• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Domain Simulation of a One Line Failure for a DP-assisted Mooring System

    2014-07-30 09:54:48JianxunZhuLipingSunShengnanLiuandJichuangKang

    Jianxun Zhu, Liping Sun, Shengnan Liu and Jichuang Kang

    Deepwater Engineering Research Center, Harbin Engineering University, Harbin, 150001, China

    1 Introduction1

    The exploration and production in deeper water use may be made of semi-submersibles and ship-shaped floating structures. In the production phase the floaters are normally permanently moored by the mooring system to withstand the local extreme environment conditions.

    Although a considerable amount of damping of the risers and mooring lines in deep water can be induced to counteract partly the low frequency motions, the mooring system needs to take the ultimate force to keep the vessel on station. In some water depths the length of the mooring lines may be considerable. The cost effect by reducing the mooring system in terms of less mooring lines or a lighter system by applying assisted DP is worth considering. And in deep and ultra-deep water, not only are the long mooring legs expensive, the installation costs considerably soar higher with the increasing of the water depth.

    At the Marine Engineering Conference, the concept of the DP-assisted Mooring System, which indicated the reliability,security and economy of this system, was first proposed by Sargent >amp; Morgan (1974), Aalberset al. (1995, 1996),through the experiments in their marine laboratory,demonstrated that the system can reduce the mooring force and discussed the adaptability of different positioning styles to different water depth ranges. Wichers and Van Dijk (1996)illustrated the effectiveness and benefits of using DP to assist the mooring system in survival conditions. Wichers and Van Dijk (1999) studied the advantages of the DP-assisted Mooring System by using the programs DYNFLOAT and DPSIM. Fossen (1999) presented a model consisting of a rigid-body sub-model for the vessel, and a finite element sub-model for the mooring system. Fossen(2000) gave an overview of the methods for passive ship control and observer design. Jenman (2005) outlined the key elements of this new standard and then provided some feedback on an FMEA and full-scale trials of a thruster assisted system installed on a DP class 3 drilling semisubmersible. Stephens >amp; Meahan (2007) researched the motion performance of a new thruster assisted mooring system for global producer III. Nguyen >amp; Sorensen (2009)showed that the switching control could extend the weather window of the PM system. In this regard, Wang (2010)proved that the DP-assisted Mooring System can improve the position accuracy and safety margin of a platform. And Sun (2011) concluded that under a thruster failure mode, the DP-assisted Mooring System has better positioning accuracy and lower power consumption than the DPS. Yang >amp; Wang(2012) have assembled a comprehensive study of the DP-assisted mooring system. Fanget al.(2013) presented that the structural reliability criterion based algorithm ensures the safety of the mooring lines in a variety of external environmental conditions and also in situations where there is failure of a single line.

    In this paper, for the purpose of studying the impact of a mooring line failure on the DP-assisted Mooring System, the mooring system and thruster’s arrangement were initially designed, followed by the positioning accuracy and power consumption of a semi-submersible platform under different mooring-line failure modes. These were further studied in a time-domain simulation program and some reasonable advice was put forward.

    2 Horizontal motion equations for the platform

    To establish a complete and reasonable platform motion mathematical model is the foundation of the response analysis. Under the complex environmental load and DP-assisted mooring system joint action, the platform is always in a circle of position deviation. The object we discuss in this paper is a semi-submersible platform with 6 azimuth thrusters and 12 mooring lines, and Figure 1 shows the underwater appearance of a platform and its arrangement of the DP-assisted mooring system. The platform is regarded as a certain quality and mass distribution rigid body, and the equation of the motion in the ship’s coordinate system is obtained by utilizing the dynamics theory of floating bodies.In order to simplify the equation of motion, which is applied to the research of the platform motion, the original point of the hull coordinate system is set at weight heart, then an equation of motion at a moment i can be inferred:

    where m is the platform quality,Izis the rotary inertia about theOZaxis, the indexes likeH,E,T,Mrespectively stand for the hydrodynamic force, environmental load,propeller thrust and the horizontal mooring tension acting on the platform.

    Fig.1 Arrangement of the DP-assisted Mooring System

    The magnitude of the vertical force (moment) is large and its cycle is short. To reduce the propeller machinery and fuel loss, the DP system often only makes an immediate response to the low frequency horizontal motion. Because the platform’s low frequency motion, to a great extent, is affected by the DP system, we could suppose that the floating body affected by the external effect has a small amplitude motion in the equilibrium position, and then the platform motion can be simplified:

    Since the motion parameters of the increment are small,the parameters of the higher powersDu vDandDv rDare considered high order traces that can be ignored as well as the velocity and angular velocity of the cross coupling between items and the fluid inertia force (moment) caused by their quadratic terms likeand then the motion equation can be written as follows:

    whereXu,Yv,Yr,NvandNrare the hydrodynamic derivatives (because the underwater part of the platform is symmetrical about the planeXOZ, but not completely symmetrical about the planeYOZ, and the surge motion is independent but has weak coupling between the sway and yaw);EandMrepresent the environmental load and the load of the mooring system.

    3 Mathematical model for the whole motion system

    3.1 Hydrodynamic model of the platform

    The main components of the semi-submersible platform,and its principal dimensions are shown in Table 1~Table 4.

    Table 1 Main dimension of the semi-submersible platform

    Table 2 Parameters of pontoon m

    Table 3 Parameters of column m

    Table 4 Parameters of upper box deck m

    The hydrodynamic model of the platform was built by using the Ansys as shown in Fig 2. Through the aqwa-line,we obtained the linear hydrodynamic coefficient and the added mass in thex,ydirections and the additional inertia moment around theOZaxis.

    Fig 2 The hydrodynamic model of the semi-submersible platform

    3.2 Mathematical model of the dynamic positioning system

    The typical law for the positioning control system is the Proportional-Integral-Derivative (PID) control. It should be noted that the term ‘control forces’ refers to the control forces in the surge,sway and moment in the yaw. So the control instruction can be obtained:

    whereεis the difference between the measured and target values;Kp,KIandKDrepresent the proportional gain coefficient, integral gain coefficient and differential gain coefficient, respectively;FW(αW,νW) is the wind feed-forward force;FMrepresents the force provided by the mooring system.

    Another important part of this model is the distribution of the thrusting force, an optimization problem, which is multivariable and constrained. Based on the algorithm of the distribution optimization method, the control allocation problem can be transformed into including the objective function, the nonlinear constraint optimization mathematical model including equality constraints and inequality constraints, and then it can be solved by using the optimization algorithm. Since this platform uses azimuth thrusters, the thrust force is able to act on the platform in any directionαi(the angle is referred to as theXaxis). The thrust force can be divided into longitude force,tx,iin the surge and lateral force,ty,iin the sway. Obviously, there is a relationship amongαitx,iandty,i:

    To simplify the problem, it can be proposed that the minimum total thrust is equivalent to the minimum total power consumption, and then the objective function can be written as follows:

    whereNis the number of the effective propellers in the current. Equality constraints of this function include:

    Specifically, the total thrust (moment) made up of the propeller component should be equal to the total thrust(moment) required by the controller. Inequality constraints include:

    Namely, each propeller thrust should not exceed its maximum thrust. But the maximum thrustTmax,iusually accounts for 90% of the propeller’s maximum thrust due to the disturbance among the propellers and between the propellers and the hull.

    The ban angle is realized by the following inequality constraints:

    whereαl,iis the lower limit of the ban angle area whileαu,iis the upper limit.

    In addition, according to the mechanical characteristics of the thrusters, the change rates of the thrust force and the azimuth thrusters’ rotation are limited in each time step.

    According to these equality and inequality constraints, the thrust distribution problem can be successfully transformed into an optimization mathematical problem concerning the independent variable t and target function f.

    The DPS is equipped with six azimuth thrusters with a total power of 3500 kW. The performance parameters of the thrusters are shown in Table 5.

    Table 5 Main parameters of the thrustersModel Wartsila FS3500/NU

    3.3 Mathematical model of the mooring system

    The effect of the mooring system is similar to the control action from the positioning control system in terms of providing restoring, damping and mean forces. Among these,the dominant effect of the mooring system is to provide mean force compensating the mean drift loads arising from wind, waves and currents.

    In this paper, the mooring system employed by the platform is called the catenary mooring system. It can be divided intoNsections to establish the equation of multi-component mooring lines and can be, according to the catenary equation carried out by Hu (2007), written as:

    wherexiis the horizontal distance between the top point of section i and the anchor point of each line, whileziis the vertical distance;φ0irepresents the angle between the mooring-line and anchor;φirepresents the angle between the mooring-line and floater; Th represents the horizontal pretension;is the wet weight of section i.

    The vertical tension near the floater can be accumulated as follows:

    where t is the touchdown point;Rrepresents the vertical force on the mooring line provided by the anchor.

    The elastic correction is needed for the elastic stretching of each section:

    The cubic spline curve is referred to asxiandThcan be obtained through solving the equations (11)-(14). In the time domain simulation, we can obtain thexiin each time step.And then Th acting on the platform can be successfully obtained by the curve in each time step. According to the methods mentioned above, the mooring system can be successfully transformed into a mathematical problem.

    The mooring system consists of 12 mooring lines and each line is divided into three segments with different materials. The mooring lines’ configuration is shown in Fig 2. The properties are listed in Table 6.

    Table 6 Main properties of mooring lines

    3.4 Mathematical model of the DP-assisted mooring system

    The main objective of the DP-assisted Mooring System(PM) is to keep the vessel in a fixed position while the secondary objective is to keep the line tensions within an allowable range to prevent line breaks. Thus this system would be composed of a passive mooring system and a DP system.

    The mathematical mode of the DP-assisted mooring system is a combination of the modes mentioned in 3.2 and 3.3. And then the whole motion system can be translated into a mathematical mode by solving the motion equation (3).

    3.5 Calculation of the environmental load

    The calculation of the wind load is based on the API recommended practice-the module method: the main structures above the platform waterline are dispersed, and the loads of each part are computed according to the wind area and shape. By the same token, the module method is also adopted during the flow load processing. In this paper,the buoy and post under platform waterline are dispersed,their flow load is calculated respectively and the connecting wing is processed as the Morison rod. It should be pointed out that because the module method simplifies the practical structure, the result is the approximation of the permitted precision scope.

    The platform’s second order water drift force is obtained by the spectrum analysis method. Firstly the sea spectra is dispersed intoNequal parts, then the irregular wave is transformed into the form of a harmonic wave superposition,each wave band corresponds with wave frequencyωi, wave amplitudeAi.

    The slow drift force is calculated approximately through the Newman’s simplified formula:

    whereεiis the harmonic wave’s random phase angle. This method is not applicable for shallow waters, and the high frequency part produced from the calculation could be filtered through the filtering method.

    In this paper, the 10-year wind domain is taken as the extreme sea conditions as listed in Table 7. Besides, it is assumed that the wind, wave-drift, and current act in the same direction as illustrated in Fig 2., so that the harshest environmental load would be applied to the semi-submersible platform in question.

    Table 7 Environmental conditions of the platform

    4 Time domain simulation of the one-line failure for a DP-assisted mooring system

    The platform motions are numerically simulated in the time domain for different modes by using the Time Domain program. Whereas the time duration is taken at 2 000 s, and the statistical data is recorded at every 0.5 s interval which further describe the platform motion and power consumption etc. to the time history.

    Considering the symmetry of the mathematical model and load direction, line numbers 2, 5, 8, and 11 are assumed failures separately to simplify the calculations. Thus the study is simply focused on the complete mode and Nos.2, 5,8 and 11 line failure modes, and then the difference comparisons among these modes will be made in respect to the position accuracy, power consumption and tension of the mooring lines.

    The platform motion to the time history in each mode is shown in Fig.3. And the statistical data is presented in Tables 8, 9 and 10.

    Fig 3 Offsets of the platform for different modes

    Fig.3 and Table 8 reveal that the different failure modes bring different impacts on the positioning accuracy. For the No.2 failure mode, the surge decreases by 20%, while the sway increases by 8.4% and the yaw rises by 34.5% as compared to the values for the complete mode. Since the tension in line 2 is opposite to the environmental load in regards to direction, which means the No.2 failure is equivalent to the loss of ability against the environmental load, the thrusters have to increase their thrust to keep the position. Because the vertical component of the thrust is smaller than the reduction, the sway gets bigger. On the contrary, the horizontal component of the thrust is larger than the reduction, and the surge becomes smaller.

    Table 8 Statistical offsets

    For the No.8 failure mode, it is observed that the surge decreases by 72.2%, while the sway increases by 7.2% and the yaw rises by 96.7% as compared to the values for the complete mode. The tension in line 8 is in the same direction as the environmental load, which means the No.8 failure is equivalent to the deduction of the environmental load and thus the surge of the platform is dramatically reduced. The yaw however increases significantly due to the reason that the failure of line 8 leads to the reduction of clockwise torque.

    Table 9 The statistical data of power consumption

    Table 6 shows that the power consumption for each failure mode, except for No.8, dramatically increases compared with the complete mode. The reason is that the one line failure will partially lose the ability to withstand the environmental load, and thus the thrusters have to output more power to compensate for such a loss. The only exception is the No. 8 failure mode,which reduces the demand of the thrust and the power consumption and therefore decreases accordingly.

    Table 10 The tension of the mooring lines kN

    Table 10 indicates the minimal effect on the mooring system for each one line failure mode. The explanation for thisphenomena is that the drift of the platform is relatively small, so that the tension in the mooring lines nearly remains invariable. It concludes, from this point, that the existence of the DP system can help maintain the normal operations of the mooring system even in the case of one line failure and further prolong the life of the mooring line.

    5 Conclusions

    Through the time domain analysis for different one line failure modes, the following conclusions can be drawn:

    (1) In general, the failure of the windward line will result in the reduction of the position accuracy and the increase of power consumption. And the failure of the leeward line leads to the reduction of power consumption and longitudinal drift. Aiming at the reliability, economy and feasibility of the control measures, the leeward line,therefore, can be slackened.

    (2) In the case of the leeward line failure, close attention has to be paid to the variety of yaw forces provided by the leeward line. Some measures, e.g. relocation of the fairlead,can be taken to reduce the force to a minimum.

    (3) For the least impact on the mooring system, the number of mooring lines may be reduced to cut the costs of the mooring system.

    Aalbers AB, Janse SAW, de Boom WC (1995). DP assisted and Passive Mooring for FPSO’s.Offshore Technology Conference,Houston, 281-288.

    Aalbers AB, Merchant AA (1996). The hydrodynamic model testing for closed loop DP assisted mooring.Offshore Technology Conference, Houston, 40-43.

    Fang Shaoji, Leira BJ, Blanke M (2013). Position mooring control based on a structural reliability criterion.Structural Safety, 41,97-106.

    Fossen TI, Aamo, OM (1999). Controlling line tension in thruster assisted mooring system.Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, Hawaii, 1104-1109.

    Fossen, TI (2000). Nonlinear passive control and observer design for ships.Modeling Identification and Control, 3(21), 129-184.

    Hu Xuejun (2007).Dynamic analysis of mooring cable. M.S. thesis,Huazhong University of Science and Technology.

    Jenman C (2005). Mixing dynamic positioning with mooring.Dynamic Positioning Conference, Houston, 32-35.

    Nguyen DT, Sorensen AJ (2009a). Switching control for thruster-assisted position mooring.Control Engineering Practice, 17(9), 985-994.

    Nguyen DT, Sorensen AJ (2009b). Setpoint chasing for thruster-assisted position mooring.Oceanic Engineering, 34(4),548-558.

    Sargent JS, Morgan MJ (1974). Augmentation of a mooring system through dynamic positioning.Offshore Technology Conference,Houston, 48-51.

    Stephens RI, Meahan A (2007). Design and commissining of a new thruster assisted mooring system (TAMS) for global producer III.Dynamic Positioning Conference, 9-10.

    Sun Pan, Wang Lei, Wang Liang (2010). Research on power consumption of position mooring system for a deep sea semi-submersible platform.Oceanic Engineering,28(3),53-57.Wang S (2010). On the assessment of thruster assisted mooring.

    Offshore Technology Conference, Houston, 254-260.

    Wichers J, Van Dijk R (1996). Benefits of using assisted DP for deepwater mooring system.Offshore Technology Conference,Houston, OTC 10781.

    Yang Huan, Wang Lei, Li Xin (2012). Review of the research on thruster assisted position mooring system.Research and Exploration in Laboratory, 26(4), 23-26.

    亚洲内射少妇av| 国产私拍福利视频在线观看| 变态另类成人亚洲欧美熟女| 免费看日本二区| 天美传媒精品一区二区| 天堂√8在线中文| 欧美人与善性xxx| 日韩亚洲欧美综合| 日韩欧美三级三区| 国语自产精品视频在线第100页| 精品人妻一区二区三区麻豆 | 深夜精品福利| 婷婷六月久久综合丁香| h日本视频在线播放| 老司机午夜福利在线观看视频| 真人一进一出gif抽搐免费| 最近最新免费中文字幕在线| 欧美性猛交╳xxx乱大交人| 久久精品影院6| 免费av毛片视频| 久久这里只有精品中国| 亚洲精品日韩av片在线观看| 亚洲一区二区三区色噜噜| 成人综合一区亚洲| 国产单亲对白刺激| 久99久视频精品免费| 天天躁日日操中文字幕| 久久久久久国产a免费观看| 他把我摸到了高潮在线观看| 久久精品国产清高在天天线| 嫩草影视91久久| 中国美白少妇内射xxxbb| 桃色一区二区三区在线观看| 免费在线观看成人毛片| 一级黄片播放器| 亚洲欧美激情综合另类| 韩国av在线不卡| 在线看三级毛片| 久久精品国产亚洲网站| 最新在线观看一区二区三区| 日韩亚洲欧美综合| 久久久久久国产a免费观看| 97超视频在线观看视频| 久久99热这里只有精品18| 亚洲自拍偷在线| 国产午夜精品久久久久久一区二区三区 | 亚洲精品成人久久久久久| 一进一出抽搐gif免费好疼| 欧美精品啪啪一区二区三区| 国产av麻豆久久久久久久| 尤物成人国产欧美一区二区三区| 日本三级黄在线观看| 如何舔出高潮| x7x7x7水蜜桃| 国产精品美女特级片免费视频播放器| 久久午夜亚洲精品久久| 免费观看人在逋| 国产国拍精品亚洲av在线观看| a级毛片免费高清观看在线播放| 国产精品,欧美在线| 露出奶头的视频| 日韩强制内射视频| or卡值多少钱| 国产伦人伦偷精品视频| 夜夜爽天天搞| 毛片女人毛片| 麻豆成人午夜福利视频| 无人区码免费观看不卡| 亚洲人成伊人成综合网2020| 免费在线观看成人毛片| 99久久无色码亚洲精品果冻| 国产一区二区在线av高清观看| 日本 av在线| 九九久久精品国产亚洲av麻豆| 99久久久亚洲精品蜜臀av| 国内精品一区二区在线观看| 国产精品99久久久久久久久| 日韩一区二区视频免费看| 啦啦啦韩国在线观看视频| 熟女人妻精品中文字幕| 超碰av人人做人人爽久久| 国产黄a三级三级三级人| 精品久久久久久久久av| 精品久久久久久久久亚洲 | 亚洲最大成人av| 婷婷六月久久综合丁香| 国产精品久久久久久精品电影| 国产精品av视频在线免费观看| 少妇人妻一区二区三区视频| 亚洲精品亚洲一区二区| 国产爱豆传媒在线观看| 九九在线视频观看精品| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 日日摸夜夜添夜夜添av毛片 | 国产综合懂色| 特大巨黑吊av在线直播| 午夜激情福利司机影院| 麻豆国产av国片精品| 69av精品久久久久久| 国产一区二区三区在线臀色熟女| 国产av不卡久久| 日韩欧美三级三区| 丰满人妻一区二区三区视频av| 日本 av在线| av中文乱码字幕在线| 亚洲一区二区三区色噜噜| 在线观看免费视频日本深夜| 免费av不卡在线播放| 亚洲精华国产精华液的使用体验 | 国产私拍福利视频在线观看| www.色视频.com| 香蕉av资源在线| 亚洲精品成人久久久久久| av中文乱码字幕在线| 深夜a级毛片| 美女大奶头视频| 日日啪夜夜撸| 国产免费一级a男人的天堂| 伦理电影大哥的女人| 亚洲av二区三区四区| 老司机深夜福利视频在线观看| 国产aⅴ精品一区二区三区波| 99久国产av精品| 亚洲国产色片| 熟女人妻精品中文字幕| 国内精品久久久久久久电影| 桃红色精品国产亚洲av| 精品久久久久久久末码| 高清毛片免费观看视频网站| 日韩欧美精品免费久久| 性插视频无遮挡在线免费观看| 男女视频在线观看网站免费| 中国美女看黄片| 简卡轻食公司| 中文字幕免费在线视频6| 99精品在免费线老司机午夜| 久久久久久久久久成人| 熟妇人妻久久中文字幕3abv| 国产精品人妻久久久久久| 国产综合懂色| 中文在线观看免费www的网站| 蜜桃亚洲精品一区二区三区| 久99久视频精品免费| 色视频www国产| 人妻少妇偷人精品九色| 美女 人体艺术 gogo| 99热6这里只有精品| 国产精品伦人一区二区| 直男gayav资源| 精品国内亚洲2022精品成人| 天堂网av新在线| 亚洲国产日韩欧美精品在线观看| 免费av观看视频| 美女被艹到高潮喷水动态| 中文字幕久久专区| 国产探花在线观看一区二区| 欧美最黄视频在线播放免费| 麻豆一二三区av精品| 老师上课跳d突然被开到最大视频| 日韩一区二区视频免费看| 黄色一级大片看看| 国产一区二区三区视频了| 成人毛片a级毛片在线播放| 97人妻精品一区二区三区麻豆| 亚洲av.av天堂| 国产一区二区三区在线臀色熟女| 嫩草影院入口| 午夜亚洲福利在线播放| 精品免费久久久久久久清纯| 狠狠狠狠99中文字幕| 一个人观看的视频www高清免费观看| 91久久精品国产一区二区成人| 国产精品久久久久久av不卡| 中国美女看黄片| 久久午夜亚洲精品久久| 国产人妻一区二区三区在| 中文字幕精品亚洲无线码一区| 女人被狂操c到高潮| 国产 一区 欧美 日韩| 老女人水多毛片| 亚洲在线观看片| 少妇的逼水好多| 国产精品不卡视频一区二区| 国产精品乱码一区二三区的特点| 人人妻人人看人人澡| 国产色婷婷99| 久久久久久久久中文| 一个人看视频在线观看www免费| 免费无遮挡裸体视频| 国产精品久久久久久久电影| 中文字幕av成人在线电影| 亚洲乱码一区二区免费版| 亚洲精品色激情综合| 天堂√8在线中文| 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 国产亚洲精品久久久com| 18禁黄网站禁片午夜丰满| 欧美3d第一页| 久久久久精品国产欧美久久久| 99热精品在线国产| 亚洲,欧美,日韩| 国产视频一区二区在线看| 国产爱豆传媒在线观看| 成人三级黄色视频| 国产精品人妻久久久影院| 成人特级av手机在线观看| 欧美激情在线99| 在现免费观看毛片| 女人被狂操c到高潮| 日韩欧美国产在线观看| 天堂av国产一区二区熟女人妻| 国产伦在线观看视频一区| 波野结衣二区三区在线| 午夜福利在线在线| 久久这里只有精品中国| АⅤ资源中文在线天堂| 听说在线观看完整版免费高清| 啪啪无遮挡十八禁网站| 在线免费十八禁| 亚洲图色成人| 欧美日韩国产亚洲二区| 国产精品98久久久久久宅男小说| 91午夜精品亚洲一区二区三区 | 欧美xxxx黑人xx丫x性爽| 无人区码免费观看不卡| 真实男女啪啪啪动态图| 在线观看舔阴道视频| 免费观看在线日韩| 国产不卡一卡二| 欧美性猛交黑人性爽| www.www免费av| 精品人妻一区二区三区麻豆 | 国产麻豆成人av免费视频| 亚洲男人的天堂狠狠| 国产欧美日韩精品一区二区| 成人特级黄色片久久久久久久| 搡老岳熟女国产| 男女边吃奶边做爰视频| 最后的刺客免费高清国语| 成人二区视频| 在线国产一区二区在线| 自拍偷自拍亚洲精品老妇| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 午夜爱爱视频在线播放| 中文在线观看免费www的网站| 久久香蕉精品热| 97人妻精品一区二区三区麻豆| 国产一区二区亚洲精品在线观看| 国模一区二区三区四区视频| 欧美另类亚洲清纯唯美| 18+在线观看网站| 动漫黄色视频在线观看| 午夜福利18| 日韩欧美一区二区三区在线观看| 国产一区二区亚洲精品在线观看| 男插女下体视频免费在线播放| 天堂网av新在线| 国产精品1区2区在线观看.| 午夜影院日韩av| 观看美女的网站| 国产成人aa在线观看| 真实男女啪啪啪动态图| 国产乱人伦免费视频| 99国产极品粉嫩在线观看| 久久久久久国产a免费观看| 51国产日韩欧美| 亚洲中文日韩欧美视频| 成年女人看的毛片在线观看| 热99在线观看视频| 欧美性猛交╳xxx乱大交人| 在现免费观看毛片| av黄色大香蕉| 国产午夜精品论理片| 欧美一区二区精品小视频在线| 亚洲一级一片aⅴ在线观看| 久久久久久久精品吃奶| 国产69精品久久久久777片| 亚洲人成网站高清观看| 不卡视频在线观看欧美| 午夜福利在线在线| 亚州av有码| 天天躁日日操中文字幕| x7x7x7水蜜桃| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 免费高清视频大片| 我要搜黄色片| 女人被狂操c到高潮| 日韩在线高清观看一区二区三区 | 国内少妇人妻偷人精品xxx网站| 久久人人爽人人爽人人片va| 一区二区三区免费毛片| 黄色丝袜av网址大全| 少妇高潮的动态图| 深夜a级毛片| 搡老妇女老女人老熟妇| 欧美色欧美亚洲另类二区| 国产色婷婷99| 国产乱人视频| 国产成人福利小说| 给我免费播放毛片高清在线观看| 亚洲第一电影网av| 亚洲色图av天堂| 国产主播在线观看一区二区| 亚洲精品影视一区二区三区av| 日韩欧美在线二视频| 国产精品野战在线观看| av中文乱码字幕在线| 色播亚洲综合网| 亚洲av成人精品一区久久| 日本五十路高清| 日本a在线网址| 老司机福利观看| 成人国产综合亚洲| 美女黄网站色视频| 在线免费观看不下载黄p国产 | 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 国产视频内射| 欧美日韩瑟瑟在线播放| 久久精品久久久久久噜噜老黄 | 18禁在线播放成人免费| 麻豆av噜噜一区二区三区| 91在线观看av| 亚洲国产精品sss在线观看| 制服丝袜大香蕉在线| 91麻豆av在线| 99久久九九国产精品国产免费| 日本色播在线视频| 深爱激情五月婷婷| 精品午夜福利视频在线观看一区| 少妇高潮的动态图| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 成年女人毛片免费观看观看9| 日韩欧美在线乱码| 2021天堂中文幕一二区在线观| av视频在线观看入口| 校园春色视频在线观看| 白带黄色成豆腐渣| 丰满的人妻完整版| 日本欧美国产在线视频| 日日夜夜操网爽| 久久久午夜欧美精品| 极品教师在线免费播放| 干丝袜人妻中文字幕| 91在线观看av| 大型黄色视频在线免费观看| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 在线播放无遮挡| 国产 一区精品| 色播亚洲综合网| 一本精品99久久精品77| 一区二区三区激情视频| 久久精品国产清高在天天线| 99久久精品国产国产毛片| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 免费大片18禁| 老女人水多毛片| 日本五十路高清| 天美传媒精品一区二区| 国产综合懂色| 国产精品久久久久久亚洲av鲁大| 免费观看人在逋| 99久久成人亚洲精品观看| 999久久久精品免费观看国产| 99热只有精品国产| 啦啦啦啦在线视频资源| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久久久电影| 欧美激情国产日韩精品一区| 在线观看一区二区三区| 亚洲熟妇熟女久久| 美女高潮的动态| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| 久久天躁狠狠躁夜夜2o2o| 成人综合一区亚洲| 神马国产精品三级电影在线观看| 美女xxoo啪啪120秒动态图| 国产av一区在线观看免费| 日韩精品青青久久久久久| 97热精品久久久久久| 国产精品野战在线观看| 婷婷色综合大香蕉| 日本一二三区视频观看| 国产精品人妻久久久久久| 精品一区二区免费观看| 人妻少妇偷人精品九色| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 在线播放无遮挡| 九九久久精品国产亚洲av麻豆| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 一进一出好大好爽视频| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 美女黄网站色视频| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻| 婷婷精品国产亚洲av在线| 亚洲国产精品成人综合色| 99精品在免费线老司机午夜| 亚洲真实伦在线观看| 一个人观看的视频www高清免费观看| 国产高清三级在线| 12—13女人毛片做爰片一| 成人午夜高清在线视频| 真实男女啪啪啪动态图| 国产三级在线视频| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 男女下面进入的视频免费午夜| 国内精品宾馆在线| 欧美人与善性xxx| 我的女老师完整版在线观看| 99热6这里只有精品| 亚洲va日本ⅴa欧美va伊人久久| 欧美bdsm另类| 中国美女看黄片| 色综合婷婷激情| 亚洲美女视频黄频| 国产人妻一区二区三区在| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 亚洲电影在线观看av| 嫩草影院精品99| 日韩欧美国产在线观看| 亚洲av中文av极速乱 | 久久草成人影院| 欧美日韩黄片免| а√天堂www在线а√下载| 久久国产精品人妻蜜桃| 人人妻人人澡欧美一区二区| 午夜老司机福利剧场| 日韩在线高清观看一区二区三区 | 一区二区三区四区激情视频 | 高清不卡的av网站| 又黄又爽又刺激的免费视频.| 欧美亚洲 丝袜 人妻 在线| av国产久精品久网站免费入址| 日韩成人伦理影院| 国产成人91sexporn| 国产乱来视频区| 国产成人精品一,二区| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 国产伦精品一区二区三区四那| 99热网站在线观看| 秋霞在线观看毛片| 久久久久久久久久人人人人人人| av国产精品久久久久影院| 一级爰片在线观看| 3wmmmm亚洲av在线观看| 下体分泌物呈黄色| 五月开心婷婷网| 久久人人爽人人爽人人片va| 国产乱人偷精品视频| 国产黄频视频在线观看| 国产 精品1| 免费观看在线日韩| 国产黄片视频在线免费观看| 夜夜爽夜夜爽视频| 26uuu在线亚洲综合色| 成年人午夜在线观看视频| 国产av精品麻豆| 美女福利国产在线 | 男人舔奶头视频| 国产精品熟女久久久久浪| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| 精品酒店卫生间| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 色视频www国产| 纵有疾风起免费观看全集完整版| 精品久久久精品久久久| 波野结衣二区三区在线| 毛片一级片免费看久久久久| 欧美人与善性xxx| 国产亚洲欧美精品永久| 99热这里只有是精品50| 国产一区二区在线观看日韩| 久久久久国产精品人妻一区二区| 午夜福利在线观看免费完整高清在| 久久97久久精品| 欧美激情国产日韩精品一区| 激情 狠狠 欧美| 国产精品人妻久久久久久| 丰满乱子伦码专区| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 成人二区视频| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 国产亚洲91精品色在线| 欧美高清性xxxxhd video| 91aial.com中文字幕在线观看| 国产老妇伦熟女老妇高清| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 免费看光身美女| 激情 狠狠 欧美| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 免费黄网站久久成人精品| 深夜a级毛片| 性色av一级| 22中文网久久字幕| 男人和女人高潮做爰伦理| 亚洲欧美精品自产自拍| 91精品伊人久久大香线蕉| 久久久欧美国产精品| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 免费播放大片免费观看视频在线观看| 狠狠精品人妻久久久久久综合| 精品人妻视频免费看| 成年免费大片在线观看| 男女边摸边吃奶| 国产精品一区www在线观看| 1000部很黄的大片| 国产亚洲精品久久久com| 日本-黄色视频高清免费观看| 免费观看的影片在线观看| 亚洲经典国产精华液单| 深爱激情五月婷婷| 蜜桃在线观看..| 久久影院123| 亚洲av中文字字幕乱码综合| 国产男女内射视频| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 内地一区二区视频在线| 一区在线观看完整版| 国产精品国产三级国产专区5o| 亚洲av欧美aⅴ国产| 久久久色成人| 你懂的网址亚洲精品在线观看| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 午夜免费鲁丝| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 久热这里只有精品99| 一边亲一边摸免费视频| 国产成人精品一,二区| 高清日韩中文字幕在线| av线在线观看网站| 国产精品av视频在线免费观看| 晚上一个人看的免费电影| 日本av免费视频播放| 99热这里只有是精品在线观看| 久久精品人妻少妇| 国产精品99久久99久久久不卡 | 日韩av不卡免费在线播放| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 国产人妻一区二区三区在| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 99热全是精品| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的 | 亚洲国产精品999| 我要看日韩黄色一级片| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| av视频免费观看在线观看| 国国产精品蜜臀av免费| 99久久精品一区二区三区| 一级a做视频免费观看| h视频一区二区三区| 有码 亚洲区| 国产伦精品一区二区三区四那| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 青青草视频在线视频观看| 亚洲经典国产精华液单| 久久久色成人| 一区二区三区精品91| 啦啦啦啦在线视频资源| 精品久久久久久久久亚洲| 直男gayav资源| 97超视频在线观看视频| 成人综合一区亚洲| 精品久久久久久久久av| 在线观看免费视频网站a站| 国产精品精品国产色婷婷| 熟女av电影| 久久精品久久精品一区二区三区| 欧美最新免费一区二区三区| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 最近的中文字幕免费完整| av在线观看视频网站免费| 香蕉精品网在线| 国产伦精品一区二区三区视频9|