草视频在线视频观看| 免费大片黄手机在线观看| 精品久久久精品久久久| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 国产av码专区亚洲av| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 91精品国产国语对白视频| 伦理电影大哥的女人| 春色校园在线视频观看| 最新的欧美精品一区二区| 在线亚洲精品国产二区图片欧美 | 国产又色又爽无遮挡免| 日日爽夜夜爽网站| 久久人妻熟女aⅴ| 在线免费观看不下载黄p国产| 观看av在线不卡| 涩涩av久久男人的天堂| 91久久精品国产一区二区三区| 国产成人freesex在线| 最后的刺客免费高清国语| 母亲3免费完整高清在线观看 | 日日爽夜夜爽网站| 天堂中文最新版在线下载| 韩国av在线不卡| 免费播放大片免费观看视频在线观看| 中文字幕久久专区| 成人影院久久| 久久女婷五月综合色啪小说| 亚洲欧美中文字幕日韩二区| 成人黄色视频免费在线看| 国产亚洲精品第一综合不卡 | 青春草国产在线视频| 久久精品国产自在天天线| 欧美精品高潮呻吟av久久| 搡老乐熟女国产| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 91国产中文字幕| 国产乱人偷精品视频| 亚洲欧洲日产国产| 少妇高潮的动态图| 99久久综合免费| 天堂中文最新版在线下载| 青春草国产在线视频| av免费观看日本| 国产精品麻豆人妻色哟哟久久| 久久影院123| 久久国产精品大桥未久av| 精品人妻熟女av久视频| 久久久久精品久久久久真实原创| 日韩精品免费视频一区二区三区 | 久久国内精品自在自线图片| 久久99蜜桃精品久久| 国产日韩欧美亚洲二区| 搡老乐熟女国产| 中国美白少妇内射xxxbb| 黄片播放在线免费| 国产探花极品一区二区| 亚洲经典国产精华液单| 日日摸夜夜添夜夜爱| 久久久久久久久久久免费av| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| kizo精华| 国产精品女同一区二区软件| 色5月婷婷丁香| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | 成人18禁高潮啪啪吃奶动态图 | 日本av免费视频播放| 丝袜在线中文字幕| av福利片在线| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 国产在线一区二区三区精| 99久久中文字幕三级久久日本| 午夜福利视频在线观看免费| 日韩中文字幕视频在线看片| 美女中出高潮动态图| 国产男女内射视频| 赤兔流量卡办理| 久久午夜综合久久蜜桃| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 亚洲人成77777在线视频| 婷婷色综合www| 高清黄色对白视频在线免费看| 老司机影院成人| 老司机影院毛片| av不卡在线播放| 欧美三级亚洲精品| 少妇人妻精品综合一区二区| 国产成人91sexporn| 国产又色又爽无遮挡免| av国产久精品久网站免费入址| 国产黄色免费在线视频| 乱码一卡2卡4卡精品| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 欧美精品亚洲一区二区| www.色视频.com| av视频免费观看在线观看| 午夜91福利影院| 国产精品成人在线| 老女人水多毛片| 日本av手机在线免费观看| 边亲边吃奶的免费视频| 亚洲图色成人| 亚洲国产精品一区三区| 日本-黄色视频高清免费观看| 国产一级毛片在线| 高清av免费在线| 久久精品人人爽人人爽视色| 人妻系列 视频| 亚州av有码| 看免费成人av毛片| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| av女优亚洲男人天堂| 午夜影院在线不卡| 制服丝袜香蕉在线| 麻豆精品久久久久久蜜桃| 亚洲色图 男人天堂 中文字幕 | 99久久精品一区二区三区| 成人影院久久| 国产成人精品福利久久| 精品国产国语对白av| 亚洲av中文av极速乱| 久久人人爽人人片av| 免费观看av网站的网址| 国内精品宾馆在线| 久久久久久久久久人人人人人人| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡 | 亚洲av日韩在线播放| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| 久久久久久久亚洲中文字幕| 国产成人免费观看mmmm| 老熟女久久久| 男人操女人黄网站| 晚上一个人看的免费电影| 日韩伦理黄色片| 亚洲美女搞黄在线观看| 日本vs欧美在线观看视频| 国产日韩欧美亚洲二区| 国产一区亚洲一区在线观看| 久久国产精品男人的天堂亚洲 | 亚洲内射少妇av| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 久久久久视频综合| 精品视频人人做人人爽| 国产片内射在线| 日本黄色日本黄色录像| 最近中文字幕高清免费大全6| 久久久国产精品麻豆| 好男人视频免费观看在线|