• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seismic Response of Liquid-Filled Tank with Baffles

    2014-04-24 02:00:24MohammadRezaShekari

    Mohammad Reza Shekari

    Department of Civil Engineering, Yasouj University,Yasuj,Iran

    Seismic Response of Liquid-Filled Tank with Baffles

    Mohammad Reza Shekari*

    Department of Civil Engineering, Yasouj University,Yasuj,Iran

    In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace′s equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.

    seismic response; liquid storage tank;liquid-filled tank;rigid baffle;boundary element method (BEM)

    1 Introduction

    Recently, the civil engineering community has been concerned with the development and performance of ingenious design concepts for seismic protection of structures, particularly for the control of earthquake effects on buildings.

    To safeguard the liquid storage tanks against the excitation of severe earthquakes, they may regularly be strengthened which results in higher magnitude of seismic energy attraction. Seismic isolation, as another alternative approach for this purpose, has been introduced in recent years in some practical projects alongside a number of researches. Several experimental and numerical investigations on base isolated tanks have revealed that reduction in hydrodynamic pressures and increase in water surface displacement are the consequences of using isolation techniques (Choet al., 2004; Shrimali and Jangid, 2004; Shekariet al., 2009).

    Seismic response reduction systems need not be installed between the base and bottom of the tank. Several attempts have been made to locate them in different parts of the structure, either in the form of additional response reduction masses, or dampers, friction devices, etc.

    In liquid tanks, breaking of surface waves, while is highly dependent on ground excitation amplitude and frequency, isthe main mechanism of energy dissipation. Liquid dampers have been used in space satellites and marine vessels. The amount of additional damping can increase with low viscosity of the liquid, with a smooth bottom of the container, and with a sufficient space between the liquid and the roof of the container. Another approach to the response reduction systems is the coupling of special devices, one alongside another with different stiffness, and intermediate energy absorbing systems.Vondorn (1966) studied the damping effect of the bottom boundary layer on liquid motion. Miles (1958) also investigated the ring damping of free surface oscillations in a cylindrical tank.

    Several obstacles like baffles can be supported around the tank periphery and positioned slightly below the liquid surface. Baffles are known as devices for preventing sloshing effects in moving liquid tanks and several analyses have been performed in this field. Fluid separation around baffles causes energy dissipation and reduction in sloshing magnitude and consequent hydrodynamic pressures. Several researches have been performed in this regard, particularly on their application in fuel tanks of space vehicles whose stability is very sensitive to uncontrolled excitations.

    Results show that the ring baffles in cylindrical tanks significantlyaffect the frequency and damping ratio of sloshing mode. The comparisons in circular-cylindrical tanks shows that the resonant frequency can be up to 15% higher than the unbaffled tank value when a horizontal ring baffle intersects the liquid surface (Dodge, 2000; Garza and Abramson, 1963).

    The effects of baffle on the free and forced vibration of liquid storage tanks were studied by Gedikli and Erguven (1999). Gedikli (1996) developed a variationally coupled BEM-FEM to analyze dynamic response, including free-surface sloshing motion of liquid in cylindrical storage tanks with/without baffles subjected to horizontal ground motion. Fluid-structure interaction analysis of 3D rectangular tanks by a variationally coupled BEM–FEM was solved by Kohet al.(1998).

    The boundary element method can be applied to evaluate the natural frequencies and the natural modes of the shaking liquid. The technique of superposition of the modes has then been used for the seismic scrutinizes (Hunt, 1987). Lately, Askari and Daneshmand (2009) inspected the coupled vibration of a partially fluid-filled cylindrical tank with an internal body analytically and formulated the velocity potential in terms of eigenfunction expansions appropriate to two distinct fluid regions which can be matched across theircommon verticalboundary(an artificial vertical boundary). Mikelis and Journee (1984) performed some experiments on the cargo tanks used to transport liquid cargo in ships. Results of their research show that the integration of pressures around the tank walls yields to overall forces and moments that are transmitted by the liquids onto the tank structure and consequently on the ship. Nielsen (2003) studied a variety of depths and radiuses in an excited container including sloshing. The investigation, on sloshing dealtwith pressure differences with respect to depth. In the present research, to assess the effectiveness of baffle for liquid oscillations, the forces acting on the foundation of the baffe-tank system, caused by the hydrodynamic pressure of the fluid, is determined by employing the boundary element method.

    2 Fundamental equations

    The cylindrical coordinate system (r,θ,z) for the baffle tank system is fixed as revealed in Fig. 1. A Cartesian coordinate system is fixed at the bottom of the tank.To make easy the definition of shear force and the overturning moment acting on the foundation are provided. The relation between these two co-ordinate systems is:

    Fig.1 cylindrical liquid tank with a baffle and coordinate systems.

    To analyze the behavior of the liquid velocity potential is used as in references (Aslamet al., 1979; Hunt and Priestley, 1978). A harmonic boundary value problem can be represented by using the velocity potential as follows:

    in which,φis the velocity potential. In order to solve the Laplace equation, the following appropriate boundary conditions are used.

    a)Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid are considered as follows:

    b) Assuming the tank wall to be rigid, the boundary condition at the fluid-structure interface is given by

    in which,φis the gravitational acceleration, andnthe outward normal vector at the tank wall. The hydrodynamic pressure acting on the tank wall may be obtained employing the linearized Bernoulli equation as

    Furthermore, the hydrodynamic pressure at the liquid free surface is calculated by

    whereηis the sloshing height, andρthe mass density of the liquid.

    Superposition of modes

    The velocity potential field of the liquid in the cylindrical tank can be written as

    whereφndenotes the value of the velocity potential on the plane ofθ=0 andψknis the weighting factor.kandnare the numbers for the modes in the circumferential and radial directions, respectively. Casesk=0 andk=1 are related to axially symmetric and asymmetric mode shapes, respectively. In the present paper, for the sake of simplicity and sufficiency, only the termk=1 has been considered, so omitting indexkfrom equation (7) one has

    For the modes of natural vibration, by takingψkn= sinωntanda(t)=0 then substituting Eq.(8) into Eq.(3), the following condition for the nth mode is obtained:

    in which,ωnis the natural frequency of thenth mode.

    The velocity potential field for the liquid under the effect of the recorded earthquake acceleration can be estimated by the use of mode shapes and natural frequencies of natural vibration. Substituting equations (8) and (9) into equation (3) and using partial integration of resulted equation, the following equation is obtained with respect to time

    here

    whereГfsis the intersection of liquid surface plane andθ=0 plane. Duhamel’s integral (11) has been numerically calculated by using the trapezoidal integration rule.

    3. Boundary element method

    The boundary integral equation form of Eq. (2) can bewritten for any mode shape of the velocity potential, upon omitting indexnas (Brebbia and Dominguez, 1992)

    in whichG*is the free space Green function for the axially-asymmetric problem, i.e. cosθtype.αpis identified by the position of the source pointP(Brebbia and Dominguez, 1992).The boundary element method with the constant elements is applied for the solution of the initial value problem. By estimating the integrals in Eq.(12) over constant boundary elements, the following linear system of equations is acquired

    whereis called the free space Green function which is the potential on the pointSdue to the unit source placed on pointP. Discretized form of boundary element equations of the liquid region may be written and separate into the following expressions, according to the free surface and tank nodes of the liquid region (Shekariet al., 2009):

    in which, the subscriptstandfshow the boundary nodes on the tank wall and liquid free surface, respectively.

    4 Illustrative numerical analyses

    When the mode shapes and eigenfrequencies of Eq. (14) are determined, the shear force and the overturning moment at the bottom of the tank subjected to the horizontal ground motion can be determined. Duhamel′s integral (11) is numerically evaluated by using the trapezoidal integration rule.Only a few of the mode shapes corresponding to the smallest eigenfrequencies are needed. The most effective modes, in response to the ground excitation, correspond to the smallest eigenfrequencies, because of the fact that they always include most of the whole system energy. In the present study numerical examples were assessed by using only the first two mode shapes. It has been checked numerically that these two modes provide sufficient exactness.

    4.1. Liquid in the cylindrical tank

    To assess the validity of the present algorithm, some comparisons are made with the published data of Kim and Lee (2005). The dimensions of the slender tank are: radiusR=1 m, baffle thicknesst= 4 mm,Ri/R=0.7 andH=0.2R. Fig. 2 displays the sloshing frequency variation with various liquid levels for the baffled storage tank. It is observed that the discrepancy between the results is less than 3% for sloshing modes and the present algorithm performs well.

    Fig. 3 shows the natural frequencies of the liquid in the cylindrical tank for different tank geometry aspect ratios (height to radius) and for different radial wave numbersn.

    From the Figure, it is considered that the natural frequency corresponding to the first mode reaches its limit value at aboutH/R>0.9, while the analogous value for the second mode reaches its limit value at aboutH/R>0.3. Likewise, it is obvious that the limits in relation to the highest modes will occur at smaller ratiosH/R.

    Fig. 4 reveals the results of a parametric study on the effects of baffles with different dimensions on the natural frequencies of the liquid in cylindrical tank with the aspect ratio of 1.2.It is considered from the figure that, for the baffled cylindrical tank withRi/R=0, assumingn=1, the natural frequency is 0.485 rad/sec, while the analogous value for the cylindrical tank without baffle is 0.492 rad/sec when the aspect ratio is 0.25. The above result indicates that, when the internal radius of the baffle vanishes, the baffle separates the liquid domain into two domains. In this case, the liquid under the baffle behaves like a rigid body and has no vibration, because it has no moving surfaces. Liquid in the upper domain has natural vibrations, because it has a free surface. Similar situations are true for all of the points with the same numbers in the figures, because they indicate equal situations in physical meaning.

    Fig. 2 Variation of the sloshing frequencies with various liquid levels

    Fig. 5 shows the effect of location on the natural frequencies of the liquid in cylindrical tanks with different aspect ratios.

    As a result, Figs. 4 and 5 show that as the depth of the baffle decreases, the effect of the baffle on the frequency is more considerable.

    Fig. 3 natural frequencies for different aspect ratios

    Fig. 4 Variation of natural frequencies versusRi/RH/R=1.2;h/H=0.25

    Fig. 5 Variation of natural frequencies versusRi/R;H/R=1.2;h/H=0.1

    4.2. Analyses in the time domain

    A time-history analysis for different aspect ratios is performed using the 1994 Newhall earthquake as the input ground motion. In order to achieve the dynamic response of the structure in the time domain, the inverse Fourier transformation is used.

    4.2.1 Unbaffled tank seismic response

    The peak shear forces and the overturning moments at the bottom of the tank without a baffle, for different aspect ratios, are given in Fig.6. Some of the liquid, near to the base of the tall tank, has a rigid nature like a solid. The liquid surface has a behavior like a spring-mass system. A spring-mass system is the mechanical model (Shrimali and Jangid, 2004; Shekariet al., 2009).

    Fig. 6 Foundation forces at the bottom of the cylindrical tank considering various aspect ratios

    4.2.2. Baffled tank seismic response

    Any of the foundation forces can then be depicted by two components that are caused by the rigid lumped mass and the sloshing part. The liquid below the baffle behaves as a rigid part. The rigid part leads to larger shear force than the sloshing part. Results indicate, as the ratioh/Hdecreases, the peak base shear at the bottom of the tank will increase (see Fig.7)and, in reality, the overturning moment will decrease (see Fig.8).

    If the inner radius of the baffle vanishes, the liquid inside the volume surrounded by the rigid surfaces behaves, of course, like a solid.

    When the baffle is located as near as possible to the free surface of the liquid, it slightly affects the base shear and overturning moment at the bottom of the tank (see Figs. 7 and 8).

    Table 1Maximum seismic base shears and overturning moments, for different radial modes

    As mentioned above (Section 4), numerical results show that considering two modes provide sufficient exactness for the whole system response because of the fact that the first two modes always include most of the whole system energy.

    Table 1 shows the peak base shears and overturning moments for different radial modes. It is distinguished by investigating the table that moderately up to 95% of the whole system response is gained considering the first two modes.

    5. Conclusions

    The success of a baffle for damping liquid oscillations has been examined in an effort to develop more efficient baffle configurations for seismic analysis of the tank. The baffles typically consist of rigid annular rings or plates which are fitted around the internal periphery of the tank. For a useful passive control system, configurations can be designed by freely suspending baffles between limits along the tank wall and by locating them slightly below the liquid surface. If stiffeners are required in the tank design for structural integrity, the baffles and support rings may provide the dual purpose of slosh damper and stiffener.

    A baffle can be effectively used to reduce the whole system response. For an effective baffled liquid tank, the inner radius shown to be greater than a half of the outer radius and that the baffle should be located as near as possible to the liquid free surface. In this paper it has been supposed that the baffle is always surrounded by the liquid.

    The summary of the maximum seismic responses of the baffled tanks is presented in Table 2. It is observed that the baffle causes an increase in the value of the base shear, soasmaller overturning moment is considered.

    As observed from Table 2, the decrease in the ratio of overturning moments is strictly larger than the increase in the ratio of base shears (see Table 2).

    This makes the usage of the baffle efficient. As an example, for the location of the baffle such ash/H=0.3 and inner radiusRi/Rd=0.75, base shear is increased 103% by the baffle. However, the overturning moment is decreased 92% by the baffle. The overturning moment can cause an uplift problem in the liquid storage tanks under the ground motion. Therefore, a baffle can be employed to avoid this problem.

    Table 2 The effects of the baffle on thefoundationforces

    Askari E, Daneshmand F (2009). Coupled vibration of a partially fluid-filled cylindrical container with a cylindrical internal body.Journal of Fluids and Structures, 25, 389–405.

    Aslam M, Godden WG, Scalise DT (1979). Earthquake sloshing in annular and cylindrical tanks.Journal of the Engineering Mechanics Division,ASCE, 105(3), 371-389.

    Brebbia CA, Dominguez J (1992).Boundary Elements, An Introductory Course. CMP & McGraw-Hill, New York.

    Cho KH, Kim MK, Lim YM, Cho SY (2004). Seismic response of base-isolated liquid storage tanks considering fluid–structure–soil interaction in time domain.Soil Dynamics and Earthquake Engineering, 24, 839–852.

    Fig. 7 Maximum base shear versusRi/R,H/R=1.2

    Fig. 8 Maximum overturning moment versusRi/R,H/R=1.2

    Dodge FT (2000). The new dynamic behavior of liquids in moving containers, San Antonio (TX). Southwest Research Institute.

    Garza LR, Abramson HN (1963). Measurements of liquid damping provided by ring baffles in cylindrical tanks. Southwest Research Institute, Technical report prepared for NASA.

    Gedikli A (1996). Fluid-structure interaction using variational BE–FE methods in cylindrical tanks. PhD Thesis, Istanbul Technical University, Istanbul, Turkey.

    Gedikli A, Erguven ME (1999).Seismic analysis of a liquid storage tank with a baffle.Journal of Sound and Vibration, 223, 141–155.

    Hunt B (1987). Seismic-generated water waves in axisymmetric tanks.Journal of Engineering Mechanics,ASCE, 113, 653-670.

    Hunt B, Priestley N (1978).Seismic water waves in a storage tank.Bulletin of the Seismological Society of America, 68, 487-499.

    Kim Young-Wann, Lee Young-Shin (2005). Coupled vibration analysis of liquid-filled rigid cylindrical storage tank with an annular plate cover.Journal of Sound and Vibration, 279, 217–235.

    Koh HM, Kim JK, Park JH (1998). Fluid-structure interaction analysis of 3D rectangular tanks by a variationally coupled BEM–FEM and comparison with test results.Earthquake Engng Struct Dyn, 27, 109–124.

    Miles JW (1958). Ring damping of free surface oscillations in a cylindrical tank.Journal of Applied Mechanics, 25, 274-276.

    Mikelis NE, Journee JMJ (1984). Experimental and numerical simulations of sloshing behavior in liquid cargo tanks and its effect on ship motions.National Conference on Numerical Methods for Transient and Coupled Problems, Venice, Italy.

    Nielsen BN (2003). Numerical prediction of green water loads on ships. Ph.D Thesis, Department of Mechanical Engineering, Technical University of Denmark.

    Shekari MR, Khaji N, Ahmadi MT (2009). A coupled BE–FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid–structure interaction.Journal of Fluids and Structures, 25, 567–585.

    Shrimali MK, Jangid RS (2004).Seismic analysis of base-isolated liquid storage tanks.Journal of Sound and Vibration,275, 59–75.

    Vondorn WG (1966). Boundary dissipation of oscillatory waves.Journal of Fluid Mechanics, 24, 769-779.

    Author biographies

    Mohammad Reza Shekariis an Assistant Professor at Yasouj University, Iran. His current research interests include assessment the seismic behavior of marine structures employing numerical methods, and investigation of berm breakwater reshaping.

    1671-9433(2014)03-0299-06

    Received date:2014-01-25.

    Accepted date:2014-07-03.

    *Corresponding author Email:m.shekari@yu.ac.ir

    ? Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014

    免费在线观看影片大全网站| 天天添夜夜摸| 日韩av在线大香蕉| 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 好男人电影高清在线观看| 欧美黑人欧美精品刺激| 精品乱码久久久久久99久播| 国产亚洲精品久久久久5区| 精品熟女少妇八av免费久了| 精品久久久久久久久久免费视频 | 午夜免费观看网址| 嫁个100分男人电影在线观看| 亚洲精品国产一区二区精华液| 国产亚洲精品一区二区www| 精品国产超薄肉色丝袜足j| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 久久这里只有精品19| 国产aⅴ精品一区二区三区波| 欧洲精品卡2卡3卡4卡5卡区| 精品无人区乱码1区二区| 国产成人一区二区三区免费视频网站| 精品一区二区三区av网在线观看| 欧美日韩黄片免| 宅男免费午夜| 麻豆国产av国片精品| 久久久久久久久免费视频了| 亚洲国产欧美日韩在线播放| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 一二三四社区在线视频社区8| 欧美日韩乱码在线| 日韩视频一区二区在线观看| 亚洲欧美一区二区三区久久| 真人做人爱边吃奶动态| xxxhd国产人妻xxx| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷av一区二区三区视频| 一区在线观看完整版| 亚洲人成电影观看| 最近最新免费中文字幕在线| 亚洲av熟女| 亚洲av熟女| 国产精品偷伦视频观看了| 午夜免费激情av| 99久久精品国产亚洲精品| 制服人妻中文乱码| 国产一区二区三区视频了| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 日韩免费高清中文字幕av| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 国产精品 欧美亚洲| 亚洲精品成人av观看孕妇| 日韩中文字幕欧美一区二区| 精品卡一卡二卡四卡免费| 色播在线永久视频| 成人av一区二区三区在线看| 另类亚洲欧美激情| 亚洲av第一区精品v没综合| 免费人成视频x8x8入口观看| 丝袜美腿诱惑在线| 午夜福利,免费看| 亚洲伊人色综图| 婷婷精品国产亚洲av在线| av中文乱码字幕在线| 日本欧美视频一区| 波多野结衣高清无吗| 欧美亚洲日本最大视频资源| 久久精品91蜜桃| 亚洲专区国产一区二区| 一级毛片高清免费大全| 免费av中文字幕在线| 亚洲国产中文字幕在线视频| www.熟女人妻精品国产| 9色porny在线观看| 国产精品电影一区二区三区| 成人精品一区二区免费| 国产熟女xx| 757午夜福利合集在线观看| 亚洲午夜精品一区,二区,三区| 国产精品99久久99久久久不卡| 曰老女人黄片| 中文亚洲av片在线观看爽| 欧美日韩亚洲高清精品| www.自偷自拍.com| 午夜精品国产一区二区电影| 久久婷婷成人综合色麻豆| 一级黄色大片毛片| 悠悠久久av| 精品国产超薄肉色丝袜足j| 又黄又粗又硬又大视频| 91大片在线观看| 99热国产这里只有精品6| 日韩一卡2卡3卡4卡2021年| 香蕉国产在线看| 一个人观看的视频www高清免费观看 | 黑丝袜美女国产一区| 午夜亚洲福利在线播放| 国产黄a三级三级三级人| 欧美av亚洲av综合av国产av| 精品人妻1区二区| 成人三级黄色视频| 视频区欧美日本亚洲| 欧美精品一区二区免费开放| 黄色丝袜av网址大全| 久久香蕉精品热| 少妇被粗大的猛进出69影院| 1024视频免费在线观看| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 国产伦人伦偷精品视频| 中文字幕最新亚洲高清| 亚洲全国av大片| 亚洲成av片中文字幕在线观看| 男人的好看免费观看在线视频 | 88av欧美| 一区在线观看完整版| 国产精品野战在线观看 | 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 久久久精品国产亚洲av高清涩受| 18禁裸乳无遮挡免费网站照片 | 欧美不卡视频在线免费观看 | 免费av中文字幕在线| 国产亚洲欧美98| 波多野结衣一区麻豆| 国产精品久久视频播放| 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 一个人观看的视频www高清免费观看 | 人妻久久中文字幕网| 成熟少妇高潮喷水视频| 久久影院123| 成人特级黄色片久久久久久久| 亚洲成av片中文字幕在线观看| 国产极品粉嫩免费观看在线| 色婷婷久久久亚洲欧美| 美女高潮喷水抽搐中文字幕| 亚洲中文av在线| 日韩三级视频一区二区三区| 最近最新中文字幕大全免费视频| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 日韩欧美在线二视频| 国产99白浆流出| 琪琪午夜伦伦电影理论片6080| 18禁黄网站禁片午夜丰满| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 别揉我奶头~嗯~啊~动态视频| 欧美乱码精品一区二区三区| 亚洲第一青青草原| 国产精品亚洲av一区麻豆| 97人妻天天添夜夜摸| www.999成人在线观看| 操美女的视频在线观看| 久久香蕉精品热| 女性生殖器流出的白浆| www.精华液| 亚洲精品中文字幕在线视频| 亚洲av熟女| 欧美久久黑人一区二区| 精品久久久久久,| 丝袜人妻中文字幕| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 看片在线看免费视频| 老熟妇乱子伦视频在线观看| 99精国产麻豆久久婷婷| 日韩一卡2卡3卡4卡2021年| 91在线观看av| 亚洲成人久久性| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 黄色片一级片一级黄色片| 性少妇av在线| 午夜免费鲁丝| 日本黄色视频三级网站网址| 国产精品国产av在线观看| 丝袜美腿诱惑在线| 亚洲第一欧美日韩一区二区三区| 中文字幕精品免费在线观看视频| 一进一出抽搐gif免费好疼 | 成年女人毛片免费观看观看9| 久热爱精品视频在线9| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 亚洲av美国av| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 亚洲片人在线观看| 国产成人av教育| 国产精品乱码一区二三区的特点 | 桃红色精品国产亚洲av| 亚洲欧美激情综合另类| 脱女人内裤的视频| 男人舔女人的私密视频| 久久精品影院6| 人人妻人人澡人人看| 欧美日韩国产mv在线观看视频| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| 侵犯人妻中文字幕一二三四区| 日韩欧美三级三区| 99热国产这里只有精品6| 一级毛片精品| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| 无人区码免费观看不卡| 一级毛片精品| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 国产精品永久免费网站| 国产免费男女视频| 午夜a级毛片| 1024视频免费在线观看| 欧美成人免费av一区二区三区| 在线国产一区二区在线| 丝袜在线中文字幕| 91麻豆精品激情在线观看国产 | 久久国产精品影院| 91av网站免费观看| 丝袜美足系列| 深夜精品福利| 中文字幕色久视频| 欧美最黄视频在线播放免费 | 在线观看午夜福利视频| 岛国在线观看网站| 国产精品自产拍在线观看55亚洲| 看免费av毛片| 精品乱码久久久久久99久播| www国产在线视频色| 麻豆久久精品国产亚洲av | 在线观看www视频免费| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 三上悠亚av全集在线观看| 一个人观看的视频www高清免费观看 | 欧美大码av| 亚洲精品一区av在线观看| 亚洲人成电影观看| 黄色成人免费大全| 国产三级黄色录像| 女人精品久久久久毛片| 亚洲九九香蕉| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 变态另类成人亚洲欧美熟女 | 国产av一区二区精品久久| 日韩av在线大香蕉| 日韩大码丰满熟妇| 首页视频小说图片口味搜索| 美国免费a级毛片| 亚洲国产精品sss在线观看 | 热re99久久精品国产66热6| 精品免费久久久久久久清纯| 丝袜美足系列| 色综合站精品国产| 久久青草综合色| 午夜福利一区二区在线看| 国产区一区二久久| 婷婷精品国产亚洲av在线| 午夜精品在线福利| 少妇 在线观看| 91av网站免费观看| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| av福利片在线| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 国产激情欧美一区二区| 免费在线观看完整版高清| 美女扒开内裤让男人捅视频| 99久久人妻综合| 青草久久国产| 久久香蕉精品热| 久久久久久久精品吃奶| 女性被躁到高潮视频| 国产免费现黄频在线看| 日日摸夜夜添夜夜添小说| 亚洲精品一二三| 国产亚洲欧美精品永久| 美女午夜性视频免费| 美女 人体艺术 gogo| 久久婷婷成人综合色麻豆| 在线看a的网站| 91老司机精品| 精品一区二区三卡| 成熟少妇高潮喷水视频| 在线观看一区二区三区激情| 国产亚洲欧美98| 男人舔女人的私密视频| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 亚洲五月婷婷丁香| 亚洲欧美激情在线| 1024视频免费在线观看| 九色亚洲精品在线播放| 精品福利永久在线观看| 国产精品一区二区免费欧美| 丁香欧美五月| 首页视频小说图片口味搜索| 久热爱精品视频在线9| 午夜福利在线免费观看网站| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频 | 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 69精品国产乱码久久久| 国产精品综合久久久久久久免费 | 麻豆av在线久日| 欧美国产精品va在线观看不卡| 精品久久久久久久毛片微露脸| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 丝袜美足系列| av在线天堂中文字幕 | 91精品三级在线观看| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 日韩精品免费视频一区二区三区| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 亚洲成人免费av在线播放| 热99re8久久精品国产| 亚洲成人久久性| 欧美日韩视频精品一区| 久久久久久人人人人人| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 久久午夜亚洲精品久久| 99久久久亚洲精品蜜臀av| 丝袜人妻中文字幕| 热re99久久精品国产66热6| 桃红色精品国产亚洲av| 欧美日韩黄片免| 久久九九热精品免费| 国产视频一区二区在线看| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 视频在线观看一区二区三区| 久久香蕉精品热| 国产成人影院久久av| 又紧又爽又黄一区二区| 青草久久国产| 纯流量卡能插随身wifi吗| 在线观看日韩欧美| 国产精品影院久久| 女人被狂操c到高潮| 久久国产乱子伦精品免费另类| 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 中出人妻视频一区二区| 久久亚洲精品不卡| 高清在线国产一区| 88av欧美| 国产精品电影一区二区三区| 午夜福利在线免费观看网站| 国产1区2区3区精品| 亚洲,欧美精品.| 国产精品久久电影中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲国产中文字幕在线视频| 精品国产美女av久久久久小说| svipshipincom国产片| 国产免费av片在线观看野外av| 久久伊人香网站| 久久精品aⅴ一区二区三区四区| 亚洲男人的天堂狠狠| 成人三级黄色视频| 日韩欧美在线二视频| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 国产av一区二区精品久久| 正在播放国产对白刺激| 美女高潮喷水抽搐中文字幕| 一级毛片精品| 久久中文字幕一级| 国产精品国产高清国产av| 精品福利永久在线观看| 黄网站色视频无遮挡免费观看| 国产色视频综合| 成人av一区二区三区在线看| 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影 | 国产精品影院久久| 中出人妻视频一区二区| 国产精品久久久人人做人人爽| 成人影院久久| 久久久水蜜桃国产精品网| 99国产精品99久久久久| 精品久久久久久久毛片微露脸| 美国免费a级毛片| 日本a在线网址| 成年版毛片免费区| 久久精品亚洲av国产电影网| 大型黄色视频在线免费观看| 成人国语在线视频| avwww免费| 在线播放国产精品三级| 免费高清视频大片| 美女福利国产在线| 18禁美女被吸乳视频| 日韩国内少妇激情av| 亚洲人成77777在线视频| 欧美乱码精品一区二区三区| 免费人成视频x8x8入口观看| 精品国产超薄肉色丝袜足j| 中文字幕人妻熟女乱码| 亚洲成人免费av在线播放| av网站在线播放免费| 两个人免费观看高清视频| 成人影院久久| 亚洲精品国产精品久久久不卡| 亚洲av片天天在线观看| 51午夜福利影视在线观看| 激情在线观看视频在线高清| 桃红色精品国产亚洲av| 91字幕亚洲| 亚洲成a人片在线一区二区| 日本欧美视频一区| 成人18禁高潮啪啪吃奶动态图| 天堂动漫精品| 9191精品国产免费久久| 在线看a的网站| 人妻丰满熟妇av一区二区三区| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 狠狠狠狠99中文字幕| 在线观看66精品国产| 后天国语完整版免费观看| 日韩欧美国产一区二区入口| 高清av免费在线| 欧美午夜高清在线| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 欧美成人午夜精品| 无人区码免费观看不卡| 青草久久国产| 欧美+亚洲+日韩+国产| 老司机午夜福利在线观看视频| 久久精品国产亚洲av香蕉五月| 高清在线国产一区| 久久精品影院6| 欧美乱码精品一区二区三区| 最近最新免费中文字幕在线| 久久久久久人人人人人| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 亚洲中文字幕日韩| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| 亚洲国产中文字幕在线视频| 成年人免费黄色播放视频| 中文字幕高清在线视频| 久久99一区二区三区| 一区二区三区激情视频| 日本vs欧美在线观看视频| 国产真人三级小视频在线观看| 国产人伦9x9x在线观看| 十八禁网站免费在线| 日日夜夜操网爽| 日韩三级视频一区二区三区| 窝窝影院91人妻| 国产一区二区三区综合在线观看| av国产精品久久久久影院| 国产一区二区在线av高清观看| 久久青草综合色| 欧美老熟妇乱子伦牲交| 欧美大码av| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 国产有黄有色有爽视频| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 男人舔女人下体高潮全视频| 久久青草综合色| 天堂中文最新版在线下载| 少妇 在线观看| 女警被强在线播放| 国产精品香港三级国产av潘金莲| 日韩大尺度精品在线看网址 | 两性夫妻黄色片| 亚洲精品国产区一区二| tocl精华| 国产在线观看jvid| 黄色怎么调成土黄色| 中文字幕另类日韩欧美亚洲嫩草| 久久香蕉精品热| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 在线观看免费高清a一片| 交换朋友夫妻互换小说| 丝袜在线中文字幕| 老司机福利观看| 深夜精品福利| 日韩免费高清中文字幕av| 十八禁人妻一区二区| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 女性生殖器流出的白浆| av免费在线观看网站| 在线观看免费午夜福利视频| 国产又色又爽无遮挡免费看| 欧美最黄视频在线播放免费 | 91九色精品人成在线观看| 久久久久久久久久久久大奶| 自线自在国产av| svipshipincom国产片| 女性生殖器流出的白浆| 黄色成人免费大全| 久久这里只有精品19| 少妇被粗大的猛进出69影院| 精品卡一卡二卡四卡免费| 在线观看午夜福利视频| 最好的美女福利视频网| 黑人欧美特级aaaaaa片| 日本a在线网址| 亚洲成人久久性| 欧美另类亚洲清纯唯美| 琪琪午夜伦伦电影理论片6080| 精品福利观看| 久久这里只有精品19| 他把我摸到了高潮在线观看| 欧美乱码精品一区二区三区| 久久精品亚洲av国产电影网| 国产精品久久久av美女十八| 精品一区二区三区av网在线观看| 性色av乱码一区二区三区2| 999精品在线视频| 精品午夜福利视频在线观看一区| 19禁男女啪啪无遮挡网站| 老熟妇乱子伦视频在线观看| 精品国产一区二区久久| 国产91精品成人一区二区三区| 咕卡用的链子| 桃红色精品国产亚洲av| 亚洲国产毛片av蜜桃av| 久久青草综合色| 啪啪无遮挡十八禁网站| 97碰自拍视频| 中文字幕最新亚洲高清| 日本免费a在线| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉国产精品| 黄色成人免费大全| 亚洲免费av在线视频| 深夜精品福利| 亚洲午夜精品一区,二区,三区| 女警被强在线播放| 91麻豆精品激情在线观看国产 | 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 日日爽夜夜爽网站| 中国美女看黄片| 国产亚洲精品第一综合不卡| 怎么达到女性高潮| 日韩人妻精品一区2区三区| 精品人妻1区二区| 亚洲在线自拍视频| 免费搜索国产男女视频| 99国产极品粉嫩在线观看| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 亚洲全国av大片| 久久影院123| 最近最新中文字幕大全免费视频| 好男人电影高清在线观看| 国产高清videossex| 俄罗斯特黄特色一大片| 身体一侧抽搐| svipshipincom国产片| 啦啦啦 在线观看视频| 色综合婷婷激情| 亚洲精品中文字幕一二三四区| 欧美精品亚洲一区二区| 成年人黄色毛片网站| 国产三级在线视频| 国产成人av激情在线播放| 欧美日韩乱码在线| 一进一出抽搐gif免费好疼 | 一个人免费在线观看的高清视频| 欧美成人午夜精品| 精品午夜福利视频在线观看一区| 午夜福利免费观看在线| 妹子高潮喷水视频| √禁漫天堂资源中文www| 极品教师在线免费播放| 黄色 视频免费看| 国产片内射在线| 亚洲七黄色美女视频| 乱人伦中国视频| 一级毛片女人18水好多| a级毛片在线看网站|