• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Investigation into the Isolation Performance of Mono-and Bi-stable Systems

    2014-04-24 02:00:22

    1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

    2. Departamento de Engenharia Mecanica, UNESP, Ilha Solteira 03001-000, Brizal

    An Investigation into the Isolation Performance of Mono-and Bi-stable Systems

    Zeqi Lu1, Tiejun Yang1*, Michael J. Brennan2, Xinhui Li1and Zhigang Liu1

    1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

    2. Departamento de Engenharia Mecanica, UNESP, Ilha Solteira 03001-000, Brizal

    Motivated by the need for improving the isolation performance, many research studies have been performed on isolators with nonlinear characteristics. Based on the shape of their phase portrait, such devices can be configured as either a mono- or bi-stable isolator. This paper focuses on investigating the relative performance of these two classes under the same excitations. Force transmissibility is used to measure the isolation performance, which is defined in terms of the RMS of the ratio of the transmitted force to the excitation force. When the system is subjected to harmonic excitation, it is found that the maximum reduction of the force transmissibility in the isolation range using Quasi-Zero stiffness is achieved. When the system is subjected to random excitation, it has the same effect of Quasi-Zero stiffness. Further, optimum damping can be changed with stiffness and has minimum value.

    nonlinear isolation; bi-stable system; force transmissibility; random excitation; mono-and bi-stable systems; Quasi-Zero stiffness

    1 Introduction

    Linear vibration isolators are useful if their natural frequencies are less than 1/2 × excitation frequency (Rivin, 2003; Mead, 1998; Piersol and Paez, 2009). But to achieve low natural frequency vibration isolation, a large static deflection is undesirable. To overcome this problem, a nonlinear isolator can be used which has a large static but low dynamic stiffness (Carrellaet al., 2007, 2009; Le and Ahh, 2011; Shawet al., 2013; Lu and Bai, 2011). Such systems can be modeled by a combination of springs which are arranged geometrically to achieve a low dynamic stiffness and hence a low natural frequency, but at the same time have a low static deflection (Carrellaet al., 2012; Alabuzhevet al., 1989; Robertsonet al., 2009). The review paper (Ibrahim, 2008) compares many nonlinear isolators and shows that research into nonlinear isolators is very active (Tang and Brennan, 2013; Xiaoet al., 2013). Yanget al., (2014) studied the steady-state performance of atwo-stage vibration isolator, which is configured by a bistable oscillator and a linear oscillator, it is found that the single periodic valley and intral-well responses for isolation purposes can be increased by greater bistable stage damping. The paper (Luet al., 2013) incorporates geometric stiffness nonlinearity into a two-stage isolator to overcome the problems of high static deflection and low roll-off rates at high frequency. It has been found that nonlinearity in the lower stage has a profound effect, and significantly improves the effectiveness of the isolation system. So the force transmissibility in the isolation range is reduced as horizontal stiffness increases. However, determining if the isolation performance of the nonlinear isolation system with linear negative stiffness is improved is difficult.

    The aim of this paper is to explore the advantages of using linear negative stiffness that can be gained by incorporating geometrical stiffness nonlinearity. After the isolation performance of the system subjected to harmonic excitation is investigated, the force transmissibility under random excitation is determined to show whether the benefit of linear negative stiffness incorporating geometrical stiffness nonlinearity in this case can be achieved.

    The positioning of the auxiliary springs with a larger value so that the system becomes bi-stable in the single stage isolator is considered. Although the force transmissibility is defined as in the Luet al. (2013), the RMS of the ratio of the transmitted force to the excitation force is used, as the authors’ intention is to investigate the basic dynamics of the system when it has a response at harmonic excitation and random excitation. Numerical simulation is a simple and appropriate method for this type of analysis.

    2 Description of the bi-stable isolation system

    Fig. 1 shows a simple lumped parameter model of a nonlinear vibration isolator with linear negative stiffness. The system is the nonlinear isolator which is a particular configuration of three linear springs because of the geometrical configuration (Carrelaet al., 2009). The horizontal springs have critical valueck. If the horizontal stiffness of the system is smaller than the critical value, it is a mono-stable system; otherwise, it becomes bi-stable,which has more complicated dynamic behaviors compared with the mono-stable system (Pellegriniet al., 2012; Mann and Owens, 2013).

    The force-deflection curve for the isolator is given by:

    which can be written in non-dimensional form as:

    Fig. 1 Model of a non-linear isolator that can behave as amono- or double-well system

    By choosing appropriate values for the two parametersand ?lfor the oblique springs, zero dynamic stiffness can be achieved, i.e. Quasi-Zero stiffness can be realized when the critical stiffnessneeds to satisfy:

    As shown in Fig. 2, it is found that the phase trajectory presents a single or double well shape whenis smaller or larger thanrespectively. Whenis less than 1, the effect of the horizontal springs is to soften the isolator so that its stiffness is less than the vertical springvk. Whenis larger than 1, it has a detrimental effect that the linear stiffness is increased and the amplitude-frequency curve bends to the right. When the stiffness and initial length of the horizontal spring are fixed, it is found that the bi-stable configuration has a shorter installation length than the mono-stable configuration.

    For 0.2xl≤ Eq. (1) can be approximated byin whichand the equation of the motion of the system in Fig. 1 under both harmonic excitationFecos(ωt) and random excitation(Dis the noise intensity) can be approximated by the Duffing equation, which can be written in non-dimensional form as:

    Fig. 2 Kinds of phase portraits in a parameter space

    It should be noted thatαis the non-dimensional natural frequency of the system when the amplitude of the oscillation is small enough so that the nonlinear termγx?3has a negligible effect.

    Written as a stochastic differential equation, Eq. (4) becomes:

    This equation can be written as the system of integral equations:

    Eq. (6) written as the Euler-Maruyama scheme (Kloeden and Platen, 1995; Vanden-Eijnden and Ciccotti, 2006) is given by:

    The force transmissibilityFTof the system is the measure used in the investigation. It is defined in terms of the RMS of the ratio of the transmitted forcetfto the excitation forceef.

    where,ft= 2ζx?′+αx?+γx?3.

    3 Harmonic excitation

    This section investigates the response behavior of the bi-stable isolation system only subjected to the harmonic excitation which hasfe=cos(Ωτ)and the force transmissibility to the base.

    The maximum amplitude of the excitation force that can be applied to the peak in the transmissibility to occur at frequencies lower than non-dimensional frequencyΩ=1 is given by (Carrellaet al(2012)).

    3.1 Frequency response

    Fig. 3 The displacement amplitude-frequency responses of the bi-stable isolator at different excitation amplitudes, with increasing frequency; ζ= 0.05,=0.088

    Reduction of the force transmissibility using a bi-stable system is of considerable interest in vibration isolation. To provide insight into the isolation performance, numericalsimulations were performed on Eq. (4) for linearly increasing excitation frequencies. The graphs of 3(a-f) show an array of frequency responses that were predicted for different excitation levels. Blue shadow, black points and red line reprent the continuous sampling of the displacement, amplitude of the displacement and equilibrium points of the system respectively. More specifically, when the excitation amplitudeis very small, the response is almost the linear one and the peak is near the linear natural frequency as shown in Fig 3(a). Asis increased, the jump-up phenomenon occurs as the system develops a softening nonlinearity, as shown in Fig. 3(b) and 3(c). Here, the system is constrained to vibrate in one of the wells. Whenhas a moderate level it reveals chaotic motion, reducing the peak resonance and jumping between the two wells around the linear natural frequency, as shown in Fig. 3(d). Fig. 3e and 3f show the dynamic behavior whenhas a large level. It is clear that the system develops the hardening nonlinearity which has a jump-down phenomenon, and the range of the jumping between the two wells extends to lower frequencies. At the highest excitation, the harmonic response is so low at high frequency that the system is constrained to vibrate in one of the wells. There it is seen to have a jump-up phenomenon as shown in Fig. 3(f). The system being constrained to vibrate in which specific well depends on the state of the previous moment. As shown in Fig. 3(d,e,f), the system begins to randomly jump between the two wells around the non-dimensional frequency 1Ω= , so at the next higher excitation frequency, the system is randomly constrained to vibrate in one of the wells.

    3.2 Force transmissibility

    Fig. 4 shows the force transmissibility of the bi-stable system changing with excitation amplitudefor the cases. And the parameters are the same as those in Fig.3, black points:red points:green points:lue points: It is found thatthe peak of the force transmissibility is reduced and bends to the left with the increasing excitation amplitude; Another observation is that all the curves gather together into one line at low and high frequencies.

    Fig. 5 shows the comparison of the force transmissibility between the mono-and the bi-stableconfigurations, with parameters used in Fig. 4, and critical stiffness= 1.17. Red line:= 0, blue line:?= 0.7,black line:, brown line:k?= 1.6, green line:?= 2. As shown in Fig. 5(a) with the small excitation amplitude, it is clear that the isolation range is extended to lower frequencies asincreases in the range of the mono-stable system until ? 1.17= , then narrows in the range of the bi-stable system. As a bi-stable system, a softening nonlinearity is observed and the peak moves to the right. As shown in Fig. 5(b) with the large excitation amplitude, which may vibrate between the two wells, the same effect of the stiffness ratioon the force transmissibility of the mono- and bi-stable systems at high frequency is indicated.

    Fig. 4 The magnitude of force transmissibility of the bi-stable isolator at different excitation amplitudes

    Fig. 5 The force transmissibility of the isolator at different ?k

    4 Random excitation

    The response and force transmissibility of the bi-stable system subjected to the random excitationwith the parametervarying from 0 to 4, are investigated in this section. The same isolation performance between the harmonic and the random excitation is found for the linear system, but not for the bi-stable system. The degenerative equation of motion of the bi-stable system only subjected to random excitation in Fig. 1 can be approximated by:

    4.1 Time response

    When the system is excited by a force which has Gaussian random characteristics, the responses of the mass and the phase portrait are shown in Fig. 6. It can be seen that for lower excitation forces, the system is constrained to vibrate in one of the wells (see Fig. 6(a)). For moderate force levels, the system will jump between the two wells and the displacement response shows some regularity (see Fig. 6(b)). For large force levels, the regular motion is disrupted and the response becomes stochastic again (see Fig. 6(c)).

    4.2 Force transmissibility

    The definition of force transmissibility for the bi-stable isolation system subjected to random excitation is the same as the previous section, but the noise intensity domain is used. Fig. 7(a) shows the effect of changingon the magnitude of force transmissibility. And the parameters are the same as in Fig. 6. Red line:, black line:green line1.5, light green line:k?= 1.8, blue line:k?= 2.Whenis fixed at a chosen value, it is found that the force transmissibility of the bi-stable isolation system is decreased asis increased, until, then increased. The optimum force transmissibility at eachis shown as the brown dashed line. Interestingly, both the optimum intensity of noiseand the suppression bandwidth of the valley are increased asincreases. Fig. 7(b) shows the force transmissibility compared with that of the mono-stable isolation system configured by. When the noise intensityis fixed at 0.01, it is found that the minimum magnitude of force transmissibility occurs at the Quasi-zero stiffness. Fig. 7c shows the escaping area in theplane. Shadow area in theplane indicates the escaping area, red crossed points are the same with the brown dashed line in Fig. 7(a) and indicates the optimum points for isolation. It is clear that the optimum noise intensityfor isolation is in very good agreement with the upD?-limitation boundary for escaping.

    A parametric study was carried out to illustrate how the parameters affect the dynamic behaviour and the results are shown in Fig. 8. Fig. 8(a) shows the effects ofζandon the magnitude of the force transmissibility. It is found that an oblique bowl occurs. Fig. 8(b) shows the optimum dampingζoptvariation withFor the linear isolator, the optimum dampingζoptis the constant which hasζopt= 0.5. For the bi-stable isolator, it is clear that the optimum damping is decreased asincreases, untilthen it increases, as shown in Fig. 8(b). Fig. 9(a) shows the effects ofandon the magnitude of the force transmissibility. It is found that an arc-trench occurs in the3D surfance chart. Fig. 9(b) shows the optimum stiffness ratiochanging withRed cross points reprent numerical results, blue solid line reprents theory reslut predicted by Eq. (2), they are in very good agreement.

    Fig. 6 Responses of the system when it is subjected to random excitation, at? 0.7= ,? 2= , 0.5ζ=

    Fig. 7 The magnitude of force transmissibility at differentand

    Fig. 8 The magnitude of force transmissibility at differentandζat0.7= ,0.01= .

    5 Conclusions

    This paper investigates the usage of a nonlinear system with linear negative stiffness to improve isolation performance with the additional benefit of a small installation length as compared with the linear positive stiffness. Force transmissibility is used to measure the isolation performance, which is defined in terms of the RMS of the transmitted force. It is found that the Quasi-Zero stiffness is the optimum stiffness for both isolation of harmonic and random excitation. Three phenomena regarding the nonlinear isolator with linear negative stiffness subjected to random excitation are particularly interesting. First the magnitude of the force transmissibility is decreased asincreases, untilthen it is increased. Second, the optimum damping is changed withand has minimum value. Third, the optimum magnitude of force transmissibility occurs along the arc-trench in theplane.

    Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P (1989).Vibration protecting and measuring systems with quasi-zero stiffness. Hemisphere Publishing, New York.

    Carrella A, Brennan MJ, Waters TP (2007). Static analysis of a passive vibration isolator with quasi-zero stiffness characteristic.Journal of Sound and Vibration, 301(3-5), 678-689.

    Carrella A, Brennan MJ, Kovacic I, Waters TP (2009). On the force transmissibility of a vibration isolator with quasi-zero-stiffness.Journal of Sound and Vibration, 322(4-5), 707-717.

    Carrella A, Brennan MJ, Waters TP, Lopes Jr. V (2012). Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness.International Journal of Mechanical Sciences, 55(1), 22-29.

    Ibrahim RA (2008). Recent advances in nonlinear passive vibration isolators.Journal of Sound and Vibration, 314(3-5), 371-452.

    Kloeden PE, Platen E (1992).numerical solutions of stochastic differential equations. Springer, Berlin.

    Le TD, Ahh KK (2011). A viration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat.Journal of Sound and Vibration, 330(26), 6311-6335.

    Lu C, Bai H (2011). A new type nonlinear ultra-low frequency passive vibration isolation system.Journal of Vibration and Shock, 30(1), 234-236.

    Lu Z, Brennan MJ, Yang T, Li X, Liu Z (2013). An investigation of a two-stage nonlinear vibration isolation system.Journal of Sound and Vibration, 322(4-5), 1456-1464.

    Mann BP, Owens BA (2013). Investigations of a nonlinear energy harvester with a bistable potential well.Journal of Sound and Vibration, 329(9), 1215-1226.

    Mead DJ (1998).Passive vibration control. Wiley, NY.

    Pellegrini SP, Tolou N, Schenk M, Herder JL (2012). Bistable vibration energy harvesrers: A review.Journal of Intelligent Material Systems and Structures, 24(11), 1303-1312.

    Piersol AG, Paez TL (2009).Harris′ Shock and vibration handbook 6th edition. McGraw-Hill, New York.

    Rivin EI (2003).Passive vibration isolation. American Society of Mechanical Engineers Press, New York.

    Robertson WS, Kidner MRF, Cazzolato BS, Zander AC (2009). Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation.Journal of Sound and Vibration, 326(1), 88-103.

    Shaw A, Neild S, Wagg D, Weaver P, Carrella A (2013). A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation.Journal of Sound and Vibration, 332(24), 6265-6275.

    Tang B, Brennan MJ (2013). A comparison of two nonlinear damping mechanisms in a vibration isolator.Journal of Sound and Vibration, 332(2), 510-520.

    Vanden-Eijnden E, Ciccotti G (2006). Second-order integrators for Langevin equations with holonomic constraints.Chemical Physics Letters, 429, 310-316.

    Xiao Z, Jing X, Cheng L (2013). The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations.Journal of Sound and Vibration, 332(5), 1335-1354.

    Yang K, Harne RL, Wang KW, Huang H (2014). Investigation of a bistable dual-stage vibration isolator under harmonic excitation.Smart Materials and Structures, 23(4), 045033.

    Author biographies

    Zeqi Luwas born in 1985. He is a PhD candidate at Harbin Engineering University. He has presented one paper at an international conference and has one paper published in the Journal of Sound and Vibration. His current research interest is improved passive vibration isolation using nonlinear mechanisms.

    Tiejun Yangwas born in Hunan, China in 1972. He received a BSc, MSc in Diesel Engineering and a PhD in Marine Engineering from Harbin Engineering University in 1994, 1997 and 2001, respectively, and then became a postdoctoral researcher at the National Key Laboratory of Rotorcraft and Aeromechanics, Nanjing University of Aeronautics and Astronautics. From 2006 through 2007, he worked at the Dynamic Group of the Institute of Sound and Vibration Research at Southampton University in UK. Now he is a professor at the Power and Energy Engineering College, Harbin Engineering University. He is a member of the Acoustic Society of America, International Institute of Acoustics and Vibration, American Society of Mechanical Engineers. He has published over 70 journal and conference papers regarding vibration and noise control. His research interests include noise and vibration control, active vibration and noise control, and nonlinear vibration.

    Michael J. Brennangraduated from the Open University while he was serving in the Royal Navy. He received an MSc in Sound and Vibration Studies and a PhD in the active control of vibration, both from the University of Southampton, United Kingdom. He is a retired Professor of Engineering Dynamics at the Institute of Sound and Vibration Research (ISVR), the University of Southampton, UK, and is currently a Visiting Professor at UNESP, Ilha Solteira in Brazil. He is a past President of the European Association of Structural Dynamics, Associate Editor of the Transactions of the ASME Journal of Vibration and Acoustics and Guest Professor at Harbin Engineering University in China. He has a wide range of research interests, encompassing active and passive control of vibration, acoustics, vibroacoustics and rotor dynamics.

    Zhigang Liuwas born in Shandong, China in 1956. He received his BS and MS degrees from Harbin Ship Engineering Institute in 1981 and 1987 respectively, and then received a PhD degree from Harbin Engineering University in 2000. Now he is the president of Harbin Engineering University and a professor and supervisor for PhD students. He is the vice-chairman of the Shipbuilding Industry Association of China, the Chinese Society of Naval Architects and Marine Engineers, the Science and Technology Association of Heilongjiang Province. He is also the executive director of Nuclear Industry Association of China and the Internal Combustion Engine Institute of China. He has authored and co-authored more than 100 journal and conference papers, one monograph on active vibration control of marine diesel. His main research interests include vibration and noise control, diesel dynamics,etc.

    1671-9433(2014)03-0291-08

    Received date: 2013-11-28.

    Accepted date: 2014-06-04.

    Foundation item: Supported by the National Natural Science Foundation of China (No. 51375103).

    *Corresponding author Email: yangtiejun@hrbeu.edu.cn

    ? Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014

    国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| 91aial.com中文字幕在线观看| 免费无遮挡裸体视频| 啦啦啦啦在线视频资源| 男女视频在线观看网站免费| 亚洲av成人精品一二三区| 熟女电影av网| 80岁老熟妇乱子伦牲交| 超碰97精品在线观看| av卡一久久| 激情五月婷婷亚洲| 国产 亚洲一区二区三区 | 精品熟女少妇av免费看| 看黄色毛片网站| 国产淫片久久久久久久久| 欧美性猛交╳xxx乱大交人| 色综合亚洲欧美另类图片| 日产精品乱码卡一卡2卡三| 国产午夜精品一二区理论片| 尤物成人国产欧美一区二区三区| 国产中年淑女户外野战色| 超碰av人人做人人爽久久| 国产精品久久久久久精品电影| 日韩精品青青久久久久久| 日本熟妇午夜| 天堂网av新在线| 国产精品蜜桃在线观看| 亚洲人与动物交配视频| 丰满少妇做爰视频| 免费观看性生交大片5| 亚洲美女视频黄频| 国产精品国产三级专区第一集| 日韩一本色道免费dvd| av天堂中文字幕网| 免费av观看视频| 成人午夜精彩视频在线观看| 亚洲av成人精品一区久久| 18禁动态无遮挡网站| 99久国产av精品| 非洲黑人性xxxx精品又粗又长| 麻豆成人午夜福利视频| 亚洲欧美清纯卡通| 欧美性感艳星| 激情五月婷婷亚洲| 国产男人的电影天堂91| 日韩欧美三级三区| 国产不卡一卡二| 汤姆久久久久久久影院中文字幕 | 2022亚洲国产成人精品| 高清午夜精品一区二区三区| 久久鲁丝午夜福利片| 青春草视频在线免费观看| 亚洲精品国产av蜜桃| 乱系列少妇在线播放| 日韩欧美精品免费久久| 免费大片18禁| 久久久成人免费电影| av在线蜜桃| 亚洲无线观看免费| 国产在线男女| 国产在视频线在精品| 干丝袜人妻中文字幕| 亚洲av免费高清在线观看| 青春草亚洲视频在线观看| 久久久久久久久久黄片| 国产有黄有色有爽视频| 超碰97精品在线观看| 最近的中文字幕免费完整| 国产亚洲av嫩草精品影院| 舔av片在线| 国国产精品蜜臀av免费| 我的女老师完整版在线观看| 婷婷色综合大香蕉| 日韩av在线免费看完整版不卡| 国产av码专区亚洲av| 高清视频免费观看一区二区 | 日韩人妻高清精品专区| 麻豆成人av视频| 亚洲在线自拍视频| 午夜福利成人在线免费观看| av在线播放精品| 亚洲av成人av| 2021天堂中文幕一二区在线观| 人体艺术视频欧美日本| 99re6热这里在线精品视频| 老司机影院成人| 亚洲综合色惰| 男的添女的下面高潮视频| 岛国毛片在线播放| 欧美激情国产日韩精品一区| 色5月婷婷丁香| 久久精品国产亚洲av涩爱| 国产精品99久久久久久久久| 国产精品不卡视频一区二区| 一级毛片aaaaaa免费看小| 亚洲在线观看片| 亚洲av中文字字幕乱码综合| 联通29元200g的流量卡| 成人欧美大片| 欧美变态另类bdsm刘玥| 国产在线男女| 日日摸夜夜添夜夜添av毛片| 精品久久久噜噜| 免费人成在线观看视频色| 国产欧美日韩精品一区二区| 国产免费又黄又爽又色| 国产高清三级在线| 观看免费一级毛片| 午夜久久久久精精品| 夜夜爽夜夜爽视频| 欧美潮喷喷水| 亚洲丝袜综合中文字幕| 天堂av国产一区二区熟女人妻| 日韩欧美国产在线观看| 国产日韩欧美在线精品| 国产成人a区在线观看| 欧美97在线视频| 精品一区二区三卡| 秋霞伦理黄片| 亚洲精品一二三| 国产成人一区二区在线| 特级一级黄色大片| 久久久久久久久久成人| 尾随美女入室| 三级经典国产精品| 最近中文字幕2019免费版| 三级国产精品欧美在线观看| 午夜日本视频在线| 汤姆久久久久久久影院中文字幕 | 日韩中字成人| 看非洲黑人一级黄片| 亚洲av免费在线观看| 日韩三级伦理在线观看| 日韩强制内射视频| 成人特级av手机在线观看| 久久久精品94久久精品| 听说在线观看完整版免费高清| 一级二级三级毛片免费看| 久久精品综合一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 久久精品综合一区二区三区| 91久久精品国产一区二区三区| 有码 亚洲区| 乱人视频在线观看| 噜噜噜噜噜久久久久久91| 国精品久久久久久国模美| 六月丁香七月| 最后的刺客免费高清国语| 国产精品嫩草影院av在线观看| av女优亚洲男人天堂| 非洲黑人性xxxx精品又粗又长| 晚上一个人看的免费电影| 中文字幕免费在线视频6| 天堂影院成人在线观看| 免费少妇av软件| 午夜免费观看性视频| 精品少妇黑人巨大在线播放| 国产午夜精品论理片| 岛国毛片在线播放| 男女啪啪激烈高潮av片| 精品一区二区三区人妻视频| 国内少妇人妻偷人精品xxx网站| 欧美日韩综合久久久久久| 精品国产露脸久久av麻豆 | 精品久久久久久电影网| 久久人人爽人人爽人人片va| 狂野欧美激情性xxxx在线观看| 乱人视频在线观看| 99九九线精品视频在线观看视频| 两个人视频免费观看高清| 久久午夜福利片| 午夜爱爱视频在线播放| 午夜激情福利司机影院| 精品久久久久久成人av| 中文字幕人妻熟人妻熟丝袜美| 精品国内亚洲2022精品成人| 欧美人与善性xxx| 人妻制服诱惑在线中文字幕| 人人妻人人看人人澡| 色哟哟·www| 久久久久久久午夜电影| 日韩欧美三级三区| 卡戴珊不雅视频在线播放| 国产黄色小视频在线观看| 18禁在线播放成人免费| 日韩亚洲欧美综合| 极品教师在线视频| 最近最新中文字幕大全电影3| a级一级毛片免费在线观看| 欧美不卡视频在线免费观看| 精品一区二区三区人妻视频| 日韩中字成人| 欧美精品国产亚洲| 成人无遮挡网站| 国产中年淑女户外野战色| 九九爱精品视频在线观看| 日韩欧美一区视频在线观看 | 99久久九九国产精品国产免费| 大香蕉久久网| 欧美日韩综合久久久久久| 美女主播在线视频| 少妇的逼好多水| 亚洲高清免费不卡视频| 久久人人爽人人片av| 亚洲图色成人| 国产伦理片在线播放av一区| 永久网站在线| 久久精品久久久久久噜噜老黄| 男女国产视频网站| 亚洲综合精品二区| 如何舔出高潮| 国产淫语在线视频| 国产精品.久久久| freevideosex欧美| 黑人高潮一二区| 91久久精品国产一区二区成人| 99久国产av精品国产电影| 亚洲久久久久久中文字幕| 天堂av国产一区二区熟女人妻| 夫妻性生交免费视频一级片| 久久99蜜桃精品久久| 亚洲一级一片aⅴ在线观看| 一级毛片久久久久久久久女| 五月天丁香电影| 欧美极品一区二区三区四区| 看黄色毛片网站| 国内精品美女久久久久久| 午夜日本视频在线| 黑人高潮一二区| 两个人视频免费观看高清| 麻豆乱淫一区二区| 国产色婷婷99| 亚洲经典国产精华液单| 神马国产精品三级电影在线观看| 国产精品一及| 一夜夜www| 婷婷色av中文字幕| 一级毛片aaaaaa免费看小| 三级男女做爰猛烈吃奶摸视频| 2022亚洲国产成人精品| 爱豆传媒免费全集在线观看| 色播亚洲综合网| 日本黄色片子视频| 国产免费又黄又爽又色| 十八禁网站网址无遮挡 | 99久久九九国产精品国产免费| 麻豆久久精品国产亚洲av| 国产 一区精品| 国产精品日韩av在线免费观看| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线| 内地一区二区视频在线| 少妇的逼水好多| 日本免费在线观看一区| 日本午夜av视频| 精品久久国产蜜桃| 欧美xxxx黑人xx丫x性爽| 亚洲国产成人一精品久久久| 国产伦精品一区二区三区四那| 伊人久久精品亚洲午夜| 日日啪夜夜撸| 日韩av免费高清视频| 午夜老司机福利剧场| 免费看日本二区| 男人舔女人下体高潮全视频| 亚洲怡红院男人天堂| 日韩av在线大香蕉| 99热全是精品| 一级毛片aaaaaa免费看小| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 亚洲最大成人av| 99久久精品国产国产毛片| 国产在视频线在精品| 国产成人一区二区在线| 成年女人看的毛片在线观看| 美女大奶头视频| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 免费少妇av软件| 永久网站在线| 日韩伦理黄色片| 99九九线精品视频在线观看视频| 婷婷色综合www| 亚洲人成网站在线播| 在线播放无遮挡| 亚洲精品视频女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久久免费av| 午夜爱爱视频在线播放| 国产大屁股一区二区在线视频| 特级一级黄色大片| 亚洲激情五月婷婷啪啪| av又黄又爽大尺度在线免费看| 毛片一级片免费看久久久久| 女的被弄到高潮叫床怎么办| 波多野结衣巨乳人妻| 国产高潮美女av| 五月玫瑰六月丁香| 最近手机中文字幕大全| 日本黄色片子视频| 国产伦精品一区二区三区四那| 在线天堂最新版资源| 一级毛片 在线播放| av国产久精品久网站免费入址| 久久草成人影院| 九草在线视频观看| 亚洲欧美日韩无卡精品| or卡值多少钱| 国产人妻一区二区三区在| 欧美97在线视频| 边亲边吃奶的免费视频| av又黄又爽大尺度在线免费看| 能在线免费观看的黄片| 国产淫语在线视频| 两个人的视频大全免费| 国产成人精品婷婷| 禁无遮挡网站| 最近最新中文字幕大全电影3| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 少妇猛男粗大的猛烈进出视频 | 亚洲国产色片| av黄色大香蕉| 黄色日韩在线| 免费av毛片视频| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av天美| av天堂中文字幕网| 美女国产视频在线观看| 少妇裸体淫交视频免费看高清| 三级国产精品片| 人妻一区二区av| 欧美精品一区二区大全| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 日韩欧美国产在线观看| 大陆偷拍与自拍| 国产精品人妻久久久影院| 一本一本综合久久| 成年女人在线观看亚洲视频 | 大陆偷拍与自拍| 亚州av有码| 国产美女午夜福利| 久久亚洲国产成人精品v| 哪个播放器可以免费观看大片| 亚洲高清免费不卡视频| 国产色婷婷99| 男女边摸边吃奶| 综合色丁香网| 日本黄大片高清| 久久人人爽人人爽人人片va| 日韩一区二区三区影片| 成人高潮视频无遮挡免费网站| 七月丁香在线播放| 久久久久精品性色| av在线亚洲专区| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 日韩一区二区视频免费看| freevideosex欧美| 久久韩国三级中文字幕| 天堂网av新在线| 亚洲成人中文字幕在线播放| 国语对白做爰xxxⅹ性视频网站| 中文在线观看免费www的网站| 日韩av在线免费看完整版不卡| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品| 麻豆久久精品国产亚洲av| or卡值多少钱| 国产精品伦人一区二区| 日韩国内少妇激情av| 免费电影在线观看免费观看| 熟女人妻精品中文字幕| 熟妇人妻久久中文字幕3abv| 免费av毛片视频| 精品人妻熟女av久视频| 特级一级黄色大片| av免费在线看不卡| 麻豆成人午夜福利视频| 久久久久久久久久成人| 久久这里只有精品中国| 成人av在线播放网站| 内射极品少妇av片p| 日韩制服骚丝袜av| 国产人妻一区二区三区在| 黄色配什么色好看| 色综合亚洲欧美另类图片| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 久久久久九九精品影院| 青春草视频在线免费观看| 欧美日韩在线观看h| 性色avwww在线观看| 国产成人午夜福利电影在线观看| 男人舔女人下体高潮全视频| 毛片女人毛片| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 亚洲一区高清亚洲精品| 精品国产露脸久久av麻豆 | 亚洲成人久久爱视频| 特级一级黄色大片| 99久久中文字幕三级久久日本| 最近的中文字幕免费完整| 黄色一级大片看看| 国产 亚洲一区二区三区 | 午夜精品在线福利| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品专区欧美| 麻豆乱淫一区二区| av天堂中文字幕网| 日韩av免费高清视频| 国产单亲对白刺激| 肉色欧美久久久久久久蜜桃 | 久久久久久久午夜电影| 亚洲图色成人| 亚洲精品日韩在线中文字幕| 18禁在线无遮挡免费观看视频| 国产激情偷乱视频一区二区| 搡女人真爽免费视频火全软件| 国产淫片久久久久久久久| 99久久九九国产精品国产免费| 一级a做视频免费观看| 久久草成人影院| 国产精品一区二区性色av| 久久99热这里只频精品6学生| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 国内精品宾馆在线| 伦精品一区二区三区| xxx大片免费视频| 91精品国产九色| 久久热精品热| 最后的刺客免费高清国语| 久久这里有精品视频免费| 婷婷六月久久综合丁香| 日韩一区二区三区影片| 成年女人看的毛片在线观看| 嫩草影院精品99| 乱码一卡2卡4卡精品| 亚洲乱码一区二区免费版| 亚洲精品影视一区二区三区av| 久久这里有精品视频免费| 亚洲av男天堂| 成人鲁丝片一二三区免费| 午夜福利网站1000一区二区三区| 一个人观看的视频www高清免费观看| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 日本黄色片子视频| 两个人的视频大全免费| 日韩欧美精品免费久久| 日日摸夜夜添夜夜添av毛片| 丰满人妻一区二区三区视频av| 青春草国产在线视频| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 成人一区二区视频在线观看| 国产不卡一卡二| 亚洲精品第二区| 国产成人精品久久久久久| 亚洲四区av| 成人欧美大片| 免费观看a级毛片全部| 99久国产av精品国产电影| 色综合色国产| 淫秽高清视频在线观看| 欧美成人午夜免费资源| 中文字幕av成人在线电影| av卡一久久| 亚洲欧美成人精品一区二区| 色吧在线观看| 国产乱来视频区| 99视频精品全部免费 在线| 男人爽女人下面视频在线观看| 国产大屁股一区二区在线视频| 日本与韩国留学比较| 亚洲最大成人手机在线| www.av在线官网国产| 国产亚洲午夜精品一区二区久久 | 99热这里只有是精品在线观看| 国产有黄有色有爽视频| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| 美女大奶头视频| 久久久久精品性色| 成年版毛片免费区| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 精品国产三级普通话版| 韩国av在线不卡| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| 亚洲av免费在线观看| 又爽又黄无遮挡网站| 男人舔奶头视频| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| av在线播放精品| 国产成人午夜福利电影在线观看| 亚洲综合色惰| 免费看av在线观看网站| 日韩人妻高清精品专区| 在现免费观看毛片| 国产黄片美女视频| 日韩强制内射视频| 夜夜爽夜夜爽视频| 99久久精品热视频| 午夜福利成人在线免费观看| 日产精品乱码卡一卡2卡三| 国产淫片久久久久久久久| 日韩国内少妇激情av| 亚洲国产欧美在线一区| 中文字幕免费在线视频6| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 国产亚洲午夜精品一区二区久久 | 国产久久久一区二区三区| 日本与韩国留学比较| 亚洲18禁久久av| 日韩欧美国产在线观看| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 亚洲国产欧美人成| 人人妻人人澡人人爽人人夜夜 | 黄色日韩在线| 国产中年淑女户外野战色| 日韩不卡一区二区三区视频在线| a级一级毛片免费在线观看| 91精品伊人久久大香线蕉| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 国产黄频视频在线观看| 色尼玛亚洲综合影院| 狂野欧美激情性xxxx在线观看| 国产高清不卡午夜福利| 秋霞在线观看毛片| 国产 亚洲一区二区三区 | 国产欧美日韩精品一区二区| 嫩草影院新地址| 国产女主播在线喷水免费视频网站 | 欧美丝袜亚洲另类| 国产 一区精品| 一级爰片在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲av二区三区四区| 国产人妻一区二区三区在| 日韩不卡一区二区三区视频在线| 国产欧美日韩精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 中文字幕制服av| 夫妻午夜视频| .国产精品久久| 建设人人有责人人尽责人人享有的 | 亚洲一区高清亚洲精品| 亚州av有码| 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 久久国产乱子免费精品| 国产高清三级在线| 两个人视频免费观看高清| 日韩人妻高清精品专区| 中文字幕人妻熟人妻熟丝袜美| 中国国产av一级| 国产熟女欧美一区二区| 久久草成人影院| 色哟哟·www| 国产精品一区二区在线观看99 | 午夜福利高清视频| 高清毛片免费看| 中国国产av一级| 寂寞人妻少妇视频99o| 如何舔出高潮| 色综合站精品国产| 国产黄片美女视频| 韩国高清视频一区二区三区| 亚州av有码| 伦理电影大哥的女人| 免费在线观看成人毛片| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 亚洲成人久久爱视频| 美女国产视频在线观看| 亚洲在久久综合| 麻豆成人午夜福利视频| 精品久久久久久电影网| 国产精品99久久久久久久久| 国产人妻一区二区三区在| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜添av毛片| 在线 av 中文字幕| 亚洲国产av新网站| 尾随美女入室| 国产精品久久久久久精品电影小说 | 亚洲无线观看免费| 午夜精品在线福利| 亚洲怡红院男人天堂| 日日摸夜夜添夜夜添av毛片| 2021少妇久久久久久久久久久| 亚洲精品成人久久久久久| 天堂av国产一区二区熟女人妻| 亚洲精品国产av成人精品| 久久精品国产自在天天线| 人人妻人人看人人澡|