• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Singular Boundary Method:Three Regularization Approaches and Exterior Wave Applications

    2014-04-23 05:46:54ZhuoJiaFuWenChenJengTzongChenandWenZhenQu

    Zhuo-Jia Fu,Wen Chen,2,Jeng-Tzong Chenand Wen-Zhen Qu

    1 Introduction

    During the past decades we have witnessed a research boom on the boundary-type meshless techniques[Atluri and Zhu(2000);Chen et al.(2013)],since the con-struction of a mesh in the standard BEM is non trivial.They can be classified into weak and strong form categories.Among them,weak-form category includes the local boundary integral equation method[Zhu et al.(1998)],the meshless local Petrov-Galerkin method[Atluri and Zhu(1998);Zhang et al.(2013)],the boundary node method.[Mukherjee and Mukherjee(1997);Zhang et al.(2002)],the boundary face method.[Zhang et al.(2009)],the null- field boundary integral equation method[Chen et al.(2007);Lee and Chen(2013a);Lee and Chen(2013b)]and so on.Strong-form category includes the boundary point interpolation method[Gu and Liu(2002)],the method of fundamental solutions[Chen et al.(2008);Fairweather and Karageorghis(1998);Lin et al.(2011);Tsai(2008)],the boundary knot method[Chen and Tanaka(2002);Fu et al.(2011)],the boundary particle method[Fu et al.(2013);Fu et al.(2012)],the Trefftz method[Dong and Atluri(2012a);Dong and Atluri(2012b);Liu(2008)],the regularized meshless method[Chen et al.(2006);Young et al.(2005)],the modified method of fundamental solutions[Sarler(2009)],the singular boundary method[Chen(2009)]and the boundary distributed source method[Kim(2013);Liu(2010)]and so on.

    This study focuses on a recent meshless boundary collocation method,the singular boundary method(SBM)[Chen(2009)],which introduces the concept of source intensity factor to regularize the singularities of fundamental solutions,in some literatures it also named as origin intensity factor.Therefore,it avoids singular numerical integrals in the boundary element method and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions.

    At first,an inverse interpolation technique(IIT)has been proposed to determine the above-mentioned source intensity factors of fundamental solutions.This SBM formulation has been successfully applied to interior and exterior Laplace[Chen and Fu(2010);Chen et al.(2009);Chen and Wang(2010)],Poisson[Wei et al.(2013)],Helmholtz[Fu and Chen(2010)]and elastostatic[Gu et al.(2011)]problems.Later,Chen and Gu[Gu et al.(2012b)]introduced the desingularization of subtracting and adding-back technique and proposed an improved singular boundary method(ISBM)for interior and exterior potential problems.Its main improvement is developing a semi-analytical technique(SAT1)to determine the source intensity factors without any inner sample nodes.The approach employs the null- field or full- field integral equations to evaluate analytically the source intensity factors on Neumann boundary conditions for Laplace equation.After that it uses the inverse interpolation technique with boundary source points to determine the source intensity factors on Dirichlet boundary conditions for Laplace equation.Then Fu and Chen used the relationships between Laplace and Helmholtz-type fundamental solutions to extend the ISBM to solve interior and exterior Helmholtz-type problems[Chen et al.(2014);Fu et al.(2014);Fu and Chen(2013)].Recently,another semi-analytical technique(SAT2)has been proposed[Gu et al.(2012a)],whose difference with the SAT1 is implementing the integral mean value approach to determine the source intensity factors on Dirichlet boundary conditions for Laplace equation.

    This study will extend the SAT2 to determine the source intensity factors of the Helmholtz fundamental solutions,and then compares numerical accuracy and stability of these three approaches(IIT,SAT1 and SAT2)on exterior wave problems.A brief outline of the paper is as follows.Section 2 describes the singular boundary method with three regularization treatments for Helmholtz problems.In Section 3,the efficiency and accuracy of these three approaches are examined in 2D and 3D benchmark examples.Section 4 presents the singular boundary method to two exterior wave scattering applications.Finally,Section 5 concludes this paper with some remarks.

    2 Three regularization treatments in the SBM

    The problem under consideration is the propagation of time-harmonic waves in a homogeneous isotropic mediumDexterior to a closed bounded curve Γ,which is described by the Helmholtz equation

    subjected to the boundary conditions:

    wherek=ω/cthe wavenumber,ω the angular frequency,cthe wave speed in the exterior mediumD,and n the unit outward normal on physical boundary.ΓDand ΓNrepresent the essential boundary(Dirichlet)and the natural boundary(Neumann)conditions,respectively,which construct the whole closed bounded curve Γ=ΓD+ΓN,anduis complex-valued amplitude of radiated and/or scattered wave(velocity potential or pressure):

    where the subscriptsT,RandIdenote the total,radiation and incidence wave,respectively.For the exterior wave problems,it requires guaranteeing the physical requirement that all scattered and radiated waves are outgoing.This is accomplished by imposing an appropriate radiation condition at infinity,which is termed as the Sommerfeld radiation condition:

    wheredimis the problem dimension,andBy utilizing single layer fundamental solutions,the SBM approximate solutionsu(x)andq(x)of exterior Hemholtz problem(Eqs.(1)and(2))can be expressed as follows

    whereNdenotes the number of source pointssj,αjthejth unknown coefficient,nxthe outward normal unit vector on the collocation pointsxm,2D fundamental solutionsand 3D fundamental solutions G(xm,sj)=in whichis thenth order Hankel function of the first kind,the Euclidean distanceIf the collocation points and source points coincide,i.e.,xm=sj,the well-known singularities are encountered.The SBM introduces the concept of the source intensity factorsandto avoid these singularities.The key issue of the SBM is how to determine these source intensity factorsand.Fortunately,it is of interest to point out that the fundamental solutions of Helmholtz equation have the similar order of the singularities as the related fundamental solutions of Laplace equation[Kirkup(1998)].The corresponding relationships can be represented by the following asymptotic expressions

    where Euler constant γ=0.57721566490153286···,nsthe outward normal unit vector on the source pointssj,For 2D problem,Laplace fundamental solutionandFor 3D problem,Laplace fundamental solutionHence we can introduce the existing approaches to determine the source intensity factors for Laplace equation,and then implement the above-mentioned relationship to calculate the source intensity factors for Helmholtz equation.In the next section,we will introduce three approaches to determine the source intensity factors for removing the singularities of Helmholtz fundamental solutions at origin.

    2.1 Inverse interpolation technique

    This section will introduce a simple numerical technique,called the inverse interpolation technique(IIT)[Chen and Fu(2010);Fu and Chen(2010)],to determine the source intensity factors for Laplace equation.Then we can use the relationships between Helmholtz and Laplace fundamental solutions to determine the source intensity factors for Helmholtz equation.In the first step,the IIT requires choosing a known sample solutionuS0of Laplace equation and placing some sample pointsykinside the physical domain.It is noted that the sample pointsykdo not coincide with the source pointssj,and the number of sample pointsNKshould not be fewer than the source node numberNon physical boundary.By using the interpolation formula(3),we can then determine the influence coefficients βjandˉβjby solving the following linear equations

    Replacing the sample pointykwith the boundary collocation pointxm,the SBM interpolation matrix(Eqs.(1)and(2))can be written as

    The source intensity factors for Laplace equation can be calculated by:

    Then the source intensity factors for the Helmholtz equation can be represented as

    2.2 Semi-analytical technique with boundary IIT(SAT1)

    This section will introduce a semi-analytical technique[Chenetal.(2014);Guetal.(2012b)]to calculate the source intensity factors,it does not require the additional inner sample nodes.

    2.2.1 Source intensity factors on Neumann boundary conditions

    Figure 1:Schematic con figuration of(a)source points sjand the related curve on 2D problems and(b)source points sjand the related infinitesimal area Ljon 3D problems.

    By adopting the subtracting and adding-back technique in Eq.(3b)atxm=sj,we obtain

    According to the dependency of the outward normal vectors on the fundamental solutions of interior and exterior Laplace equations[Gu et al.(2012b);Young et al.(2005)],we have the following relationships

    and

    when the boundary shape is of a straight line,Eq.(10b)is explicitly equal to zero since nx(xm)=ns(sj)at all boundary knots.For an arbitrarily shaped smooth boundary,herein we assume that the source pointsjapproaches inchmeal to the collocation pointxmalong a line segment,then Eq.(10b)is tenable.Eq.(10c)can be derived based on the discretization of the reduced full- fields equations[Ochmann(1999)].With the help of Eqs.(4)and(10),Eq.(9)can be regularized as follows

    By contrast with Eq.(3b)atxm=sj,we can obtain

    which is the source intensity factors for Neumann boundary conditions in Eq.(3b).

    2.2.2 Source intensity factors on Dirichlet boundary conditions

    Next the source intensity factorscan be calculated by the inverse interpolation technique[Chen et al.(2014);Gu et al.(2012b)].This strategy chooses a sample solutionof Laplace equation,e.g.=x+y+cfor 2D problems and=x+y+z+cfor 3D problems.Then 2N+1 linear equations are obtained with 2N+1 unknowns(,βj,c)onNboundary source points and one inner pointxI.

    Therefore,the source intensity factorsin Eq.(3a)can now be determined indirectly by calculating the source intensity factorsof Laplace equation by using the expression(8a).

    2.3 Semi-analytical technique with integral mean value(SAT2)

    This section will introduce a recently developed semi-analytical technique[Gu et al.(2012a)],which do not require the inverse interpolation technique.As with Section 2.2.1,the regularized SBM formulation for the Neumann boundary condition(3b)can be expressed as follows

    and

    is the aforementioned source intensity factors for the Neumann boundary condition.Next the regularized expression for the Dirichlet boundary equation(3a)can be performed using the strategy proposed in the reference[Sarler(2009)],where the corresponding source intensity factors are directly set as an average value of the Laplace fundamental solution over a line segments.This can be formulated as

    Then the source intensity factorsfor the Dirichlet boundary condition can be calculated by using the expression(8a).

    3 Numerical investigations and discussions

    Figure 2:Sketch of(a)the scattering problem for an in finite soft cylinder and(b)the radiation problem of an in finite irregular-shaped rod.

    In this section,the efficiency,accuracy and convergence of the above-mentioned three treatments(IIT,SAT1 and SAT2)in the SBM are implemented to solve 2D and 3D exterior wave problems.The numerical accuracy is calculated by the relative root mean square errors(RMSE)Lerr(u)which is defined as

    Example 1:Scattering problem of a soft in finite circular cylinder(Dirichlet boundary condition)

    We consider a plane waveeikrcosθscattered by a soft in finite circular cylinder as shown in Fig.2a.The analytical solution of the scattering fielduS[Chen et al.(2007)]is

    Fig.3 shows the error analysis of the SBM with three treatments for 2D scattering problem withka=40.The analytical solutions in this case are calculated by using the first 100 terms in the above series representation(18).The test points(NT=101)are uniform angular distribution on the circle with radius 1.2.It can be found that all of these three methods converge with the increasing boundary node numberN.In this case,the SBM with SAT1 provides better results than the SBM with IIT and SAT2 under the same number of boundary knots,the slope of the convergence curve is about-3.The SBM with SAT2 has the slowest convergence rate and the slope of the convergence curve is about-1.While the SBM with IIT has the same convergence rate to the SAT1 with modestly increasing boundary node number(N=10000),but it converges slowly with further increasing boundary node number.This may result from the non-optimal source intensity factors calculated by the IIT.Consider the radiation problem of an in finite soft irregular-shaped rod as shown in Fig.2b.The analytical solution of the radiation fielduRis

    Fig.4 shows the error analysis of the SBM with three treatments for 2D radiation problem of a soft in finite irregular-shaped rod withka=1.The test points(NT=101)are uniform angular distribution on the circle with radius 1.5?0.425.

    Similar to the conclusion in Example 1,the SBM with SAT1 has the best performance among these three treatments,the SBM with SAT2 converges very slowly.

    Figure 3:Convergence analysis Lerr(u)of the SBM with IIT,SAT1 and SAT2 for the scattering problem of a soft in finite cylinder with ka=40

    Figure 4:Convergence analysis Lerr(u)of the SBM with IIT,SAT1 and SAT2 for the radiation problem of an soft in finite irregular-shaped rod with ka=1.

    Numerical stability is very sensitive to the placement of sample nodes in the SBM with IIT.

    Example 3:Scattering problem of a soft sphere(Dirichlet boundary condition)

    Figure 5:Sketch of a soft spherical scatterer with the incident wave uI.

    Consider the scattering problem of a soft sphere with the incident plane waveuI=where(θ0,?0)denotes the angle of the incident plane wave in the spherical coordinates as shown in Fig.5.The analytical solution of the scattering fielduS[Chen et al.(2010)]is

    Fig.6 shows the error analysis of the SBM with three treatments for 3D scattering problem withka=1.The analytical solutions in this case are calculated by using the first 30 terms in the above series representation(20).The test points(NT=100)are uniform angular distribution on the surface of the sphere with radius 1.25.It can be found that all of these three methods converge with the increasing boundary node numberN.In this case,the SBM with SAT1 provides better results than the SBM with IIT and SAT2 under the same number of boundary knots,the slope of the convergence curve is about-1.5.The SBM with SAT2 has the slowest convergence rate and the slope of the convergence curve is about-0.5.While the SBM with IIT has the same convergence rate to the SAT1 with modestly increasing boundary node number(N=10000),but it converges slowly with further increasing boundary node number.This may result from the non-optimal source intensity factors calculated by the IIT.

    Figure 6:Convergence analysis Lerr(u)of the SBM with IIT,SAT1 and SAT2 for the scattering problem of an soft sphere with ka=1.

    Example 4:Radiation model for a soft ellipsoid(Dirichlet boundary condition)Consider the radiation problem of a soft ellipsoidas shown in Fig.7.The analytical solution of the radiation fielduRis

    Fig.8 shows the error analysis of the SBM with three treatments for 3D radiation problem of a soft ellipsoid withka=1.The test points(NT=100)are uniform angular distribution on the surface of the ellipsoidSimilar to the conclusion in Example 3,the SBM with SAT1 has the best performance among these three treatments,the SBM with SAT2 converges very slowly.Numerical accuracy has a heavy oscillation with further increasing boundary node number(N>10000)by using the SBM with IIT.Generally speaking,the above-mentioned numerical results show that SAT1>IIT>SAT2 in numercial accuracy and SAT2>SAT1>IIT in numerical stability for solving 2D and 3D exterior wave radiation and scattering problems.

    Figure 7:Sketch of the radiation problem of a soft ellipsoid.

    Figure 8:Convergence analysis Lerr(u)of the SBM with IIT,SAT1 and SAT2 for the radiation problem of an soft ellipsoid with ka=1.

    4 Exterior wave scattering applications

    In this section,the SBM with SAT1 is implemented to two exterior wave scattering applications.First we consider water wave scattering problem.Under the assumptions of the potential flow and linear wave theory,3D water wave-structure interaction problem shown in Fig.9a can be reduced to 2D water wave scattering problem shown in Fig.9b by removing the depth dependence[Chen et al.(2011b);Chen et al.(2012);Evans and Porter(1997)].Then the mathematical model can be represented as

    Figure 9:Problem statement of(a)3D water wave-structure interaction and(b)the related 2D water wave problem.

    where rjdenotes the unit normal vector on thejth cylinder surface,?I(x1,x2)=eik(x1cosθinc+x2sinθinc)is the incident water wave and its amplitude isA,|η|=|A?(x1,x2)|the free-surface elevation,and the wavenumberkis the real root of the dispersion relationship ω2=gktanhkd,ω the angular frequency,gthe gravitational acceleration,dthe water depth andGp=γρω(μk)the dimensionless porosity[Chen et al. (2011b)],in which μ the dynamic viscosity coefficient,γ a material constant having the dimension of length and ρ the fluid density.Gp=0 means the impermeable cylinder. The entire plane potential- field regionR2is divided inton+1 sub-regions,nfinite circular regions,j=1,2,···,nand an in finite

    region ?0= ?e,whererepresents the coordinate of the center of thejth circular cylinder andrjis the radius of the related cylinder.Therefore,?j(x1,x2)denotes the horizontal velocity potential in the sub-region ?j,andwhereis the horizontal velocity potential of the scattering wave by thejth circular cylinder.

    In the SBM simulation,we set some parameters asa=0.4,b=0.5,d=2,θinc=0,ka=4.08482,and place 100 boundary nodes on the boundary of each cylinder.Fig.10 shows the free-surface elevation in the vicinity of ten-cylinder array with different dimensionless porosity(Gp=0,0.0001,1)and different disorder parameters(τ=0,0.1).As shown in Fig.11,the disorder displacement of each cylinder center away from its original regular position can be calculated by?xj=γj(b?a)τcos(2πγj),?yj= γj(b?a)τsin(2πγj),where the random number γjcan be generated by using Matlab function “rand”.

    From Fig.10a,it can be observed that the near-trapped mode phenomenon[Chen et al.(2011b);Evans and Porter(1997)]is revisited in the wave structure with impermeable regular cylinders(Gp=0,τ=0),and the maximum amplitude appearing on the inner sides of the cylinders is about 150 times over the incident wave amplitude.Numerical results demonstrate that both the porosity of the cylinder sidewall and the disorder arrangement have a great effect on the free-surface elevations in the vicinity of the wave structure.We can see from Fig.10 that the increase of the porosity leads to the decrease of the maximum free-surface amplitude,and small disorder arrangement can also reduce the maximum free-surface amplitude remarkably.When the porosity parameter is relatively large(Gp=1),the porosity of the structure has more influence to avoid the occurrence of near-trapped mode phenomenon than the disorder arrangement of the structure.When the porosity parameter is relatively small(Gp=0.0001),the disorder arrangement of the structure has more influence to avoid the occurrence of near-trapped mode phenomenon than the porosity of the structure.

    Figure 10:SBM results of the free-surface elevation in the vicinity of tency-linder array with different porosity and disorder parameters:(a)Gp=0,τ=0;(b)Gp=0,τ=0.1;(c)Gp=0.0001,τ=0;(d)Gp=0.0001,τ=0.1;(e)Gp=1,τ=0;(f)Gp=1,τ=0.1.

    Figure 11:Disorder displacement(?xj,?yj)of jth cylinder center with disorder parameter τ=0.1.

    Figure 12:Decomposition and conjunction technique for SH wave scattering problem.(a)Original region D,(b)a semi-in finite region D1and(c)an interior region D2.

    Then SH wave scattering problem with a semi-circular hill(a=b=1)is considered[Tsaur and Chang(2009)]as shown in Fig.12. ?I(x1,x2)=eik(x1cosθinc+x2sinθinc)is incident SH wave expression,where θincis the incident wave angle,kdenote the wavenumber.For easy comparison with the other reference results,the dimensionless frequency η is defined as η =.The mathematical model of SH wave scattering problem is

    By implementing decomposition and conjunction technique[Yuan and Liao(1996)],the mathematical model can be represented as

    and

    with the continuity condition on fictitious boundary

    For the interior problem,we chooseas the basis function,whereY0is zero-order Bessel functions of the second kind.The related source intensity factors can be calculated by Eq.(8)withIn the SBM simulation,we place 100 boundary nodes on the boundaryand 50 auxiliary nodes on the boundary Γ.

    Fig.13 shows the surface displacement amplitude versusxwith different incident wave angles and different dimensionless frequenciesη=3).From Fig.13,one can find that the present SBM performs well with the reference results[Chen et al.(2011a);Tsaur and Chang(2009)].

    Then the focusing phenomenon of vertical SH wave scattering(θinc=)by a semicircular hill is revisited.Fig.14 plots the spectral variation of surface displacement amplitudes along the central axis of the semi-circular hill,ranging from the top of the hill(y=1)to the bottom of the fictitious boundaryˉΓ(y=-1)with the dimensionless frequency η from 0 to 12.It should be mentioned that the present SBM results are in good accordance with the reference results[Tsaur and Chang(2009)].From Fig.14,it can be observed that the focusing of wave energy mostly occurs at the depth between y=0.5 and 0.75.However,the maximum surface displacement amplitudes may take place on the top of the semi-circular hill(y=1)at some frequencies(η=5.0-5.3 and 8.5-9.5).

    Figure 13:Surface displacement amplitudes|u|versus x with(a)incident wave angleand the dimensionless frequency η =2;(b)and η=3.

    Figure 14:Spectral variation of displacement amplitudes|u|along the central axis of the semi-circular hill for the incident SH wave angle of θinc=

    Figure 15:Synthetic seismograms of SH wave scattering by a semi-circular hill with the incident wave angle of θinc=

    wherefcdenotes the characteristic frequency of Ricker wavelet.In the SBM simulation,we setfc=1.5Hzand compute the surface displacement amplitudes|u|with 96 dimensionless frequencies(η=0.0625(Nf?1),Nf=1,2,···,96)as the frequency-domain solutions,and then introduce the Fast Fourier Transform to obtain the time-domain synthetic seismic response from the frequency-domain solutions.Fig.15 displays the synthetic seismograms of SH wave scattering by a semi-circular hill with the incident wave angleThe present SBM results are in good agreement with the reference results[Tsaur and Chang(2009)].

    5 Conclusions

    This study makes the numerical comparison on three treatments for calculating the source intensity factors in the singular boundary method.Numerical results shows that the SBM with SAT1 provides the best performance among these three methods,the SBM with SAT2 converges very slowly.By employing the SBM with IIT,numerical stability is very sensitive to the placement of sample nodes.In this study,we propose a strategy to select the appropriate sample nodes,however,this strategy still needs further verification and improvement.Generally speaking,numerical investigations show that SAT1>IIT>SAT2 in numercial accuracy and SAT2>SAT1>IIT in numerical stability for solving 2D and 3D exterior wave radiation and scattering problems.

    Then the SBM with SAT1 is implemented to two exterior wave applications.Numerical results demonstrate that the present SBM results are in good agreement with the reference results.For water wave-structure interaction,numerical investigations show that both the porosity of the cylinder sidewall and the disorder arrangement have a great effect on the free-surface elevations in the vicinity of the wave structure.For SH wave scattering by a semi-circular hill,the focusing phenomenon is revisited,and the related synthetic seismograms are plotted by introducing the Fast Fourier Transform.Further study is to introduce fast matrix algorithms[Bebendorf and Rjasanow(2003);Liu(2009);Yan et al.(2010)]to accelerate the SBM simulation for large-scale exterior wave applications.

    Acknowledgement:The work described in this paper was supported by the National Basic Research Program of China(973 Project No.2010CB832702),the National Science Funds for Distinguished Young Scholars of China(Grant No.11125208),the National Science Funds of China(Grant No. 11302069,11372097),the Fundamental Research Funds for the Central Universities(Grant No.2013B32814)and the 111 Project(Grant No.B12032).

    Atluri,S.N.;Zhu,T.(1998):A new Meshless Local Petrov-Galerkin(MLPG)approach in computational mechanics.Computational Mechanics,vol.22,no.2,pp.117-127.

    Atluri,S.N.;Zhu,T.(2000):New concepts in meshless methods.International Journal for Numerical Methods in Engineering,vol.47,no.1-3,pp.537-556.

    Bebendorf,M.;Rjasanow,S.(2003):Adaptive Low-Rank Approximation of Collocation Matrices.Computing,vol.70,no.1,pp.1-24.

    Chen,C.S.;Karageorghis,A.;Smyrlis,Y.S.(2008):The Method of Fundamental Solutions–A Meshless Method.Dynamic Publishers.

    Chen,J.T.;Chen,C.T.;Chen,P.Y.;Chen,I.L.(2007):A semi-analytical approach for radiation and scattering problems with circular boundaries.Computer Methods in Applied Mechanics and Engineering,vol.196,no.25-28,pp.2751-2764.

    Chen,J.T.;Lee,J.W.;Wu,C.F.;Chen,I.L.(2011a):SH-wave diffraction by a semi-circular hill revisited:A null- field boundary integral equation method using degenerate kernels.Soil Dynamics and Earthquake Engineering,vol.31,no.5-6,pp.729-736.

    Chen,J.T.;Lee,Y.T.;Lin,Y.J.(2010):Analysis of multiple-spheres radiation and scattering problems by using a null- field integral equation approach.Applied Acoustics,vol.71,pp.690-700.

    Chen,J.T.;Lin,Y.J.;Lee,Y.T.;Wu,C.F.(2011b):Water wave interaction with surface-piercing porous cylinders using the null- field integral equations.Ocean Engineering,vol.38,no.2-3,pp.409-418.

    Chen,J.T.;Wu,C.F.;Chen,I.L.;Lee,J.W.(2012):On near-trapped modes and fictitious frequencies for water wave problems containing an array of circular cylinders using a null- field boundary integral equation.European Journal of Mechanics-B/Fluids,vol.32,pp.32-44.

    Chen,K.H.;Chen,J.T.;Kao,J.H.(2006):Regularized meshless method for solving acoustic eigenproblem with multiply-connected domain.CMES:Computer Modeling in Engineering&Sciences,vol.16,no.1,pp.27-39.

    Chen,W.(2009):Singular boundary method:A novel,simple,meshfree,boundary collocation numerical method.(in Chinese).Acta Mechanica Solida Sinica,vol.30,no.6,pp.592-599.

    Chen,W.;Fu,Z.;Chen,C.S.(2013):Recent Advances on Radial Basis Function Collocation Methods.Springer Berlin.

    Chen,W.;Fu,Z.J.(2010):A novel numerical method for in finite domain potential problems.Chinese Science Bulletin,vol.55,vol.16,pp.1598-1603.

    Chen,W.;Fu,Z.J.;Wei,X.(2009):Potential Problems by Singular Boundary Method Satisfying Moment Condition.Cmes-Computer Modeling in Engineering&Sciences,vol.54,no.1,pp.65-85.

    Chen,W.;Tanaka,M.(2002):A meshless,integration-free,and boundary-only RBF technique.Computers&Mathematics with Applications,vol.43,no.3-5,pp.379-391.

    Chen,W.;Wang,F.Z.(2010):A method of fundamental solutions without fictitious boundary.Engineering Analysis with Boundary Elements,vol.34,no.5,pp.530-532.

    Chen,W.;Zhang,J.Y.;Fu,Z.J.(2014):Singular boundary method for modified Helmholtz equations.Engineering Analysis with Boundary Elements,vol.44,pp.112-119.

    Dong,L.;Atluri,S.N.(2012a):Development of 3 D Trefftz Voronoi Cells with Ellipsoidal Voids&/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials.CMC:Computers Materials and Continua,vol.30,no.1,pp.39.

    Dong,L.;Atluri,S.N.(2012b):A Simple Multi-Source-Point Trefftz Method for Solving Direct/Inverse SHM Problems of Plane Elasticity in Arbitrary Multiply-Connected Domains.CMES:Computer Modeling in Engineering&Sciences,vol.85,no.1,pp.1-43.

    Evans,D.V.;Porter,R.(1997):Near-trapping of waves by circular arrays of vertical cylinders.Applied Ocean Research,vol.19,no.2,pp.83-99.

    Fairweather,G.;Karageorghis,A.(1998):The method of fundamental solutions for elliptic boundary value problems.Advances in Computational Mathematics,vol.9,no.1-2,pp.69-95.

    Fu,Z.J.;Chen,W.;Gu,Y.(2014):Burton-Miller-type singular boundary method for acoustic radiation and scattering.Journal of Sound and Vibration,vol.333,no.16,pp.3776-3793.

    Fu,Z.J.;Chen,W.;Yang,H.T.(2013):Boundary particle method for Laplace transformed time fractional diffusion equations.Journal of Computational Physics,vol.235,pp.52-66.

    Fu,Z.J.;Chen,W.A novel boundary meshless method for radiation and scattering problems.Advances in Boundary Element Techniques XI,Berlin,Germany,pp.83-90.

    Fu,Z.J.;Chen,W.Water wave interaction with multiple surface-piercing porous cylinders by singular boundary method.11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013:ICNAAM 2013,pp.928-931.

    Fu,Z.J.;Chen,W.;Qin,Q.H.(2011):Boundary knot method for heat conduction in nonlinear functionally graded material.Engineering Analysis with Boundary Elements,vol.35,no.5,pp.729-734.

    Fu,Z.J.;Chen,W.;Zhang,C.Z.(2012):Boundary particle method for Cauchy inhomogeneous potential problems.Inverse Problems in Science and Engineering,vol.20,no.2,pp.189-207.

    Gu,Y.;Chen,W.;He,X.Q.(2012a):Domain-decomposition singular boundary method for stress analysis in multi-layered elastic materials.CMC:Computers Materials&Continua,vol.29,no.2,pp.129-154.

    Gu,Y.;Chen,W.;Zhang,C.Z.(2011):Singular boundary method for solving plane strain elastostatic problems.International Journal of Solids and Structures,vol.48,no.32,pp.2549-2556.

    Gu,Y.;Chen,W.;Zhang,J.(2012b):Investigation on near-boundary solutions by singular boundary method.Engineering Analysis with Boundary Elements,vol.36,no.8,pp.1173-1182.

    Gu,Y.T.;Liu,G.R.(2002):A boundary point interpolation method for stress analysis of solids.Computational Mechanics,vol.28,no.1,pp.47-54.

    Kim,S.(2013):An improved boundary distributed source method for two dimensional Laplace equations.Engineering Analysis with Boundary Elements,vol.37,no.7,pp.997-1003.

    Kirkup,S.(1998):The boundary element method in acoustics.Integrated Sound Software.

    Lee,J.W;Chen,J.T.(2013a):A Semianalytical Approach for a Nonconfocal Suspended Strip in an Elliptical Waveguide.Microwave Theory and Techniques,IEEE Transactions on,vol.60,no.12,pp.3642-3655.

    Lee,Y.T.;Chen,J.T.(2013b):Null- field approach for the antiplane problem with elliptical holes and/or inclusions.Composites Part B:Engineering,vol.44,no.1,pp.283-294.

    Lin,J.;Chen,W.;Wang,F.(2011):A new investigation into regularization techniques for the method of fundamental solutions.Mathematics and Computers in Simulation,vol.81,no.6,pp.1144-1152.

    Liu,C.S.(2008):A highly accurate MCTM for inverse Cauchy problems of Laplace equation in arbitrary plane domains.CMES-Computer Modeling in Engineering&Sciences,vol.35,pp.91-111.

    Liu,Y.J.(2009):Fast Multipole Boundary Element Method-Theory and Applications in Engineering.Cambridge University Press,Cambridge.

    Liu,Y.J.(2010):A new boundary meshfree method with distributed sources.Engineering Analysis with Boundary Elements,vol.34,no.11,pp.914-919.

    Mukherjee,Y.X.;Mukherjee,S.(1997):The boundary node method for potential problems.International Journal for Numerical Methods in Engineering,vol.40,no.5,pp.797-815.

    Ochmann,M.(1999):The full- field equations for acoustic radiation and scattering.The Journal of the Acoustical Society of America,vol.105,no.5,pp.2574-2584.

    Sarler,B.(2009):Solution of potential flow problems by the modified method of fundamental solutions:Formulations with the single layer and the double layer fundamental solutions.Engineering Analysis with Boundary Elements,vol.33,no.12,pp.1374-1382.

    Tsai,C.C.(2008):The method of fundamental solutions with dual reciprocity for thin plates on Winkler foundations with arbitrary loadings.Journal of Mechanics,vol.24,no.2,pp.163-171.

    Tsaur,D.H.;Chang,K.H.(2009):Scattering and focusing of SH waves by a convex circular-arc topography.Geophysical Journal International,vol.177,no.1,pp.222-234.

    Wei,X.;Chen,W.;Fu,Z.J.(2013):Solving inhomogeneous problems by singular boundary method.Journal of Marine Science and Technology-Taiwan,vol.21,no.1,pp.8-14.

    Yan,Z.Y.;Zhang,J.;Ye,W.;Yu,T.X.(2010):Numerical characterization of porous solids and performance evaluation of theoretical models via the precorrected-FFT accelerated BEM.CMES:Computer Modeling in Engineering&Sciences,vol.55,no.1,pp.33.

    Young,D.L.;Chen,K.H.;Lee,C.W.(2005):Novel meshless method for solving the potential problems with arbitrary domain.Journal of Computational Physics,vol.209,no.1,pp.290-321.

    Yuan,X.;Liao,Z.P.(1996):Surface motion of a cylindrical hill of circulararc cross-section for incident plane SH waves.Soil Dynamics and Earthquake Engineering,vol.15,no.3,pp.189-199.

    Zhang,J.;Qin,X.;Han,X.;Li,G.(2009):A boundary face method for potential problems in three dimensions.International Journal for Numerical Methods inEngineering,vol.80,no.3,pp.320-337.

    Zhang,J.;Yao,Z.;Li,H.(2002):A hybrid boundary node method.International Journal for Numerical Methods in Engineering,vol.53,no.4,pp.751-763.

    Zhang,T.;Dong,L.;Alotaibi,A.;Atluri,S.N.(2013):Application of the MLPG Mixed Collocation Method for Solving Inverse Problems of Linear Isotropic/Anisotropic Elasticity with Simply/Multiply-Connected Domains.CMES:Computer Modeling in Engineering&Sciences,vol.94,no.1,pp.1-28.

    Zhu,T.;Zhang,J.D;Atluri,S.N.(1998):A local boundary integral equation(LBIE)method in computational mechanics,and a meshless discretization approach.Computational Mechanics,vol.21,no.3,pp.223-235.

    亚洲欧洲日产国产| 黄色 视频免费看| 久久久久久久精品精品| 美女扒开内裤让男人捅视频| 成人国语在线视频| 日韩中文字幕视频在线看片| 少妇的丰满在线观看| 19禁男女啪啪无遮挡网站| 亚洲精华国产精华液的使用体验| 免费看不卡的av| 欧美激情 高清一区二区三区| 国产精品二区激情视频| 久久精品国产亚洲av涩爱| 国产又色又爽无遮挡免| 免费在线观看完整版高清| 精品人妻在线不人妻| 久久久欧美国产精品| 国产一卡二卡三卡精品 | 午夜日本视频在线| 国产伦人伦偷精品视频| 亚洲精品aⅴ在线观看| 亚洲国产精品一区二区三区在线| 欧美xxⅹ黑人| 这个男人来自地球电影免费观看 | 欧美日韩av久久| 丝袜脚勾引网站| 免费黄色在线免费观看| 一级黄片播放器| 精品国产超薄肉色丝袜足j| 丰满饥渴人妻一区二区三| 美女视频免费永久观看网站| 女的被弄到高潮叫床怎么办| 欧美 日韩 精品 国产| 韩国精品一区二区三区| 久久久久久人人人人人| 18禁观看日本| 国产欧美日韩一区二区三区在线| 久久人人97超碰香蕉20202| 国产在线一区二区三区精| 国产亚洲精品第一综合不卡| 丁香六月天网| 精品国产一区二区三区四区第35| 男人添女人高潮全过程视频| 精品人妻在线不人妻| 久久av网站| 亚洲国产日韩一区二区| 久久久久久久久久久免费av| 久久久久久久久久久免费av| 51午夜福利影视在线观看| 久久久亚洲精品成人影院| 国产极品天堂在线| 国产黄频视频在线观看| 如日韩欧美国产精品一区二区三区| 国产精品偷伦视频观看了| 一区二区av电影网| 一区二区三区精品91| 人人妻人人澡人人看| 国产麻豆69| 亚洲免费av在线视频| 亚洲精品乱久久久久久| 色综合欧美亚洲国产小说| av一本久久久久| 日本av手机在线免费观看| 亚洲四区av| 亚洲欧美日韩另类电影网站| 亚洲欧美激情在线| 丝袜在线中文字幕| 美女视频免费永久观看网站| 999久久久国产精品视频| 日韩制服丝袜自拍偷拍| 丝袜喷水一区| 日韩电影二区| 80岁老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 在线天堂最新版资源| 久久久久久久久久久久大奶| 最黄视频免费看| 少妇人妻 视频| 国产一区亚洲一区在线观看| 中国国产av一级| av国产精品久久久久影院| 午夜日韩欧美国产| 亚洲国产最新在线播放| 日本欧美国产在线视频| 免费黄色在线免费观看| 晚上一个人看的免费电影| 亚洲少妇的诱惑av| 亚洲国产看品久久| 国产伦理片在线播放av一区| 黄色一级大片看看| 天堂中文最新版在线下载| 亚洲人成电影观看| 人人妻人人澡人人看| 2018国产大陆天天弄谢| 日韩成人av中文字幕在线观看| netflix在线观看网站| 亚洲一区中文字幕在线| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 日韩人妻精品一区2区三区| 99精品久久久久人妻精品| 国产成人欧美在线观看 | h视频一区二区三区| 国产又色又爽无遮挡免| 国产在线视频一区二区| 肉色欧美久久久久久久蜜桃| 母亲3免费完整高清在线观看| 国产精品无大码| 日韩大片免费观看网站| 中文字幕最新亚洲高清| av国产精品久久久久影院| 免费日韩欧美在线观看| 建设人人有责人人尽责人人享有的| 亚洲少妇的诱惑av| 久久久欧美国产精品| 国产一区二区激情短视频 | 精品卡一卡二卡四卡免费| 美女国产高潮福利片在线看| 飞空精品影院首页| 久久精品aⅴ一区二区三区四区| 国产探花极品一区二区| 天堂中文最新版在线下载| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 色综合欧美亚洲国产小说| 综合色丁香网| av国产久精品久网站免费入址| 精品一区在线观看国产| 色婷婷久久久亚洲欧美| 亚洲精品在线美女| 老司机在亚洲福利影院| av女优亚洲男人天堂| 啦啦啦在线免费观看视频4| 又黄又粗又硬又大视频| av女优亚洲男人天堂| 国产精品久久久久久久久免| 国产色婷婷99| 黄色一级大片看看| 欧美精品人与动牲交sv欧美| 久久性视频一级片| 色婷婷av一区二区三区视频| 夫妻午夜视频| 最近中文字幕高清免费大全6| 久久精品国产综合久久久| 亚洲欧美日韩另类电影网站| 中文字幕制服av| 日韩 欧美 亚洲 中文字幕| 91精品三级在线观看| 精品免费久久久久久久清纯 | 午夜影院在线不卡| 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 亚洲国产欧美一区二区综合| 久久性视频一级片| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 欧美 亚洲 国产 日韩一| 韩国高清视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 久久亚洲国产成人精品v| 国产精品久久久久久人妻精品电影 | 国产亚洲精品第一综合不卡| 黄片小视频在线播放| 国产免费福利视频在线观看| 婷婷色综合大香蕉| 欧美中文综合在线视频| 精品国产国语对白av| 国产 精品1| 超碰97精品在线观看| 91成人精品电影| 捣出白浆h1v1| 一级,二级,三级黄色视频| 十分钟在线观看高清视频www| 最近中文字幕高清免费大全6| 亚洲欧美精品综合一区二区三区| 国产爽快片一区二区三区| 亚洲欧美成人精品一区二区| 亚洲第一区二区三区不卡| 欧美人与性动交α欧美精品济南到| 夫妻午夜视频| 欧美人与性动交α欧美软件| 中文字幕制服av| 尾随美女入室| 午夜福利网站1000一区二区三区| 美女主播在线视频| bbb黄色大片| 日韩成人av中文字幕在线观看| 老司机影院成人| 精品亚洲乱码少妇综合久久| 男女床上黄色一级片免费看| 亚洲一区二区三区欧美精品| 最近最新中文字幕免费大全7| 啦啦啦视频在线资源免费观看| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 国产成人精品久久久久久| 成人黄色视频免费在线看| 久久热在线av| 又黄又粗又硬又大视频| 在线观看www视频免费| 涩涩av久久男人的天堂| 精品少妇黑人巨大在线播放| 老司机影院成人| 纯流量卡能插随身wifi吗| 国产不卡av网站在线观看| 精品国产乱码久久久久久男人| 亚洲美女黄色视频免费看| 欧美人与性动交α欧美精品济南到| 又粗又硬又长又爽又黄的视频| 久久综合国产亚洲精品| 亚洲精品国产av成人精品| www.自偷自拍.com| 两个人免费观看高清视频| 精品人妻熟女毛片av久久网站| 在线天堂最新版资源| 69精品国产乱码久久久| 啦啦啦在线观看免费高清www| 黄色怎么调成土黄色| 9热在线视频观看99| 巨乳人妻的诱惑在线观看| 欧美黄色片欧美黄色片| 黄频高清免费视频| 亚洲色图 男人天堂 中文字幕| 亚洲精品aⅴ在线观看| 国产国语露脸激情在线看| 2018国产大陆天天弄谢| 高清不卡的av网站| 美国免费a级毛片| 国产精品蜜桃在线观看| 久久久国产欧美日韩av| 国产探花极品一区二区| 满18在线观看网站| 女人精品久久久久毛片| 校园人妻丝袜中文字幕| 国产精品熟女久久久久浪| 女的被弄到高潮叫床怎么办| 久久av网站| 久久99一区二区三区| 中文字幕人妻熟女乱码| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| 建设人人有责人人尽责人人享有的| 精品亚洲乱码少妇综合久久| 国产一卡二卡三卡精品 | 人人妻人人澡人人看| 啦啦啦中文免费视频观看日本| 水蜜桃什么品种好| 亚洲国产精品国产精品| 国产精品二区激情视频| 18在线观看网站| 精品一区在线观看国产| 婷婷色综合www| 看非洲黑人一级黄片| 亚洲免费av在线视频| av卡一久久| 国产在线一区二区三区精| 午夜免费男女啪啪视频观看| 成人免费观看视频高清| 天天操日日干夜夜撸| 国产成人免费观看mmmm| 国精品久久久久久国模美| 欧美日韩av久久| 日本欧美视频一区| 色94色欧美一区二区| 免费在线观看黄色视频的| 天堂8中文在线网| 欧美日韩av久久| 伊人久久大香线蕉亚洲五| 99re6热这里在线精品视频| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 中文字幕制服av| 久久久欧美国产精品| 精品免费久久久久久久清纯 | 大码成人一级视频| 毛片一级片免费看久久久久| 啦啦啦啦在线视频资源| 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 亚洲天堂av无毛| 久久久久视频综合| av国产精品久久久久影院| 亚洲四区av| 久久久国产欧美日韩av| 亚洲,欧美精品.| 满18在线观看网站| 色吧在线观看| 婷婷色综合www| 亚洲av在线观看美女高潮| 91精品三级在线观看| 欧美日韩成人在线一区二区| 制服人妻中文乱码| 亚洲国产精品成人久久小说| 久久久久久久大尺度免费视频| a级片在线免费高清观看视频| 亚洲av欧美aⅴ国产| 一本—道久久a久久精品蜜桃钙片| 最近中文字幕高清免费大全6| 少妇人妻精品综合一区二区| 亚洲专区中文字幕在线 | 中文字幕色久视频| 久久人人爽av亚洲精品天堂| 亚洲精品在线美女| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看 | 18禁观看日本| 秋霞伦理黄片| 亚洲美女视频黄频| 精品午夜福利在线看| 午夜日韩欧美国产| 中文字幕精品免费在线观看视频| 777久久人妻少妇嫩草av网站| 亚洲美女搞黄在线观看| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 大码成人一级视频| av电影中文网址| 精品亚洲成国产av| 国产在线免费精品| 日韩大码丰满熟妇| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 国产精品二区激情视频| 国产精品无大码| 精品第一国产精品| 国产精品嫩草影院av在线观看| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 久久av网站| 国产伦人伦偷精品视频| 最近最新中文字幕免费大全7| a 毛片基地| 日韩一区二区视频免费看| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 欧美乱码精品一区二区三区| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| e午夜精品久久久久久久| 国产一区二区 视频在线| 欧美成人午夜精品| 国产一卡二卡三卡精品 | 久久久亚洲精品成人影院| 久久ye,这里只有精品| 一二三四在线观看免费中文在| 秋霞伦理黄片| 国产熟女欧美一区二区| bbb黄色大片| 高清不卡的av网站| 在线亚洲精品国产二区图片欧美| 精品视频人人做人人爽| 香蕉丝袜av| 青草久久国产| 亚洲精品久久午夜乱码| 超碰成人久久| 亚洲美女搞黄在线观看| 秋霞伦理黄片| 1024视频免费在线观看| 日本一区二区免费在线视频| √禁漫天堂资源中文www| 午夜激情av网站| 久久久精品免费免费高清| 欧美在线一区亚洲| 一本色道久久久久久精品综合| 一级毛片我不卡| 午夜福利视频在线观看免费| 男女床上黄色一级片免费看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久精品精品| 欧美精品亚洲一区二区| 韩国精品一区二区三区| 高清在线视频一区二区三区| 99九九在线精品视频| 亚洲一级一片aⅴ在线观看| 大陆偷拍与自拍| 免费少妇av软件| 曰老女人黄片| 秋霞伦理黄片| bbb黄色大片| 老司机亚洲免费影院| 在线观看免费视频网站a站| 汤姆久久久久久久影院中文字幕| av国产久精品久网站免费入址| 一级爰片在线观看| 这个男人来自地球电影免费观看 | 一级a爱视频在线免费观看| 成人午夜精彩视频在线观看| 街头女战士在线观看网站| 咕卡用的链子| 老司机靠b影院| 亚洲视频免费观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久97久久精品| 人人妻,人人澡人人爽秒播 | 国产av国产精品国产| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 日韩大片免费观看网站| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 亚洲人成电影观看| xxxhd国产人妻xxx| 亚洲少妇的诱惑av| 国产熟女欧美一区二区| 777米奇影视久久| 久久久精品区二区三区| 亚洲av日韩精品久久久久久密 | 久久精品国产亚洲av涩爱| 久久久精品国产亚洲av高清涩受| 亚洲自偷自拍图片 自拍| 精品视频人人做人人爽| 电影成人av| 热re99久久国产66热| 国产xxxxx性猛交| 亚洲国产欧美一区二区综合| 午夜福利视频精品| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 啦啦啦在线免费观看视频4| 老熟女久久久| 美女大奶头黄色视频| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 欧美精品高潮呻吟av久久| 日韩av不卡免费在线播放| 国产熟女午夜一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久久欧美国产精品| av福利片在线| 最近手机中文字幕大全| 赤兔流量卡办理| 精品国产乱码久久久久久小说| www日本在线高清视频| 赤兔流量卡办理| 日韩伦理黄色片| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 日日撸夜夜添| 亚洲av综合色区一区| 国产精品av久久久久免费| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片我不卡| 两个人免费观看高清视频| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| 午夜福利乱码中文字幕| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 91精品三级在线观看| 成人国语在线视频| 18禁动态无遮挡网站| 狠狠婷婷综合久久久久久88av| 亚洲七黄色美女视频| 久久免费观看电影| xxx大片免费视频| 亚洲美女搞黄在线观看| 精品福利永久在线观看| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| 伦理电影大哥的女人| 亚洲av男天堂| 亚洲欧美激情在线| 在线天堂最新版资源| 久久国产亚洲av麻豆专区| avwww免费| 久久性视频一级片| 黄色视频在线播放观看不卡| 91精品三级在线观看| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 最近最新中文字幕大全免费视频 | 亚洲免费av在线视频| 国产日韩欧美视频二区| 国产免费现黄频在线看| 美女扒开内裤让男人捅视频| 亚洲欧美一区二区三区国产| 精品免费久久久久久久清纯 | 国产成人啪精品午夜网站| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 午夜免费男女啪啪视频观看| 久久精品久久久久久噜噜老黄| 激情视频va一区二区三区| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 日韩视频在线欧美| 欧美日韩视频精品一区| 99九九在线精品视频| 日韩,欧美,国产一区二区三区| 亚洲国产中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频 | 黄片无遮挡物在线观看| 无限看片的www在线观看| 久久女婷五月综合色啪小说| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| 麻豆av在线久日| 国产片特级美女逼逼视频| 大香蕉久久网| 丰满乱子伦码专区| av在线老鸭窝| 亚洲美女黄色视频免费看| 高清欧美精品videossex| 91精品三级在线观看| √禁漫天堂资源中文www| 国产淫语在线视频| 最黄视频免费看| 97精品久久久久久久久久精品| 久久精品人人爽人人爽视色| 亚洲天堂av无毛| 少妇 在线观看| 一级毛片黄色毛片免费观看视频| 国产精品三级大全| 国产精品99久久99久久久不卡 | 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 嫩草影院入口| 午夜福利,免费看| 日韩制服骚丝袜av| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区久久| 免费看av在线观看网站| 久久精品国产亚洲av高清一级| 夜夜骑夜夜射夜夜干| 国产精品.久久久| 又粗又硬又长又爽又黄的视频| www.自偷自拍.com| 成人手机av| 热re99久久精品国产66热6| 国产福利在线免费观看视频| 久久国产亚洲av麻豆专区| 国产一区二区激情短视频 | 日韩制服丝袜自拍偷拍| 成人国产麻豆网| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 午夜日韩欧美国产| 人妻一区二区av| 午夜久久久在线观看| 日韩精品免费视频一区二区三区| 人人妻人人澡人人看| 国产精品一二三区在线看| 这个男人来自地球电影免费观看 | 欧美黑人精品巨大| 国产亚洲午夜精品一区二区久久| 亚洲精品一区蜜桃| 亚洲天堂av无毛| 国产精品久久久久久久久免| 久久免费观看电影| 超碰成人久久| 国产熟女欧美一区二区| 91精品国产国语对白视频| 高清视频免费观看一区二区| 国产一区二区 视频在线| 久久毛片免费看一区二区三区| 两性夫妻黄色片| 久久精品久久久久久久性| 男人操女人黄网站| 999久久久国产精品视频| 性少妇av在线| av在线app专区| 777米奇影视久久| 黑人巨大精品欧美一区二区蜜桃| 国产熟女午夜一区二区三区| 在线亚洲精品国产二区图片欧美| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| av网站免费在线观看视频| 国产精品嫩草影院av在线观看| 亚洲av日韩在线播放| 人妻人人澡人人爽人人| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 啦啦啦 在线观看视频| 日本av手机在线免费观看| 亚洲国产日韩一区二区| 黄片播放在线免费| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 久久精品aⅴ一区二区三区四区| 欧美国产精品一级二级三级| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 午夜福利视频精品| 看十八女毛片水多多多| 夜夜骑夜夜射夜夜干| 夫妻性生交免费视频一级片| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 国产深夜福利视频在线观看| 日日撸夜夜添| 男人舔女人的私密视频| 街头女战士在线观看网站| 在线观看www视频免费| 成人手机av| 九九爱精品视频在线观看| 免费在线观看黄色视频的| 啦啦啦啦在线视频资源| 一级片免费观看大全| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| av线在线观看网站|