• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A method for determination of the s orbital component of12Be ground state?

    2014-04-25 01:26:48CAIXiaoLu蔡曉鷺FANGuangWei樊廣偉XUHanghua許杭華ANZhenDong安振東FANGongTao范功濤XUBenJi徐本基LIYongJiang李永江PanQiangYan潘強巖YANZhe閻吉吉andXUWang徐望
    Nuclear Science and Techniques 2014年2期

    CAI Xiao-Lu(蔡曉鷺),FAN Guang-Wei(樊廣偉),XU Hang-hua(許杭華),AN Zhen-Dong(安振東),FAN Gong-Tao(范功濤),XU Ben-Ji(徐本基),LI Yong-Jiang(李永江),Pan Qiang-Yan(潘強巖),YAN Zhe(閻吉吉),and XU Wang(徐望)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Chemical Engineering,Anhui University of Science and Technology,Huainan 232001,China

    4Shanghai Synchrotron Radiation Facility,Chinese Academy of Sciences,Shanghai 201204,China

    A method for determination of the s orbital component of12Be ground state?

    CAI Xiao-Lu(蔡曉鷺),1,2,?FAN Guang-Wei(樊廣偉),3XU Hang-hua(許杭華),1,2AN Zhen-Dong(安振東),1,2FAN Gong-Tao(范功濤),1XU Ben-Ji(徐本基),1LI Yong-Jiang(李永江),1Pan Qiang-Yan(潘強巖),4YAN Zhe(閻吉吉),1and XU Wang(徐望)1

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Chemical Engineering,Anhui University of Science and Technology,Huainan 232001,China

    4Shanghai Synchrotron Radiation Facility,Chinese Academy of Sciences,Shanghai 201204,China

    The ambiguity of the structure of12Be especially in the conf i guration of12Be ground state has attracted a lot of attention recently.We notice that the nuclear reaction cross sectionσRat low energy region is sensitive to the surface structure of12Be,which is greatly impacted by the ground state conf i guration of12Be especially by the occupancy probability of thesorbital component.By using existed interaction cross section data of12Be on C at 790MeV/nucleon and Glauber model,the upper limit of thesorbital occupation probability of12Be ground state is roughly determined to be about 56%with Single Particle Model calculations.This demonstrates that the method is very promising to determine thesorbital component of12Be with proper nuclear-matter density distribution calculations for different orbitals of12Be ground state.Hence we bring forward to determine thesorbital component of12Be by measuring theσRof12Be on C and Al at several tens of MeV/nucleon.In this paper,the feasibility and detailed experimental scheme of theσRmeasurement are carefully studied.The precision of thesorbital occupation probability of12Be ground state is expected to achieve 9%by using the proposed 2%σRdata.

    12Be,Density distribution,MOL[FM],Ground state conf i guration

    I.INTRODUCTION

    During the past decades,studies on exotic nuclei have been stimulated considerably owing to the enormous development of radioactive ion beam(RIB)technique.Many peculiarities of exotic nuclei have been revealed,such as the halo/skin-like structure[1],the cluster structure[2]and the breakdown of shell closure[3,4].Studies on these peculiarities greatly improved understanding of the exotic nuclei,e.g.the beryllium isotopes.Theoretical researches on properties of Be isotopes are based on the three-body model[5,6]and the densitydependent relativistic mean-f i eld model[7,8].The neutron halo of14Be has been well explained using these models[5–8].Located between the halo nuclei11Be and14Be,12Be is an interesting combination of the peculiarities and plays a key role in the beryllium chain.In shell model,12Be is supposed to be a“magic nucleus”with simple structure.But recent experiments[4,9,10]provided direct evidence for breakdown of theN=8 shell closure in12Be and the(s,d)intruder states.In principle this intruder-state conf i guration can cause halo-like structure,yet neither the wide momentum distribution[11]nor the relative large two-neutron separation energy (S2n=3.67MeV[12])indicates the signature for a halo. There exists controversy between the recent theoretical and experimental results on halo-like structure of12Be.The gi-ant deformation in the ground state of12Be[13]is also predicted by Antisymmetrized Molecular Dynamics(AMD),the ground state structure of12Be is still ambiguous.Also,explorations in the level structure,parity,spin and deformation of the excited states of12Be with molecular cluster model draws quite a lot of attentions[14–18].The ground state structure properties of12Be are indispensable in the studies because it provides fundamental information for the studies of the excited states.Therefore,it is of signif i cance to study the ground state structure of12Be.

    As an essential property of the ground state structure,the nuclear-matter density distribution of12Be not only provides basic structure information such as nuclear-matter radius,but also helps to determine whether the12Be ground state has a halo structure.Recently,particle-particle random-phase approximation(pp-RPA)[19]and microscopic no-core shellmodel(NCSM)calculations[18]have shown that the ground state wave functions of12Be are dominated by thepshell conf i guration,which is in conf l ict with the previous calculations[20–24]and the knockout measurements[4,9].The nuclear-matter density distribution may be used to determine the conf i guration mixing between the 1p1/2,1d5/2and 2s1/2orbitals,thereby help to resolve the inconsistencies between current data and various theoretical models.Therefore,we were motivated to determine the nuclear-matter density distribution of12Be ground state.

    In the following text,the experimental method of theσRmeasurement is introduced in Sec.II,the feasibility analysis and optimization of the reaction cross section(σR)measurement are elaborated in Sec.III,the way to determine thesorbital component of12Be ground state throughσRis illustrated in Sec.IV,and a summary is given in Sec.V.

    II.GENERAL SCHEME

    Typically the nuclear-matter density distribution is investigated by measuring theσR(or the total interaction cross sectionsσI).This involves theoretical models,and several methods were developed to study the total reaction cross section, such as the multi-step scattering theory of Glauber[25],the transport model method of Maet al.[26,27]and the semiempirical formula of Koxet al.[28]and Shenet al.[29] A series of investigations to12Be were carried out in the past decades.By measuring theσIon Be,C and Al at 790MeV/nucleon,Tanihataet al.successfully determined the effective root-mean-square(RMS)radius of12Be through a Glauber model in 1988[30].Liatardet al.measured theσRof radioactive Be isotopes on Cu at around 25 to 65MeV/nucleon and deduced the radii by using a simple microscopic model[31].Later,Warneret al.measured theσRof12Be on Pb and Si at about 30 to 60MeV/nucleon and obtained the radius of12Be[32].However,the studies have several drawbacks.First,their energy region did not cover both low and high energy regions.Data at low energy region give constraint to the outer structure,and data at high energy region provide more information on the core part,hence low and high energy region data are both needed to obtain accurate nuclear-matter density distribution.Second,generally, their targets were too heavy.This makesσRinsensitive to the surface structure of12Be.Third,their models were too simple to interpret the data especially at low energies.The results did not give detailed nuclear-matter density distribution of12Be especially for the surface area.

    In obtaining detailed outer structure of the nuclei,two improvements were made recently for extracting accurate nuclear-matter density distribution of nuclei.First,the method of proton elastic scattering at intermediate energies was developed.Ilievaet al.applied proton-scattering method in 2012 to12Be[33]and determined the nuclear-matter density distribution of12Be ground state.But the result has considerable uncertainty because of various parametrizations.So the method is not well established yet for studing the surface structure of especially unstable nuclei.Second,the applicability of Glauber model in the whole energy region was studied and a Modif i ed Optical Limit Glauber model(MOL[FM]) was developed by incorporating the Fermi motion of nucleons in the f i nite-range MOL[34].The MOL[FM]has reduced the discrepancy between the data of calculation and measurement to just 1%–2%for the whole energy region.By measuring theσRon Be,C and Al targets at intermediate energies,the nuclear-matter density distributions of22C[35] and17Ne[36]were determined accurately with MOL[FM]. Through this method we obtained the nuclear-matter density distribution of8Li[37]precisely and the relevant paper about our further study is in preparation.Therefore,MOL[FM] provides a powerful tool for interpreting theσIorσRdata, and measuring theσIorσRdetermining the nuclear-matter density distribution with MOL[FM]is still a good method at present.

    Thus,we were motivated to precisely measureσRof12Be at low energy region and extract the nuclear-matter density distribution of12Be ground state using MOL[FM].

    Refer to the measurements ofσR,transmission method is usually used.Typical experimental procedures are given in Ref.[38].TheσRis obtained by Eq.(1),

    whereEis the energy point;tis the target thickness expressed by the target particles numbers per unit area;andR=Nout/Ninis the ratio of outgoing projectile particles number to incident projectile particles.Since energy of the projectile particles decreases as passing through the target, we determine the energy point ofσRby mean energyEmean, which is given by

    wheretis the target thickness,andE(x)is the residual energy of incident beam travelling along the path by distancex.E(x)can be calculated by the improved Bethe-Bloch formula[39].

    The main relative error ofσRcan be written as

    where Δt/tstands for uncertainty of the target thickness,the subscripts“sys”and“stat”denote the systematic and statistical error ofR,respectively,and the statistical error ofRis given by

    because it follows the binomial distribution.In practice,Rin/Routis taken asRin order to remove the events interact outside the target,RinandRoutare the ratios ofNout/Nincorresponding to the target-in and target-out measurements, respectively.Accordingly,the relative error ofσRbecomes

    Besides the contribution of statistical error,the systemicuncertainty ofσRis mainly from the correction of the num-ber of inelastic-scattering events merged into the non-reaction events.By using the method in Ref.[40]and Monte Carlo simulation,the systematic error ofσRcan be limited within 1%–2%[34].So 1%–2%total uncertainty can be achieved if suff i cient reaction events are recorded.In fact,this was achieved recently in most experiments of the kind.

    Fig.1.(Color online)Current results of the nuclear-matter density distributions of12Be(XB97:[41],SI12:[33],GG05:[42], IT88:[30]).The solid line is given by the sum of the nuclear-matter density distribution of10Be core in ref.[33]and that of two valence neutrons calculated in section 4 with the conf i guration in ref.[4].

    Based on available nuclear-matter density distributions of12Be from experiments and theories(Fig.1),we calculated theσR(Fig.2)at different energies by MOL[FM]. The momentum width and the f i nite-range parameterβwere taken from Ref.[34].From Fig.2 one sees that below~50MeV/nucleon,σRdata with uncertainty around 2%is suff i cient to distinguish several previous results and determine whether12Be has a clear halo-like structure.

    However,the specif i c requirement on experimental conditions for a 2%precision ofσRis still unknown,and investigation is needed for further discussion of the method’s feasibility.

    III.FEASIBILITY STUDY AND OPTIMIZATION OF σRMEASUREMENT

    Tomakesurethattheexperimentispractical,wehavestudied the feasibility and optimized the experimental method. The experiment feasibility mainly relies on detecting system, reaction targets and12Be beam.In the energy region below 50MeV/nucleon,ΔE?Emethod is often used for particle identif i cation.The required energy deposition of12Be in the ΔEdetector is about 10MeV/nucleon,while the required energyintheEdetectorshallbeabove10MeV/nucleon,justfor ensuring validity of the particle identif i cation.So the energy of12Be right before the ΔEdetector is supposed to be over 20MeV/nucleon.Usually Si detector and scintillator detector are used as the ΔEandEdetector,respectively.Their thicknesses depend on the specif i c energy of12Be right before the ΔEdetector.As for the particle identif i cation before the reaction target,Bρ-ΔE-TOF technique is often used.Typical layout of the detecting system is shown in Fig.3.

    Fig.2.(Color online)The calculations ofσR(E)corresponds to current nuclear-matter density distributions of12Be(XB97:[41], SI12:[33],GG05:[42],IT88:[30]).The upper group of lines corresponds to theσRof12Be+Al,and the lower group of lines corresponds to theσRof12Be+C.

    Fig.3.Schematic diagram of typical experimental setup.

    Besides the detection system,the target material and thicknesstandincidentenergyofthe12BebeamEinshallbedetermined before the experiment.Regarding the target material,12C is a good candidate,because its nuclear-matter density distribution is well determined and its mass number is comparable with12Be,so itsσRis more sensitive to the12Be surface structure.Another target,27Al,is also needed for reducing the target-dependence of the result.

    For thetandEin,there are direct impact factors,such as the transmission rateR,12Be outgoing energyEoutafter the reaction target,and energy pointEmeanwith certain restriction for each of these factors,hence it is diff i cult to considertandEinseparately.We studied the relations between these parameters through calculations,which includes:

    (1)Eoutfor certainEinandt,Eoutwas calculated by LISE++[43];

    (2)Emeancould be determined through(Ein+Eout)/2 ap-proximately;

    (3)σR(Emean)was calculated using MOL[FM]based on the nuclear-matter density distribution of the expectation in Fig.1;

    (4)Ris calculated by Eq.(1)with certaintand correspondingσR(Emean).

    Then,the trends ofRvarying withEinunder differenttandEoutwere obtained.Fig.4 shows the calculation results of12Be+C.Each dash line corresponds to the samet,each dash dot line corresponds to the sameEout.Subsequently,we took into account the restrictions ofR,EoutandEmeanto give propertandEin.As mentioned before,Emeanshould be less than 50MeV/n to ensure the physical goal,andEout(viz.the energy of12Be right before the ΔEdetector)should be above 20MeV/n to ensure the availability of ΔE?Emethod.

    Ris restricted by systematic error if the statistical error is small enough.It is of certain diff i culty to achieve 0.1% systematic error for a directly measured quantity,likeR.To ensure a<2.5%precision ofσR,the factor 1/lnRbefore the systematic error ofRin Eq.(5)shall be less than 25.AccordinglyRshould be less than 0.96.Therefore,proper ranges oftandEinare indicated as the hatched area in Fig.4.

    Fig.4.The change trends ofRwithEinunder differenttandEout.

    In the energy region of 30–50MeV/nucleon we intend to obtain three data points by using subtraction method.As shown by Conditions(1)and(2)in Fig.5,at incident beam energy ofE1andE2,with target thickness oft1andt2,reaction cross sectionsσ1andσ2are measured by the transmission method,respectively,and by adjustingE1andE2,both the outgoing beam energiesEoutcan be of the same energy. Then,the reaction rate in the target in Condition(2)shall be equal to that of the corresponding thickness oft2in the target in Condition(1).By subtracting the two data,one obtains anotherσRas,

    Fig.5.(Color online)Schematic diagram of the subtraction method.

    whereRin?1andRin?2denote the transmission rates of the target-in experiment in Conditions(1)and(2),respectively. The transmission rates of the target-out experiments do not appear in Eq.(6)because the reaction rate outside the target is canceled between the two measurements.The error of this deducedσRwas determined in Ref.[40].Through this method,three data points can be obtained with only two measurements.This greatly improves the eff i ciency of the experiment.The key point is that the outgoing energiesEoutin the two measurements should be the same.And the interval between the two adjacent incident beam energiesEinshould be over 15MeV/nucleon in order to make sure the energy points are evenly distributed between 30–50MeV/nucleon.

    Thus we have decided the range atEin,and C and Al target thicknesses,and the detecting system.Next,we are to determine the number of events we need according to the requirement of the statistical error,and estimate the requisite beam intensity.

    According to Eq.(3)the statistical error should be less than 0.5%,so that it will not be a main error source,which gives

    SinceRis at most 0.96,Ninof 106is already suff i cient.So, it will take only 103seconds of beam time under typical condition of 103s?1beam intensity,which is very practical.

    TABLE 1.Experimental scheme

    To sum up,for the experiment a12Be beam of about 103s?1intensity at 20–70MeV/nucleon is needed to provide the projectile particles,and the outgoing energy of12Be after the reaction targets in the two measurements should be the same.In addition,a Si and a scintillator detector areneeded for particle identif i cation.Finally,we select two energy points,f i nd the corresponding target thickness,evaluate theRand decide corresponding requirement ofNin.The detailed experimental scheme is given in Table 1.

    Fig.6.Schematic diagram of the layout of RIBLL.

    Wef i ndthattheRadioactiveIonBeamLinein Lanzhou(RIBLL)[44]is a suitable candidate for providing12Be beam.The schematic diagram of the layout of RIBLL is shown in Fig.6.

    The primary beam18O8+is accelerated by the Heavy Ion Research Facility of Lanzhou(HIRFL)and introduced to RIBLL.It bombards the production target of Be at T0 and generates the secondary beam of12Be.An Al degrader at C1 is used for an energy-loss analysis of the secondary beam separation.Another Al degrader at T1 is used for energy degradation.Two slits at C1 and C2 is used for momentum acceptance controlling.Two plastic scintillation counters at focal points T1 and T2 can provide the TOF information.Si solid state detector(SSD)at T2 can be used to provide the ΔEsignals for particle identif i cation before the reaction target.EnergyEinof the incident beam right before the reaction target isdeterminedbytheBρvalueofthefourthdipolemagnetD4. Based on this conf i guration,the12Be beam condition is simulated by LISE++using a typical 100enA primary beam of18O8+at 80MeV/nucleon.Major parameters of the simulation result given in Table 2.It’s worth mentioning that similar experiments have been performed on RIBLL since 2000[45–49].From their results we infer that typically the error ofσRis up to about 5%including 3%–4%systematic error.So we need further consideration based on the real performance of RIBLL to reduce the error especially the systematic error.

    For the detecting system,typically a Si detectors of 1500μm thickness is competent for the ΔEmeasurement, and a CsI(Tl)scintillator detector of 30mm thickness is adequate for theEmeasurement.It should be noted that the Si detector is made of single crystal,hence the concern of channeling effect to the particles being detected.By tilting the Si detector against the beam axis at a certain angle,the fraction of channeling events can be reduced to<1%[40].The tilting angle can be determined by studying the angle dependence of the channeling events in advance.

    Based on the above feasibility study,theσRmeasurement is reasonable and valid,and the requisite conditions can be satisf i ed.Through the measurement the nuclear-matter den-sity distribution of12Be ground state can be determined and then used to extract the component of12Be ground state.In Sec.IV,we elaborate that how to determine thesorbital component throughσR.

    TABLE 2.Major parameters of12Be beam condition at RIBLL

    IV.EXTRACTION OF THEsORBITAL COMPONENT OF12BE GROUND STATE

    As shown by the fermionic molecular dynamics(FMD) calculations(see the inset(b)in Fig.10 of Ref.[33]),different conf i guration mixings of the two valence neutrons in12Be lead to different nuclear-matter density distributions of12Be,and the difference is obviously indicated in the surface structure of12Be.Inspired by this result,we bring forward a method to extract the ground state component of12Be.

    In the method,we treat12Be as a system of10Be core plus two valence neutrons as usual.The10Be determines the nuclear-matter density distribution of the core part of12Be, while the two valence neutrons determine the outer part density distribution.According to the intruder conf i guration of12Be[4],the two valence neutrons are populated in 1p1/2, 1d5/2and 2s1/2states at certain occupation probabilities.So we can construct the outer structure of12Be according to a certain conf i guration as long as a model can give preferable density distribution of the two valence neutrons correspond-ing to different states.By using an appropriate function to describe the core structure of12Be,we can construct a nuclearmatter density distribution of the ground state of12Be.By adjusting the proportion of the components,we can f i nd a nuclear-matter density distribution which is consistent with the experimental result.Then the corresponding proportion can provide conf i guration information of12Be ground state.

    Fig.7.Density distributions of the two valence neutrons corresponding to 1p1/2,1d5/2and 2s1/2states.

    We have tried to extract the ground state component of12Be in order to verify the feasibility of the method.As mentioned above,a precondition of the method is to obtain the valence neutron density distributions corresponding to 1p1/2, 1d5/2and 2s1/2states.Usually single particle model(SPM), three-body-model,cluster model,shell model,etc.are used to calculate the density distribution of the valence neutron.In this article,the SPM[35]is used.In this SPM,the Woods-Saxon potential,the Coulomb barrier and the centrifugal barrier are taken into account.The nuclear part of the potential assumed is written as

    whereV0is the depth of the Woods-Saxon potential,V1= 17MeV is thel·sstrength taken from Ref.[50],rl·s=1.1fm is the radius of spin-orbit potential,Rc=r0A1/3(r0= 1.2fm)is the radius of the Woods-Saxon potential,anda= 0.6fm is the diffuseness parameter.V0is adjusted to reproduce the separation energy of the valence neutron.Here we treat the two valence neutrons as equal and set the separation energy of single valence neutron to be a half of the two-neutron separation energy of12Be.The corresponding nuclear-matter density distributions of the two valence neutrons are shown in Fig.7.We can see that the 2s1/2state has larger density in the surface.Although different models will not give exactly the same density distributions of the two valence neutrons,we infer that our result is less modeldependant based on the fact thatsintruder valence neutron conf i guration is the chief cause of the halo-like structure in light nuclei just as the cases of11Li and11Be.

    Then we consider a conf i guration mixing of 1p1/2,1d5/2and 2s1/2for the two valence neutrons as follows:

    whereαandβdenote the occupation probability of(1p1/2)2and(1d5/2)2conf i guration,respectively.The integrals of the single conf i guration density and mixed density are all normalized to be two nucleons.Combining the10Be core distribution of Gaussian-Gaussian(GG)parametrzation given in Ref.[33],we calculated the correspondingσRand obtained a range ofσRaccordingly,as indicated in Fig.8.We can see clearly that theσRis sensitive to thesorbital occupancy, and it is diff i cult to derive thepanddorbital occupancies from theσRdata.This is because the 2s1/2component contributes much more to the surface structure of12Be than the other components.By using theσIof12Be on C in Ref.[30], we extract the upper limit of thesorbital occupation probability to be about 56%.The upper limits are indicated by the vertical line in Fig.8(c).

    The result indicates that thesorbital is not a dominant component in12Be ground state.It is supposed to be the reason why the halo-like structure in12Be is not evident,because thesorbital component is the major contribution to the halo-like structure.Compared with the calculations given by Ref.[4,20–22,24],ourresultisrelativelysmall(Table3).Although our result is consistent with theβdecay result given by Ref.[42],large uncertainty exists in both results.Therefore,higher precision extraction is needed.

    By comparing the increasing trend ofσRin insets(c)and (f)of Fig.8,one can sees that at low energy region,σRis even more sensitive to thesorbital occupancy.This implies that the extraction uncertainty can be reduced ifσRat low energy region is used.So,we calculateσRbased on ansorbital occupation of 28%(half the value of the upper limit)and aporbital occupation probability of 25%,as the percentage of 1p1/2component was determined as 25±5%[10].The result is shown in Fig.8(f),in which the hatched area indicates 2%error band.Thereby we can extracted that uncertainty of thesorbital occupation probability is about 23%.And take into account that six data points will be available from the experiment introduced in previous section,the precision of the extractedsorbital occupation probability is expected to be around 9%.This makes the experimental measurement ofσRat low energy region more desirable.

    Since the percentage of the 1p1/2component has been determined by Gamow-Teller transition strengths[10],if either 1d5/2or 2s1/2component is extracted precisely,the ground state conf i guration of12Be shall be reliably determined.Our method provides a promising approach to extract the 2s1/2component of12Be ground state and to determine the ground state conf i guration of12Be.Through the proposedσRmeasurements,we expect to extract thesorbital occupation probability with 9%uncertainty.

    Fig.8.The reaction cross section(σR)of12Becalculated at 33.2MeV/nucleon and 790MeV/nucleon,plotted against the occupation probability of the valence neutrons conf i guration inp,dandsorbit.

    TABLE 3.Two-neutron occupancy(%)for12Be(g.s.)as10Be+2n.

    V.SUMMARY

    In summary,the ground state structure of12Be is of great signif i cance.The ambiguity of the conf i guration of12Be ground state has attracted our attention.We bring forward to determine thesorbital component of12Be ground state by measuring theσRof12Be on C and Al at several tens of MeV/nucleon.By using existed interaction cross section data of12Be on C at 790 MeV/nucleon,we roughly determine the upper limit of thesorbital occupation probability of12Be ground state to be 56%with SPM calculations.The precision of thesorbital occupation probability is expected to be 9% by using the proposed 2%σRdata.The feasibility of theσRmeasurement is carefully studied and concrete procedures of the experiment are given.

    ACKNOWLEDGEMENTS

    We wish to thank Dr.Mitsunori Fukuda and his group in Osaka university for their precious help.

    [1]Tanihata I,Hamagaki H,Hashimoto O,et al.Phys Rev Lett, 1985,55:2676–2679.

    [2]Freer M.Rep Prog Phys,2007,70:2149–2210.

    [3]Kanungo R,Gallant A T,Uchida M,et al.Phys Lett B,2010,682:391–395.

    [4]Navin A,Anthony D W,Aumann T,et al.Phys Rev Lett,2000,85:266–269.

    [5]Ren Z Z and Xu G O.Phys Lett B,1990,252:311–313.

    [6]Ren Z Z.J Phys G,1994,20:1185–1194.

    [7]Ren Z Z,Xu G O,Chen B Q,et al.Phys Lett B,1995,351: 11–17.

    [8]Ren Z Z,Mittig M,Chen B Q,et al.Phys Rev C,1995,52: R1764–R1767.

    [9]Pain S D,Catford W N,Orr N A,et al.Phys Rev Lett,2006,96:032502.

    [10]Meharchand R,Zegers R G T,Brown B A,et al.Phys Rev Lett, 2012,108:122501.

    [11]Zahar M,Belbot M,Kolata J J,et al.Phys Rev C,1993,48: R1484–R1487.

    [12]Audi G,Wapstra A H,Thibault C.Nucl Phys A,2003,729: 337–676.

    [13]Kanada-En’yo Y and Horiuchi H.Progress of Theoretical Physics Supplement,2001.142(Copyright(c)Progress of Theoretical Physics 2001 All rights reserved.):pp.205.

    [14]KorsheninnikovAA,AleksandrovDV,AoiN,etal.NuclPhys A,1995,588:c23–c28.

    [15]Freer M,Anglique J C,Axelsson L,et al.Phys Rev Lett,1999,82:1383–1386.

    [16]Kanada-En’yo Y and Horiuchi H.Phys Rev C,2003,68: 014319.

    [17]Ito M,Itagaki N,Sakurai H.Phys Rev Lett,2008,100:182502.

    [18]Dufour M,Descouvemont P,Nowacki F.Nucl Phys A,2010,836:242–255.

    [19]Blanchon G,Vinh Mau N,Bonaccorso A,et al.Phys Rev C, 2010,82:034313.

    [20]Barker F C.J Phys G,1976,2:L45–L47.

    [21]Fortune H T and Sherr R.Phys Rev C,2006,74:024301.

    [22]Barker F C.J Phys G,2009,36:038001.

    [23]Fortune H T and Sherr R,J Phys G,2009,36:038002.

    [24]Romero-Redondo C,Garrido E,Fedorov D V,et al.Phys Rev C,2008,77:054313.

    [25]Glauber R J.Lectures in Theoretical Physics,Interscience, New York 1959,Vol.1,pp.315.

    [26]Ma Y G,Shen W Q,Feng J,et al.Phys Lett B,1988,302: 386–389.

    [27]Ma Y G,Shen W Q,Feng J,et al.Phys Rev C,1993,48:850–856.

    [28]Kox S,Gamp A,Perrin C,et al.Phys Rev C,1987,35:1678–1691.

    [29]Shen W Q,Wang B,Feng J,et al.Nucl Phys A,1989,491: 130–146.

    [30]TanihataI,KobayashiT,YamakawaO,etal.PhysLettB,1988,206:592–596.

    [31]Liatard E,Bruandet J F,Glasser F,et al.Europhys Lett,1990,13:401.

    [32]Warner R E,McKinnon M H,Needleman J S.Phys Rev C, 2001,64:044611.

    [33]Ilieva S,Aksouh F,Alkhazov G D,et al.Nucl Phys A,2012,875:8–28.

    [34]Takechi M,Fukuda M,Mihara M,et al.Phys Rev C,2009,79: R061601.

    [35]Tanaka K,Yamaguchi T,Suzuki T,et al.Phys Rev Lett,2010,104:062701.

    [36]Tanaka K,Fukuda M,Mihara M,et al.Phys Rev C,2010,82: 044309.

    [37]Fan G W,Ph.D.thesis,Shanghai Institute of Applied Physics, Chinese Academy of Sciences,2012.

    [38]Takechi M,Fukuda M,Mihara M,et al.Eur Phys J A,2005,25:217–219.

    [39]Ahlen S P.Phys Rev A,1978,17:1236–1239.

    [40]Takechi M.Elucidation of the behavior of reaction cross sections at intermediate energies and halo structure of 6He.PhD Theis,Osaka University,2006,34–77.

    [41]Bai X,Hu J.Phys Rev C,1997,56:1410–1417.

    [42]Gangopadhyay G,Roy S.J Phys G Nucl Partic,2005,31: 1111–1122.

    [43]Tarasov O B and Bazin D.Nucl Phys A,2004,746:411–414.

    [44]Sun Z,Zhan W L,Guo Z Y.Nucl Instrum Meth A,2003,503: 496–503.

    [45]Fang D Q,Shen W Q,Feng J,et al.Phys Rev C,2000,61: 064311.

    [46]Fang D Q,Shen W Q,Feng J,et al.Eur Phys J A,2001,12: 335–339.

    [47]Cai X Z,Zhang H Y,Shen W Q,et al.Phys Rev C,2002,65: 024610.

    [48]Zhang H Y,Shen W Q,Ren Z Z,et al.Nucl Phys A,2002,707: 303–324.

    [49]Ozawa A,Cai Y Z,Chen Z Q,et al.Nucl Instrum Meth B, 2006,247:155–160.

    [50]Bohr A and Mottelson B R,Nuclear Structure,Vol.I(Benjamin,New York,1975).

    [51]Thompson I J and Zhukov M V.Phys Rev C,1996,53:708–714.

    [52]Robertson R G H.Atomic Masses and Fundamental Constants 5,Springer,1976,pp.147–153.

    [53]KellerH,AnneR,BazinD,etal.ZPhysA-HadronNucl,1994,348:61–62.

    [54]Suzuki T and Otsuko T.Phys Rev C,1997,56:847–856.

    [55]Barker F C.Phys Rev C,1999,59:535–538.

    10.13538/j.1001-8042/nst.25.020501

    (Received January 10,2014;accepted in revised form March 10,2014;published online March 20,2014)

    ?Supported by the National Natural Science Foundation of China(No. 11179018 and 11305238)and the Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201246)

    ?Corresponding author,caixiaolu@sinap.ac.cn

    你懂的网址亚洲精品在线观看| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 国产综合精华液| 免费观看a级毛片全部| 女人久久www免费人成看片| 国产精品国产av在线观看| 精品99又大又爽又粗少妇毛片| 一边摸一边做爽爽视频免费| 午夜激情av网站| 高清不卡的av网站| 国产精品一区二区在线不卡| 国产97色在线日韩免费| 欧美日韩视频精品一区| 久久精品国产亚洲av高清一级| 色94色欧美一区二区| 欧美老熟妇乱子伦牲交| 国产亚洲精品第一综合不卡| 久久精品国产亚洲av天美| 妹子高潮喷水视频| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 久久久久网色| 美国免费a级毛片| 亚洲婷婷狠狠爱综合网| 久久精品久久精品一区二区三区| 大片电影免费在线观看免费| 极品人妻少妇av视频| 午夜福利在线观看免费完整高清在| 久久鲁丝午夜福利片| 十八禁网站网址无遮挡| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av天美| 亚洲精品一区蜜桃| 蜜桃国产av成人99| 日韩一区二区三区影片| 最近的中文字幕免费完整| 久久久久精品性色| 国产片特级美女逼逼视频| 王馨瑶露胸无遮挡在线观看| 久久97久久精品| 人人妻人人添人人爽欧美一区卜| 精品第一国产精品| 欧美另类一区| 免费不卡的大黄色大毛片视频在线观看| 亚洲av成人精品一二三区| 精品久久久久久电影网| 国产麻豆69| 日韩中字成人| 性少妇av在线| 成人国产av品久久久| 国产成人免费观看mmmm| 亚洲av国产av综合av卡| 国产精品偷伦视频观看了| 大香蕉久久成人网| 久久精品久久久久久噜噜老黄| av免费观看日本| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲| 视频区图区小说| 美女大奶头黄色视频| 热99久久久久精品小说推荐| 精品亚洲成国产av| 亚洲国产欧美日韩在线播放| 少妇 在线观看| 国产精品久久久久久精品电影小说| 国语对白做爰xxxⅹ性视频网站| 国产视频首页在线观看| 夫妻午夜视频| 男女边吃奶边做爰视频| 亚洲av福利一区| 中文字幕色久视频| 菩萨蛮人人尽说江南好唐韦庄| 99香蕉大伊视频| 青草久久国产| 免费高清在线观看视频在线观看| 天天操日日干夜夜撸| 丝袜美腿诱惑在线| 女人久久www免费人成看片| 亚洲男人天堂网一区| 熟女av电影| 亚洲欧美成人精品一区二区| 国产午夜精品一二区理论片| 成人午夜精彩视频在线观看| 精品国产一区二区三区四区第35| 少妇精品久久久久久久| 精品人妻一区二区三区麻豆| 新久久久久国产一级毛片| 999久久久国产精品视频| 国产一级毛片在线| 如何舔出高潮| 女的被弄到高潮叫床怎么办| 另类精品久久| 飞空精品影院首页| 啦啦啦啦在线视频资源| 国产精品久久久久久av不卡| 日本猛色少妇xxxxx猛交久久| 亚洲第一区二区三区不卡| 你懂的网址亚洲精品在线观看| 亚洲成人av在线免费| 国产精品一区二区在线观看99| 亚洲欧美精品自产自拍| 婷婷色麻豆天堂久久| 久久这里只有精品19| 中文字幕色久视频| 久久人人爽av亚洲精品天堂| 久久国产亚洲av麻豆专区| 人妻人人澡人人爽人人| 午夜激情av网站| 女人被躁到高潮嗷嗷叫费观| 日日啪夜夜爽| 久久精品aⅴ一区二区三区四区 | 久久久精品国产亚洲av高清涩受| 亚洲国产欧美在线一区| 国产综合精华液| av国产久精品久网站免费入址| 午夜激情av网站| 男人舔女人的私密视频| 精品一品国产午夜福利视频| 亚洲国产日韩一区二区| 在线看a的网站| av免费观看日本| 色吧在线观看| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 亚洲五月色婷婷综合| 伊人久久大香线蕉亚洲五| 成年女人在线观看亚洲视频| 五月开心婷婷网| 午夜日本视频在线| 99久久中文字幕三级久久日本| 在线观看国产h片| 亚洲欧美一区二区三区久久| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 熟女av电影| 免费观看av网站的网址| 久久国产精品男人的天堂亚洲| 欧美人与善性xxx| 亚洲一码二码三码区别大吗| 最黄视频免费看| 男女高潮啪啪啪动态图| 王馨瑶露胸无遮挡在线观看| 麻豆乱淫一区二区| 午夜福利视频在线观看免费| 免费看不卡的av| 国产av码专区亚洲av| 两性夫妻黄色片| xxx大片免费视频| 国产成人免费无遮挡视频| 97精品久久久久久久久久精品| 国产亚洲精品第一综合不卡| 伦理电影大哥的女人| 两性夫妻黄色片| 亚洲国产精品一区三区| 日韩 亚洲 欧美在线| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 日本vs欧美在线观看视频| 精品少妇久久久久久888优播| 亚洲精品第二区| 赤兔流量卡办理| 交换朋友夫妻互换小说| xxx大片免费视频| 中文字幕精品免费在线观看视频| 韩国精品一区二区三区| 91精品三级在线观看| 青草久久国产| 亚洲av电影在线观看一区二区三区| 人妻少妇偷人精品九色| av在线老鸭窝| 国产av精品麻豆| 精品国产一区二区久久| 日日爽夜夜爽网站| 丝袜在线中文字幕| 国产一区二区三区综合在线观看| 18在线观看网站| 多毛熟女@视频| 97人妻天天添夜夜摸| 国产色婷婷99| 最近最新中文字幕大全免费视频 | 亚洲av电影在线进入| 免费播放大片免费观看视频在线观看| 91在线精品国自产拍蜜月| 亚洲精品在线美女| 伦精品一区二区三区| 久久99蜜桃精品久久| 国产高清国产精品国产三级| 在线免费观看不下载黄p国产| 少妇被粗大的猛进出69影院| 天天操日日干夜夜撸| 国产亚洲欧美精品永久| 欧美人与性动交α欧美软件| 丁香六月天网| 亚洲成人av在线免费| 精品一区二区免费观看| 久久精品国产亚洲av涩爱| 在线观看免费日韩欧美大片| 制服人妻中文乱码| 国产乱来视频区| 赤兔流量卡办理| 电影成人av| √禁漫天堂资源中文www| 五月天丁香电影| 老女人水多毛片| 99国产综合亚洲精品| 精品一区二区免费观看| 咕卡用的链子| 久久久a久久爽久久v久久| 在线天堂最新版资源| 美女国产视频在线观看| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 大陆偷拍与自拍| 亚洲av.av天堂| 国语对白做爰xxxⅹ性视频网站| 老女人水多毛片| 大话2 男鬼变身卡| 国产男女内射视频| 777久久人妻少妇嫩草av网站| 一区福利在线观看| 久久免费观看电影| 男女国产视频网站| 久久人人爽人人片av| 亚洲精品一二三| 国产精品偷伦视频观看了| 黄片播放在线免费| 蜜桃国产av成人99| av有码第一页| 国产成人91sexporn| 性色avwww在线观看| 男女午夜视频在线观看| 黄频高清免费视频| 一边亲一边摸免费视频| 国产精品免费视频内射| 午夜免费男女啪啪视频观看| 午夜日本视频在线| 在线观看国产h片| 在线观看www视频免费| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 国产1区2区3区精品| 99久久人妻综合| 中文字幕另类日韩欧美亚洲嫩草| 中国三级夫妇交换| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频| 日韩av在线免费看完整版不卡| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 久久久久精品人妻al黑| 欧美bdsm另类| av国产久精品久网站免费入址| av在线app专区| 久久精品国产亚洲av高清一级| 国产男女内射视频| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 汤姆久久久久久久影院中文字幕| 精品久久久久久电影网| xxxhd国产人妻xxx| 麻豆乱淫一区二区| 久久久久久久亚洲中文字幕| 国产女主播在线喷水免费视频网站| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 夫妻性生交免费视频一级片| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 天天影视国产精品| 久久免费观看电影| 日本爱情动作片www.在线观看| 伊人久久国产一区二区| 人成视频在线观看免费观看| 久久人人爽av亚洲精品天堂| 亚洲图色成人| 满18在线观看网站| 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| 久久精品国产亚洲av高清一级| 成人漫画全彩无遮挡| 999久久久国产精品视频| 久久99一区二区三区| 国产高清国产精品国产三级| av线在线观看网站| 边亲边吃奶的免费视频| 人人澡人人妻人| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 久久久久久久久免费视频了| 日日啪夜夜爽| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| 国产精品久久久av美女十八| 亚洲精品自拍成人| 国产成人免费无遮挡视频| 日本欧美视频一区| 中文欧美无线码| 国产免费一区二区三区四区乱码| 久热这里只有精品99| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 蜜桃在线观看..| 亚洲欧洲国产日韩| 曰老女人黄片| 国产欧美亚洲国产| 欧美精品国产亚洲| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线| 永久网站在线| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 日本午夜av视频| 亚洲四区av| 国产成人一区二区在线| 日日撸夜夜添| 99热全是精品| 色网站视频免费| 丰满乱子伦码专区| 久久久久久久国产电影| 在线看a的网站| 亚洲,一卡二卡三卡| 一区福利在线观看| 最新中文字幕久久久久| 午夜激情av网站| 国产成人精品在线电影| 夫妻午夜视频| 老熟女久久久| 亚洲精品视频女| 人妻人人澡人人爽人人| 免费在线观看完整版高清| 大码成人一级视频| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 久久久a久久爽久久v久久| 国产一区二区三区av在线| 曰老女人黄片| 久久女婷五月综合色啪小说| 91久久精品国产一区二区三区| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕| 咕卡用的链子| 欧美人与善性xxx| 高清av免费在线| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 国产精品香港三级国产av潘金莲 | 久久鲁丝午夜福利片| 亚洲av福利一区| 免费黄网站久久成人精品| 母亲3免费完整高清在线观看 | 欧美av亚洲av综合av国产av | 97在线视频观看| 新久久久久国产一级毛片| 1024视频免费在线观看| 一区二区三区乱码不卡18| 宅男免费午夜| 久久久久视频综合| 97精品久久久久久久久久精品| 最近中文字幕2019免费版| 看免费av毛片| 国产淫语在线视频| 亚洲美女视频黄频| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 久久97久久精品| 国产不卡av网站在线观看| 最黄视频免费看| 亚洲精品第二区| 国产成人精品久久久久久| 久久97久久精品| 宅男免费午夜| 又粗又硬又长又爽又黄的视频| 免费黄网站久久成人精品| 一区二区三区精品91| 女性被躁到高潮视频| 精品国产露脸久久av麻豆| 亚洲精品av麻豆狂野| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 黑人巨大精品欧美一区二区蜜桃| 日韩av在线免费看完整版不卡| 一本大道久久a久久精品| 国产探花极品一区二区| 亚洲精品国产一区二区精华液| 九九爱精品视频在线观看| 国产极品天堂在线| 老司机影院成人| 国产免费现黄频在线看| 人人妻人人添人人爽欧美一区卜| 精品亚洲成国产av| 国产极品粉嫩免费观看在线| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看 | 亚洲国产成人一精品久久久| 18在线观看网站| 黄色视频在线播放观看不卡| 叶爱在线成人免费视频播放| 看免费av毛片| a级片在线免费高清观看视频| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av天美| 午夜av观看不卡| 亚洲欧美精品综合一区二区三区 | 黑人欧美特级aaaaaa片| 国产精品香港三级国产av潘金莲 | 熟女电影av网| 一区二区三区四区激情视频| 亚洲第一青青草原| 一级毛片电影观看| 亚洲第一av免费看| 国产麻豆69| 国产欧美日韩一区二区三区在线| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 欧美中文综合在线视频| av在线老鸭窝| 日韩一卡2卡3卡4卡2021年| 欧美成人精品欧美一级黄| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 男女免费视频国产| 咕卡用的链子| videosex国产| 日日摸夜夜添夜夜爱| 国产探花极品一区二区| 成人漫画全彩无遮挡| 赤兔流量卡办理| 欧美中文综合在线视频| 美女午夜性视频免费| 十分钟在线观看高清视频www| 老熟女久久久| 日韩不卡一区二区三区视频在线| 蜜桃国产av成人99| 成人手机av| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| 在现免费观看毛片| 欧美xxⅹ黑人| 欧美人与性动交α欧美软件| 一级毛片黄色毛片免费观看视频| 美女福利国产在线| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 天堂8中文在线网| 国产成人午夜福利电影在线观看| 777米奇影视久久| tube8黄色片| 桃花免费在线播放| 乱人伦中国视频| 人人妻人人澡人人看| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| a级毛片在线看网站| 日韩 亚洲 欧美在线| 日韩人妻精品一区2区三区| 婷婷色av中文字幕| 国产免费现黄频在线看| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 国产成人一区二区在线| 午夜免费鲁丝| 精品少妇黑人巨大在线播放| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 成年人免费黄色播放视频| 久久97久久精品| 女性生殖器流出的白浆| 91精品国产国语对白视频| 在线天堂中文资源库| 亚洲,一卡二卡三卡| 五月开心婷婷网| 亚洲国产欧美网| 国产av精品麻豆| 久久国内精品自在自线图片| 亚洲欧美一区二区三区黑人 | 天堂中文最新版在线下载| 亚洲av免费高清在线观看| 亚洲欧美一区二区三区黑人 | 一级,二级,三级黄色视频| 亚洲精品第二区| 青草久久国产| 国产精品久久久久久久久免| 欧美日韩一级在线毛片| 久久人人97超碰香蕉20202| 亚洲伊人久久精品综合| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站 | 亚洲av电影在线观看一区二区三区| 18禁国产床啪视频网站| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看 | 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 精品国产一区二区三区四区第35| 午夜久久久在线观看| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久 | 曰老女人黄片| 午夜日本视频在线| 国产无遮挡羞羞视频在线观看| 国产一区二区三区av在线| 国产欧美日韩一区二区三区在线| 亚洲国产av新网站| 免费黄频网站在线观看国产| 成年女人毛片免费观看观看9 | 最近最新中文字幕免费大全7| 天天影视国产精品| 国产精品 欧美亚洲| 国产毛片在线视频| 久久97久久精品| 成人亚洲欧美一区二区av| 国产老妇伦熟女老妇高清| av网站免费在线观看视频| 三级国产精品片| 国产精品一国产av| 九九爱精品视频在线观看| 国产精品亚洲av一区麻豆 | 波野结衣二区三区在线| 99久久精品国产国产毛片| 中文天堂在线官网| 性色av一级| 国产欧美日韩综合在线一区二区| 国产乱人偷精品视频| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 我的亚洲天堂| 夫妻性生交免费视频一级片| 免费日韩欧美在线观看| 亚洲精品日韩在线中文字幕| 香蕉精品网在线| 日本vs欧美在线观看视频| 国产xxxxx性猛交| 91久久精品国产一区二区三区| 亚洲精品美女久久久久99蜜臀 | 色吧在线观看| 午夜免费观看性视频| 黑人欧美特级aaaaaa片| 国产白丝娇喘喷水9色精品| 最近手机中文字幕大全| 欧美精品一区二区大全| 日韩一区二区三区影片| av福利片在线| 一个人免费看片子| 久久久精品94久久精品| 在线天堂中文资源库| 一本久久精品| a级毛片在线看网站| 亚洲国产欧美日韩在线播放| 国产97色在线日韩免费| 考比视频在线观看| 国精品久久久久久国模美| 肉色欧美久久久久久久蜜桃| 在线免费观看不下载黄p国产| 欧美bdsm另类| 国产日韩欧美在线精品| 国产视频首页在线观看| 性高湖久久久久久久久免费观看| 欧美国产精品va在线观看不卡| 日韩av在线免费看完整版不卡| 晚上一个人看的免费电影| 女人精品久久久久毛片| 精品一品国产午夜福利视频| xxxhd国产人妻xxx| 欧美激情高清一区二区三区 | 国产日韩欧美亚洲二区| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 亚洲综合精品二区| 久久精品国产鲁丝片午夜精品| 精品久久蜜臀av无| 欧美激情 高清一区二区三区| 在线观看免费高清a一片| 欧美xxⅹ黑人| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 美女中出高潮动态图| 久久热在线av| 五月开心婷婷网| 亚洲四区av| 丝袜人妻中文字幕| 久久久久久久国产电影| 日韩中文字幕视频在线看片| 18禁国产床啪视频网站| 热re99久久国产66热| 边亲边吃奶的免费视频| 999精品在线视频| 爱豆传媒免费全集在线观看| 久久亚洲国产成人精品v| 好男人视频免费观看在线| 亚洲激情五月婷婷啪啪| www.自偷自拍.com| 欧美少妇被猛烈插入视频| 90打野战视频偷拍视频| 国产精品免费视频内射| 亚洲av成人精品一二三区|