• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Algorithm of the Adaptive Grid and Fuzzy Interacting Multiple Model

    2014-07-30 09:54:52YuanZhangChenGuoHaiHuShuboLiuandJunboChu
    關(guān)鍵詞:汽輪發(fā)電背壓水流量

    Yuan Zhang, Chen Guo, Hai Hu, Shubo Liu and Junbo Chu

    1. College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China 2. Department of Missile, Dalian Naval Academy, Dalian 116018, China

    1 Introduction1

    The maneuvering target tracking algorithms can be divided into the single model algorithm and the multiple model algorithm. Because the target motion character often changes while the target is maneuvering, it is difficult to describe the motion state accurately by only using a single model. The multiple model algorithm appears in this situation. It was initially presented by Magill while studying the optimal adaptive estimation (Yin, 2008). The development of the multiple model algorithm has experienced three generations (Zhang, 2010; Liuet al.,2009). The features of the first generation include the models’ number in the model set being fixed, and each basic filter runs alone independent of the other filters. The models’ number of the second generation (including the interacting multiple model, IMM) algorithm is also fixed,but there is interaction among the models (Zhen and Lang,1998; Wu and Li, 2009; Wu and Cheng, 1994; Tanjan, 2011;Gaoet al., 2012; Yi and Lv, 2006; Gonget al., 2010). Both the model sets of the first two generations have fixed members at different times, so they are called fixed structure multiple model (FSMM) algorithms. The models’posterior probability of the standard IMM algorithm is calculated through the models’ priority probability and the Markov transition probability. Instead of using the normal interacting method, this paper details the use of an intelligent interacting method to solve the problem of the higher calculation complexity of the model interacting probability in the standard IMM algorithm.

    The FSMM algorithm has obvious defects. In reality, it’s usually not enough that the target maneuvering mode is only described by a few models, especially with multidimensional systems. But the increasing number of models will not only increase the amount of calculations,but will also not necessarily improve tracking performance.Too much detailed split model space may also damage the required model independence of Bayes reasoning. To solve the existing problems of the FSMM algorithm, the third generation multiple model algorithm, the variable structure multiple model (VSMM) algorithm (Leiet al., 2010; Zeng and Peng, 2012) appears, which has a variable model set. At the present time, there are not so many documents regarding the VSMM algorithm. The VSMM algorithm is composed of two parts: the model set adaptation (MSA) and the model set sequence’s condition estimation, in which the former is the most critical part. Three kinds of model set adaptation methods are presented: the model group switch (MGS) ( Liet al., 1999b), the likely-model set (LMS) ( Li and Zhang,2000) and the estimated mode augmentation (EMA). The corresponding realization methods of these three adaptive strategies based on the diagraph theory are as follows (Li and Jilkov, 2005): digraph switching (DS) (Huang, 2010;Huang and Peng, 2010; Xuet al., 2003), the adaptive digraph (AD) (Lu, 2010) and the adaptive grid (AG)( Chen,2008; Liet al., 1999a; Vahabianet al., 2004; Wanget al.,2003).

    This paper mainly studies a variable structure interacting multiple model algorithm for the maneuvering target tracking based on adaptive grid and fuzzy interaction, which is called the adaptive grid and fuzzy interacting multiple model (AGFIMM) algorithm. The two-dimensional simulation results demonstrate the validity and superiority of this algorithm.

    2 The establishing of the maneuvering target’s models

    The system equations are usually described as follows:

    When the target isn’t maneuvering, we can obtain the optimal estimation of the target’s position and velocity using the Kalman filter. And when the target is maneuvering,it can cause the mismatch between the model and the target’s motion mode because we cannot determine when and how the target begins maneuvering. As a result, the estimation is no longer optimal, which demands adjustment to the model through adjustingFkin Eq. (1), since the state transfer matrixFkis different in different models.

    For the turn motion model,Fkin Eq.(1) is as Eq. (3):

    In Eq.(3),Tis the sampling period, andjwis the turn rate.

    For the straight-line motion model, we havewj? 0,in this situation,Fkin Eq. (1) is as follows:

    The transitions between the straight-line motion model and the constant turn rate motion model can be realized through setting different turn rates for the turn motion model. So as a result, with the IMM algorithm, we can describe the different maneuvering forms using the combination of the straight-line motion model and the constant turn rate motion model.

    3 Algorithm of the adaptive grid and fuzzy interacting multiple model

    3.1 Steps of the algorithm

    The calculation steps of the AGFIMM algorithm are as follows:

    Step 1: Input interaction.

    where:

    For each model, the covariance matrix of the initial state vector after mixing is:

    Step 2: State vector updating of the matching model.

    If we adopt the Kalman filter, then the Kalman filter equations provide the state vector’s updating calculation for modelMj(k).

    a) The state vector’s prediction:

    b) The covariance matrix of the state vector’s prediction error:

    c) The innovation vector:

    d) The covariance matrix of the innovation vector:

    e) The filtering gain vector:

    f) The state vector’s estimation:

    g) The covariance matrix of the state vector’s estimation error:

    Step 3: Fuzzy inference of the model posterior probability( See 3.2 of this paper).

    Step 4: Output interaction.

    The output vector (state vector’s estimation) and its covariance matrix are shown as Eqs.(16) and (17)respectively.

    Step 5: Adaptive grid adjustment of the model set (See 3.3 of this paper).

    The following focuses on the design of the fuzzy inference system of model posterior probability and the adaptive grid adjustment algorithm of the model set.

    3.2 Design of the fuzzy inference system of model posterior probability

    This paper uses the method of fuzzy inference, taking the weighted quadratic function of the measurement innovation as the input, and obtains the matching degree of each model in the model set which substitutes the model posterior probability calculation in the standard IMM algorithm. So there is no need to calculate the model priority probability or the Markov transition probability with the IMM algorithm, and thus reduces the complexity of the algorithm.

    3.2.1 Calculation of the model inference system’s input

    (1)理想整體發(fā)電效率隨負(fù)荷增加而單調(diào)增大。由于給水流量波動(dòng)導(dǎo)致的實(shí)時(shí)參數(shù)滯后,以及環(huán)境溫度對(duì)背壓和發(fā)電效率的影響,直接空冷機(jī)組的實(shí)際整體發(fā)電效率、汽輪發(fā)電機(jī)整體效率、汽輪機(jī)理想循環(huán)熱效率隨負(fù)荷增加并未表現(xiàn)出明顯單調(diào)遞增的規(guī)律。

    Taking modeljin the model set as the example,according to the model filtering results, we can not only get the target’s current state vector’s estimation and its error covariance matrix, but we can also get the measurement innovation vectorvjand its covariance matrixjSof modelj. The input of the fuzzy inference system is defined as follows:

    In the above formula,Ejis the normalized variance,subject to2cdistribution of 1 degree of freedom,andMis the model number of the model set.

    3.2.2 Calculation of the model matching degree

    The input variable of the fuzzy inference system isEj,with fuzzy subsets including S(small), M(medium) and B(big). We choose the Gauss function as the membership f unction ofthefuzzysubsets according to the character of the input functionEj,shown asFig. 1.The output variable is the model posterior probability

    jm. Similarly, we define the same fuzzy subsets as S(small),M(medium) and B(big), adopting the trigonometric function as the membership function in the output space of the fuzzy inference system, shown as Fig. 2.

    Fig.1 Membership function of the inputs

    Fig. 2 Membership function of the outputs

    Then according to the inference feature of the fuzzy inference system, some fuzzy rules of the models’ matching degree can be received as follows:

    Based on these fuzzy rules, we can obtain the normalized fuzzy matching degreemj?[0,1] of modeljat timekthrough the fuzzy inference system.

    3.3 Adaptive grid adjustment of the model set

    Based on the maneuvering target’s models described in section 2 of this paper, taking the continuous interval of the turn rate as the model set’s grid, the design of the adaptive grid adjustment algorithm is as follows. Supposing the current turn rate of the maneuvering target is in the continuous range [ -wmax,wmax], we construct an FIMM algorithm of three time-varying models, whose model set at timekisM(k)=? [-wmax,wmax],and

    Assuming this algorithm begins to initialize from, we adjust the turn rate through the adjustment of the grid center and the grid interval from timekto timek+1 .

    3.3.1 Adjustment of the grid center

    The adjustment of the grid center is shown as formula(19).

    3.3.2 Adjustment of the grid interval

    The adjustment of the grid interval is divided into three cases of non jump, left jump and right jump.

    a) Non jump.

    WhenmkC=, the adjustment strategy ofare shown as formulas (20) and (21).

    In the formulas,1tis the impossible model’s probability threshold,wdis the least grid interval.

    b) Left jump.

    When, the adjustment strategy ofare shown as formulas (22) and (23).

    wheret2is the important model’s probability threshold.

    c) Right jump.

    4 Simulation results and analysis

    In order to verify the performance of the AGFIMM algorithm, we compared it with the IMM3 and IMM7, and the IMMn(n=3,7) represents the standard IMM algorithms whose model sets are composed of 3 and 7 fixed models respectively.

    Assuming that the target’s motion is in theX-Yplane, and that the scenario is as follows (Zhanget al., 2011; Guoet al.,2011): The initial position is (3,000 m, ?1,000 m), the initial velocity is 59 m/s (the angle with thex-axis is 45°), and the simulation time is 200 s. The simulation trajectory consists of 5 segments. Segment 1, constant velocity motion; segment 2, turn right with a constant turn rate ofω=0.02 rad/s; segment 3, constant velocity motion; segment 4, turn left with a constant turn rate ofω=0.05 rad/s and segment 5, constant velocity motion.

    During the simulation, the model sets are{w=-1°/s,w= 0°/s,w= 1°/s}and {w=-3°/s,w=-2°/s,w=-1°/s,w=0°/s,w=1°/s,w=2°/s,w= 3°/s} respectively in the IMM3 and IMM7 algorithms,and the filtering algorithm is the standard IMM algorithm.The IMM model transition probability of the IMM3 algorithm isp=[0.7,0.2,0.1;0.2,0.7,0.1;0.1,0.2,0.7], and the IMM model transition probability of the IMM7 algorithm is, wherepii=0.9,i=1,7;pii-1=0.1,i=2,…,7;pii+1=0.1,i=1,…,6. The measurement noise is the Gauss noise of zero mean, and its standard deviation is

    The model set of the AGFIMM algorithm is composed of three models at any given time, and the model interaction probability is received from the fuzzy logic inference system. The impossible model’s probability thresholdt1=0.2,the important model’s probability thresholdt2=0.92, and the least grid intervaldw= 0.5°.

    We conducted the Monte Carlo simulation 100 times for each algorithm with a sampling periodT=1s. The position and velocity RMSE simulation results of the IMM3, IMM7 and AGFIMM algorithm are shown in Table 1. The position and velocity RMSE (root mean squared error) simulation curves of the IMM3 and AGFIMM algorithm are shown in Figs. 3-6.

    Table 1 100 times Monte Carlo simulation results of RMSE

    Fig. 3 The position RMSE curve of X direction

    Fig. 4 The position RMSE curve of Y direction

    Fig. 5 The velocity RMSE curve of X direction

    Fig. 6 The velocity RMSE curve of Y direction

    From Figs. 3-6 and Table 1, we can draw conclusions as follows:

    1) Although both AGFIMM and IMM3 algorithm use a model set composed of three models, the tracking precision of AGFIMM algorithm has been obviously improved compared with IMM3 algorithm.

    2) Although the tracking precision of AGFIMM is similar to IMM7’s ( the tracking precision of the former has been slightly increased compared with the latter), AGFIMM algorithm uses the model set composed of three models,while IMM7 algorithm uses a model set composed of seven models. The computational complexity of AGFIMM algorithm has been reduced compared with IMM7 algorithm.

    In conclusion, AGFIMM algorithm can significantly improve the tracking precision compared with FSMM algorithm, when the same number of models are used. In order to reach the same tracking precision of AGFIMM algorithm, FSMM algorithm must use 2~3 times’ number of models, and thus increase the complexity of calculation. In a word, AGFIMM algorithm needs less models, smaller computational complexity and improves the cost-efficiency ratio of the multiple model algorithm.

    5 Conclusions

    This paper mainly studies a variable structure interacting multiple model algorithm for the maneuvering target tracking based on adaptive grid and fuzzy interaction, which solves the existing problems of FSMM algorithm. In FSMM algorithm, when the model set has less models, it can not completely cover the target’s all kinds of maneuvering mode, which can cause the decrease in accuracy; When the model set has more models, it can cause the calculation burden and unnecessary competition among models, and thereby reduce the cost-efficiency ratio of the algorithm.

    The Monte Carlo simulation results indicate that AGFIMM algorithm presented in this paper can significantly reduce the number of models, effectively reduce the computational complexity, improve the tracking accuracy, and be suitable for engineering applications.

    Chen X (2008).The target tracking based on variable structure multiple model algorithm. M.S.degree thesis, Detection Technology and Automation Equipment, Nanjing Science and Technology Univercity, Nanjing, 13-14.(in Chinese)

    Gao L, Xing JP, Ma ZL, Sha JC, Meng XZ (2012). Improved IMM algorithm for nonlinear maneuvering target tracking.2012 International Workshop on Information and Electronics Engineering, Harbin, 4117-4123.

    Gong S, Wu HL, Tao C, Huang SG. (2010). Tracking maneuvering target on airport surface based on IMM-UKF algorithm.International Conference on Optoelectronics and Image Processing,Haiko, 671-675.

    Guo YF Zhang X, Lin XY (2011). Low altitude maneuvering target tracking with acoustic network based on DS-VSMM.Opto-Electronic Engineering, 38(8), 1-7. (in Chinese)

    Huang XY (2010).Highly maneuvering target tracking algorithm based on variable structure multiple-model algorithm. M.S.degree thesis, Pattern Recognition and Intelligent, Electron Science and Technology University of Hangzhou, Wu han, 36-37. (in Chinese)

    Huang XY, Peng DL (2010). A VSMM algorithm based on unscented digraph switching for maneuvering target tracking.Opto-Electronic Engineering, 37(12), 30-34.(in Chinese)

    Lei SW, Wu CL, Sun W (2010). A method of adaptive maneuvering target tracking based on VSMM.Modern Rada,32(6), 54-58.

    Li XR, Jilkov VP (2005). Survey of maneuvering target tracking.Part V: Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1297-1298.

    Li XR, Zhi XR, Zhang YM (1999a). Multiple-model estimation with variable structure. Part III: Model-group switching algorithm.IEEE Transactins on Aerospace and Electronic Systems, 35(1), 225-241.

    Li XR, Zhang YM, Zhi XR (1999b). Multiple-model estimation with variable structure. Part IV: Design and evaluation of model-group switching algorithm.IEEE Transactins on Aerospace and Electronic Systems, 35(1), 242-254.

    Li XR, Zhang YM (2000). Multiple-model estimation with variable structure. Part V: likely-model set algorithm.IEEE Transactins on Aerospace and Electronic Systems, 36(2), 448-466.

    Liu GF, Gu XF, Wang HN (2009). Design and comparison of two MM algorithms for strong maneuvering target tracking.Journal of System Simulation, 21(4), 965-968.

    Lu JY (2010).The Research on IMM tracking algorithm of high speed and high maneuvering target. M.S.degree thesis, Guidance,Guidanuce and Control, Nanjing Science and Technology Univercity, Nanjing, 43-44. (in Chinese)

    Tanjan H (2011). A switched IMM-extended Viterbi estimatorbased algorithm for maneuvering target tracking.Automatica,47, 92-98.

    Vahabian A, Sedigh AK, Akhbardeh A (2004). Optimal design of the variable structure IMM tracking filters using genetic algorithms.

    Proceeding of the 2004 IEEE International Conference on Control Applications, Taipei, 25-27.

    Wang XZ, Subhash C, Rob E (2003). Variable structure IMM using minimal sub-model-set switching.Proceedings of SPIE, 80-91.

    Wu PL, Li XX (2009). Passive multi-sensor maneuvering target tracking based on UKF-IMM algorithm.WASE International Conference on Information Engineering, Taiyuan, 135-138.

    Wu WR, Cheng PP (1994). A nonlinear IMM algorith for maneuvering target tracking.IEEE Transactions on Aerospace and Electronic Systems, 30, 875-885.

    Xu JH, Ji CX, Zhang YS, Chen K (2003). Digraph switching IMM algorithm based current statistical mode.Fire Control >amp; Command Control, 28(2), 52-56.

    Yi L, Lv M (2006). Research method for tracking high speed and highly maneuvering target.6th International Conference on ITS Telecommunications Proceedings, Chengdu, 1236-1239.

    Yin HB (2008).The research on radar maneuvering target tracking filter algorithm. M.S.degree thesis, Communication and Information System, Dalian Maritime University, Dalian,50-51.(in Chinese)

    Zeng D, Peng DL (2012). Adaptive variable structure multiple model algorithm for high maneuvering target tracking.

    Computer System Application, 21(10), 114-117.

    Zhang AQ, Wang WS, Zheng RG, Lv J (2011). Research on non-linear filter for naval vessel radar target tracking.Ship Science and Technology, 33(4), 98-101.

    Zhang M (2010).Variable structure multiple model estimation based on particle filter.M.S.degree thesis, Communication and Information System, University of Science and Technology of China, Hefei, 10-12. (in Chinese)

    Zhen D, Lang H (1998). A distributed IMM fusion algorithm for multi-platform tracking.Signal Processing, 64,167-176.

    猜你喜歡
    汽輪發(fā)電背壓水流量
    基于LSTM的汽輪發(fā)電機(jī)線圈的早期異常檢測(cè)
    M701F4燃?xì)廨啓C(jī)TCA系統(tǒng)冷卻水流量異常分析
    青海電力(2022年1期)2022-03-18 12:08:36
    大型空冷汽輪發(fā)電機(jī)轉(zhuǎn)子三維流場(chǎng)計(jì)算
    國(guó)產(chǎn)納濾膜脫除硝酸鹽的試驗(yàn)研究
    基于重力方向影響的低壓渦輪葉片水流量測(cè)量數(shù)值計(jì)算
    基于AMEsim背壓補(bǔ)償對(duì)液壓缸低速運(yùn)行穩(wěn)定的研究
    汽輪機(jī)冷端優(yōu)化運(yùn)行和最佳背壓的研究與應(yīng)用
    蒸發(fā)冷卻汽輪發(fā)電機(jī)技術(shù)
    蒸發(fā)冷卻汽輪發(fā)電機(jī)技術(shù)
    三背壓凝汽器抽真空系統(tǒng)的配置及優(yōu)化
    99久久久亚洲精品蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 狂野欧美白嫩少妇大欣赏| 日本在线视频免费播放| 午夜免费男女啪啪视频观看 | 99久久中文字幕三级久久日本| 嫩草影院精品99| av女优亚洲男人天堂| 午夜久久久久精精品| 国产精品国产高清国产av| 97碰自拍视频| 日韩制服骚丝袜av| 18禁在线无遮挡免费观看视频 | 日本 av在线| 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 亚洲中文日韩欧美视频| 精品人妻偷拍中文字幕| 露出奶头的视频| 在线免费十八禁| 日本一本二区三区精品| 1000部很黄的大片| 久久久精品94久久精品| 插阴视频在线观看视频| 一本一本综合久久| 欧美性猛交黑人性爽| 国产伦精品一区二区三区视频9| 亚洲美女视频黄频| 国产三级在线视频| ponron亚洲| 国产精品久久久久久亚洲av鲁大| 一级黄色大片毛片| 国产成人freesex在线 | 日日撸夜夜添| 久久久久久久久久黄片| 精品久久久久久久久av| 亚洲av一区综合| 男人的好看免费观看在线视频| 久久久久国内视频| 亚洲精品久久国产高清桃花| 日韩 亚洲 欧美在线| 麻豆成人午夜福利视频| 51国产日韩欧美| 久久精品国产99精品国产亚洲性色| 一级av片app| 级片在线观看| 欧美日本视频| 少妇高潮的动态图| 国产蜜桃级精品一区二区三区| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 搞女人的毛片| 国产成人91sexporn| av卡一久久| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 草草在线视频免费看| 欧美在线一区亚洲| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 久久这里只有精品中国| 美女cb高潮喷水在线观看| 级片在线观看| 在线观看av片永久免费下载| 一级毛片久久久久久久久女| 成熟少妇高潮喷水视频| 熟女电影av网| 色哟哟·www| 亚洲成人久久爱视频| 麻豆一二三区av精品| 国产爱豆传媒在线观看| 久久综合国产亚洲精品| 内地一区二区视频在线| 亚洲国产高清在线一区二区三| 亚洲一级一片aⅴ在线观看| 美女cb高潮喷水在线观看| 国产在线精品亚洲第一网站| 91午夜精品亚洲一区二区三区| 国产精品爽爽va在线观看网站| 中文字幕精品亚洲无线码一区| 久久久久久久久中文| 亚洲精品一区av在线观看| 18禁在线播放成人免费| 高清毛片免费看| av福利片在线观看| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕日韩| 床上黄色一级片| 最近的中文字幕免费完整| 久久久久久久久中文| av天堂在线播放| 午夜亚洲福利在线播放| 在线免费十八禁| 最近手机中文字幕大全| h日本视频在线播放| 搡老熟女国产l中国老女人| 午夜视频国产福利| 精品不卡国产一区二区三区| 我的女老师完整版在线观看| 99久国产av精品国产电影| 国内精品久久久久精免费| 成人av一区二区三区在线看| 日本a在线网址| 蜜桃久久精品国产亚洲av| 人人妻人人澡人人爽人人夜夜 | 1024手机看黄色片| 亚洲欧美成人精品一区二区| 久久亚洲精品不卡| 亚洲成人久久爱视频| 色5月婷婷丁香| 亚洲专区国产一区二区| 亚洲精品亚洲一区二区| 日本a在线网址| 直男gayav资源| 在线观看66精品国产| 久久热精品热| 国产成人91sexporn| 亚洲欧美日韩卡通动漫| 一本一本综合久久| 在线免费十八禁| 尤物成人国产欧美一区二区三区| 特级一级黄色大片| 大型黄色视频在线免费观看| 国产高清视频在线观看网站| 97热精品久久久久久| 日韩大尺度精品在线看网址| 男女那种视频在线观看| 国产精品一区二区三区四区免费观看 | 亚洲成av人片在线播放无| 日韩精品中文字幕看吧| 夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| 日韩精品有码人妻一区| 床上黄色一级片| 国产精品久久视频播放| 国产中年淑女户外野战色| 极品教师在线视频| 一级毛片aaaaaa免费看小| 亚洲专区国产一区二区| 深夜a级毛片| 国产一区二区三区在线臀色熟女| 国产淫片久久久久久久久| 亚洲第一电影网av| 寂寞人妻少妇视频99o| 色综合站精品国产| 日本在线视频免费播放| av中文乱码字幕在线| 两个人视频免费观看高清| 级片在线观看| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 午夜免费男女啪啪视频观看 | 又黄又爽又刺激的免费视频.| 1000部很黄的大片| 日日摸夜夜添夜夜爱| 日韩欧美国产在线观看| 亚洲精品亚洲一区二区| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站高清观看| 亚洲精品日韩av片在线观看| 好男人在线观看高清免费视频| 久久久欧美国产精品| www日本黄色视频网| 国产成人影院久久av| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 一本一本综合久久| 特级一级黄色大片| 精品久久久久久久久av| 内地一区二区视频在线| 国产男靠女视频免费网站| 国产成人a∨麻豆精品| 亚洲三级黄色毛片| 日韩精品有码人妻一区| 在线看三级毛片| 国产白丝娇喘喷水9色精品| 国产高清视频在线观看网站| 国产单亲对白刺激| 久久热精品热| 精品久久久久久久末码| 日韩成人伦理影院| 国产高清视频在线观看网站| 九九爱精品视频在线观看| 老熟妇仑乱视频hdxx| 日本爱情动作片www.在线观看 | 中文字幕熟女人妻在线| 久久久a久久爽久久v久久| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 亚洲精华国产精华液的使用体验 | 国产精品久久视频播放| 97超碰精品成人国产| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 麻豆一二三区av精品| 日本 av在线| 国产黄色视频一区二区在线观看 | 久久久久久久久久成人| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| av中文乱码字幕在线| 插阴视频在线观看视频| 大香蕉久久网| 久久综合国产亚洲精品| 免费一级毛片在线播放高清视频| 久久中文看片网| 亚洲成a人片在线一区二区| 免费av不卡在线播放| 国产精品三级大全| 亚洲人成网站高清观看| 99久久精品热视频| 亚洲欧美精品综合久久99| 悠悠久久av| 岛国在线免费视频观看| 久久久久免费精品人妻一区二区| 精品乱码久久久久久99久播| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 69av精品久久久久久| 免费人成在线观看视频色| 看非洲黑人一级黄片| 最近在线观看免费完整版| 日本熟妇午夜| 日韩强制内射视频| 午夜久久久久精精品| 人人妻人人澡人人爽人人夜夜 | 97超级碰碰碰精品色视频在线观看| 色尼玛亚洲综合影院| 日韩成人伦理影院| 成人毛片a级毛片在线播放| 黄片wwwwww| 美女xxoo啪啪120秒动态图| 国产欧美日韩一区二区精品| 久久人妻av系列| 婷婷亚洲欧美| 美女免费视频网站| 欧美一区二区亚洲| 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区四那| 日韩欧美 国产精品| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 成人精品一区二区免费| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 国产一区二区三区av在线 | 日韩大尺度精品在线看网址| 高清日韩中文字幕在线| 别揉我奶头 嗯啊视频| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 天天一区二区日本电影三级| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 国产一区亚洲一区在线观看| 又爽又黄a免费视频| av在线观看视频网站免费| 精品欧美国产一区二区三| h日本视频在线播放| 美女xxoo啪啪120秒动态图| 国产精品一二三区在线看| 国产伦在线观看视频一区| 国产午夜精品久久久久久一区二区三区 | 无遮挡黄片免费观看| 欧美性猛交╳xxx乱大交人| 夜夜夜夜夜久久久久| 看片在线看免费视频| 国产女主播在线喷水免费视频网站 | 国产伦精品一区二区三区视频9| 麻豆国产av国片精品| 在线观看66精品国产| 日韩成人av中文字幕在线观看 | 亚洲七黄色美女视频| 波多野结衣巨乳人妻| 热99在线观看视频| 如何舔出高潮| 日本色播在线视频| 国产黄色视频一区二区在线观看 | 精品福利观看| 偷拍熟女少妇极品色| 男女那种视频在线观看| 亚洲经典国产精华液单| 男人舔女人下体高潮全视频| 久久精品夜色国产| 成人毛片a级毛片在线播放| 国产成人影院久久av| 色综合色国产| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 亚州av有码| 女的被弄到高潮叫床怎么办| 亚洲乱码一区二区免费版| 精品一区二区三区视频在线| 色哟哟哟哟哟哟| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 成人午夜高清在线视频| 精品少妇黑人巨大在线播放 | 99热只有精品国产| 欧美国产日韩亚洲一区| 久久婷婷人人爽人人干人人爱| 中出人妻视频一区二区| 亚洲精品日韩av片在线观看| 亚洲精品456在线播放app| 神马国产精品三级电影在线观看| 中文字幕精品亚洲无线码一区| 我的老师免费观看完整版| 国产精品久久久久久av不卡| 白带黄色成豆腐渣| 嫩草影院新地址| 国产精品不卡视频一区二区| 日韩强制内射视频| 中文资源天堂在线| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 亚洲av免费在线观看| 久久久久精品国产欧美久久久| 3wmmmm亚洲av在线观看| 校园春色视频在线观看| 午夜a级毛片| 亚洲欧美精品综合久久99| 色在线成人网| 国产69精品久久久久777片| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| 麻豆国产av国片精品| 国产午夜福利久久久久久| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 91久久精品国产一区二区成人| 少妇熟女aⅴ在线视频| 18禁在线播放成人免费| 国产免费男女视频| 男女之事视频高清在线观看| 亚洲欧美日韩东京热| 深爱激情五月婷婷| 国产成人一区二区在线| 一夜夜www| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 成人欧美大片| 久久久久久国产a免费观看| 中文字幕久久专区| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 日本黄色片子视频| 亚洲精品日韩av片在线观看| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 欧美激情在线99| 亚洲国产精品合色在线| 欧美成人a在线观看| 免费无遮挡裸体视频| av视频在线观看入口| 看免费成人av毛片| 国产成人a∨麻豆精品| 白带黄色成豆腐渣| 99riav亚洲国产免费| 在线观看66精品国产| 18禁在线无遮挡免费观看视频 | 亚洲成人久久爱视频| 中文字幕av成人在线电影| 成人av在线播放网站| 午夜福利高清视频| 在线免费观看不下载黄p国产| ponron亚洲| 狂野欧美白嫩少妇大欣赏| 亚洲精品亚洲一区二区| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 人妻久久中文字幕网| 亚洲精品成人久久久久久| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件 | 欧美日韩在线观看h| 成人二区视频| 国产精品av视频在线免费观看| 精品午夜福利视频在线观看一区| 亚洲中文字幕一区二区三区有码在线看| 欧美性感艳星| 精品一区二区三区视频在线| 亚洲性久久影院| 国产蜜桃级精品一区二区三区| 99在线视频只有这里精品首页| 亚洲欧美成人精品一区二区| 99热只有精品国产| 人妻少妇偷人精品九色| 天天一区二区日本电影三级| 亚洲av成人av| 久久草成人影院| 国产成人精品久久久久久| 免费观看人在逋| 国产 一区 欧美 日韩| 国产精品无大码| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 别揉我奶头 嗯啊视频| 2021天堂中文幕一二区在线观| 亚洲最大成人手机在线| 网址你懂的国产日韩在线| 乱人视频在线观看| 黄色欧美视频在线观看| 国产精品av视频在线免费观看| 久久久久精品国产欧美久久久| 美女黄网站色视频| 国产激情偷乱视频一区二区| 国产精品精品国产色婷婷| 久久精品国产亚洲av涩爱 | 亚洲av电影不卡..在线观看| 色吧在线观看| 啦啦啦韩国在线观看视频| 久久久久久久午夜电影| 日韩国内少妇激情av| 夜夜爽天天搞| 寂寞人妻少妇视频99o| 精品人妻熟女av久视频| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 五月玫瑰六月丁香| 国产亚洲精品综合一区在线观看| av视频在线观看入口| av福利片在线观看| av女优亚洲男人天堂| 神马国产精品三级电影在线观看| 99久国产av精品| 日韩制服骚丝袜av| 国产探花在线观看一区二区| 久久久精品欧美日韩精品| 国产精品乱码一区二三区的特点| 一级毛片我不卡| 亚洲中文字幕一区二区三区有码在线看| 午夜爱爱视频在线播放| 能在线免费观看的黄片| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 精品久久久久久久久av| 一个人看视频在线观看www免费| 国产 一区精品| 一本久久中文字幕| 又粗又爽又猛毛片免费看| 久久久国产成人精品二区| avwww免费| 日本一本二区三区精品| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看| 国产成人影院久久av| 91久久精品电影网| 欧美中文日本在线观看视频| 日日撸夜夜添| 成人精品一区二区免费| 亚洲欧美日韩卡通动漫| 国产一级毛片七仙女欲春2| 中文字幕精品亚洲无线码一区| 美女免费视频网站| 国产在视频线在精品| 欧美精品国产亚洲| 伦精品一区二区三区| 美女内射精品一级片tv| 一区二区三区高清视频在线| 日本黄色片子视频| 高清日韩中文字幕在线| 久久久久久久久中文| 日日干狠狠操夜夜爽| 在线天堂最新版资源| 亚洲成人久久爱视频| 成人三级黄色视频| 国产又黄又爽又无遮挡在线| 噜噜噜噜噜久久久久久91| 黄色一级大片看看| 久久九九热精品免费| 午夜福利在线在线| 国产精品永久免费网站| 国产成人福利小说| 国内精品一区二区在线观看| 在现免费观看毛片| 日本与韩国留学比较| 欧美高清性xxxxhd video| 亚洲av成人av| 不卡视频在线观看欧美| 久久九九热精品免费| 国产男靠女视频免费网站| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 亚洲最大成人中文| 久久国内精品自在自线图片| 人人妻,人人澡人人爽秒播| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 尾随美女入室| 国模一区二区三区四区视频| 此物有八面人人有两片| 亚洲久久久久久中文字幕| 久久精品影院6| 伊人久久精品亚洲午夜| 男插女下体视频免费在线播放| 亚洲精品在线观看二区| 日本三级黄在线观看| 国产一区二区激情短视频| 人妻制服诱惑在线中文字幕| 亚洲av免费高清在线观看| 色在线成人网| 十八禁国产超污无遮挡网站| 免费大片18禁| 国产午夜福利久久久久久| 国产69精品久久久久777片| 国产私拍福利视频在线观看| 尾随美女入室| 日本一二三区视频观看| 国产午夜精品久久久久久一区二区三区 | 老熟妇乱子伦视频在线观看| 国产精品一区www在线观看| 成人三级黄色视频| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 成年女人看的毛片在线观看| 夜夜夜夜夜久久久久| 国产私拍福利视频在线观看| 久久久久免费精品人妻一区二区| 亚洲精品国产av成人精品 | 久久久久久久久久久丰满| 久久久精品94久久精品| 亚洲专区国产一区二区| 国产日本99.免费观看| 香蕉av资源在线| 欧美日本视频| 免费观看的影片在线观看| 欧美日韩在线观看h| 精品久久久久久久久久免费视频| 少妇裸体淫交视频免费看高清| 国产熟女欧美一区二区| 干丝袜人妻中文字幕| 国产一区亚洲一区在线观看| 日本熟妇午夜| 国产人妻一区二区三区在| 国内揄拍国产精品人妻在线| 精品久久久久久久人妻蜜臀av| 性插视频无遮挡在线免费观看| 亚洲精品亚洲一区二区| 日韩欧美国产在线观看| 免费大片18禁| 1000部很黄的大片| 内地一区二区视频在线| 狂野欧美激情性xxxx在线观看| 欧美区成人在线视频| 免费在线观看成人毛片| 日日撸夜夜添| 国产免费男女视频| av女优亚洲男人天堂| 成人国产麻豆网| 免费一级毛片在线播放高清视频| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 久久久久久久亚洲中文字幕| 一区二区三区四区激情视频 | 成人特级av手机在线观看| 一级黄色大片毛片| 欧美丝袜亚洲另类| 丰满的人妻完整版| 在线播放无遮挡| 给我免费播放毛片高清在线观看| www日本黄色视频网| 欧美最黄视频在线播放免费| 亚洲精品影视一区二区三区av| 神马国产精品三级电影在线观看| 丝袜喷水一区| 岛国在线免费视频观看| 亚洲激情五月婷婷啪啪| 99久久成人亚洲精品观看| 日韩欧美免费精品| 一区二区三区高清视频在线| 久久久久久久久久久丰满| 久久综合国产亚洲精品| 99久久久亚洲精品蜜臀av| 日本在线视频免费播放| 欧美一区二区亚洲| 亚洲av五月六月丁香网| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 男人舔奶头视频| 国产精品一二三区在线看| 久久这里只有精品中国| 免费人成在线观看视频色| 欧美日韩乱码在线| 女同久久另类99精品国产91| 春色校园在线视频观看| 久久精品人妻少妇| 一卡2卡三卡四卡精品乱码亚洲| 99热网站在线观看| 免费人成在线观看视频色| 俄罗斯特黄特色一大片| 尾随美女入室| 欧美日韩乱码在线| 成年版毛片免费区| 亚洲精品国产av成人精品 | 欧美zozozo另类| 免费观看在线日韩| a级毛色黄片| 丰满的人妻完整版| 真人做人爱边吃奶动态| 成人午夜高清在线视频| 你懂的网址亚洲精品在线观看 | 精品午夜福利在线看| 亚洲中文日韩欧美视频|