• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An LGDAE Method to Solve Nonlinear Cauchy Problem Without Initial Temperature

    2014-04-23 05:46:50CheinShanLiu
    關(guān)鍵詞:全站規(guī)程可行性

    Chein-Shan Liu

    1 Introduction

    In this paper we consider an inverse heat conduction problem(IHCP)by recovering an unknown initial condition for a nonlinear heat conduction equation under the Cauchy type boundary conditions:

    whereHmay be a nonlinear function ofuandux,and the initial condition is missing to be an unknown function ofx:

    For the compatibility of data we require thatf(0)=u0(0)andfx(0)=q0(0).

    The sideways heat equation means the Cauchy problem for the heat conduction equation,in which the temperature and heat flux are specified as functions of time at one end of the two boundaries[Dorroh and Ru(1999);Chang,Liu and Chang(2005)].Besides the above two Cauchy boundary conditions in Eqs.(2)and(3)for a typical sideways heat equation,the present method does not need other data to recoverf(x),u(‘,t)andux(‘,t).

    In the theory of partial differential equations(PDEs)there are two kinds Cauchy problems.One is for the elliptic type PDE,and another is for the parabolic type PDE;they are subjected to incomplete boundary conditions with some portion unspecifying but some portion over-specifying.Both are of the non-characteristic type initial value problems.It is well known that the Cauchy problems are highly ill-posed with a little error of input data producing a large error of numerical solution[Eld′en(1987);Eld′en,Berntsson and Reginska(2000);Qian and Fu(2007);Hao,Reinhardt and Schneider(2001);Liu(2008a,2008b);Chi,Yeih and Liu(2009);Marin(2009);Liu and Kuo(2011);Liu,Kuo and Liu(2011);Liu and Zhang(2013);Yeih,Chan,Fan,Chang and Liu(2014)].

    In many industrial applications we may want to determine the temperature and heat flux on the surface of a body,but the surface itself is inaccessible for a measurement of temperature or heat flux.It may also be the case that locating a measurement device on the surface would disturb the measurements so that an incorrect temperature or heat flux is recorded.In such a situation one is restricted to internal measurements which being carried out on an accessible boundary.Berntsson(2003)has presented an example of industrial application where the sideways heat equation can be used.Sometimes we may encounter the problem that when we tackle the sideways heat equation the measurement of initial temperature is impossible,because the heat conducting device is already in service.

    Wang,Cheng,Nakagawa and Yamamoto(2010)have treated the IHCP without needing of initial condition,and proved the uniqueness in determining both a boundary value and an initial value for linear sideways heat equation.Liu(2011)has studied the problem by recovering the initial condition under boundary conditions given at two boundaries.Without needing of initial condition,Liu(2014a)has proposed an iterative method to recover the heat conductivity of a nonlinear heat conduction equation,and Liu(2014b)has proposed an iterative algorithm to recover heat source under the Cauchy type boundary conditions and a final time condition.Recently,Liu and Wang(2014)have proposed a quasi-reversibility regularization method to obtain a regularized solution and convergence estimates without needing of initial temperature for the linear Cauchy problem.

    As we know,there are very few methods to deal with the nonlinear sideways heat equation without initial conduction,which is very difficult to be solved numerically.In this paper we will provide a simple and yet stable numerical method to solve this highly ill-posed nonlinear Cauchy problem with multiple unknowns of initial condition and right-boundary conditions.

    The outline of this paper is given as follows.In Section 2 we propose a variable transformation,such that the nonlinear Cauchy problem without initial value becomes a nonlinear inverse heat source problem with zero initial value.Sections 3-5 devote to the development of a Lie-group differential algebraic equations(LGDAE)method and a numerical algorithm based on the Lie-groupGL(N,R)for the general DAEs system.In Section 6,we view the nonlinear inverse heat source problem in Section 2 as a special type nonlinear DAEs,and derive a numerical algorithm to solve the resultant DAEs.Numerical examples are given in Section 7 to validate the efficiency and accuracy of LGDAE.Some conclusions are drawn in the final Section 8.

    2 A variable transformation and the numerical method of lines

    Let

    wheref(x)is an unknown function of initial temperature to be determined.From Eqs.(1)-(4)it follows that

    whereF(x)=f00(x)is viewed as an unknown spatially-dependent function of heat source.

    Here,a novel method of Lie-group differential algebraic equations(LGDAE)method will be developed to estimate the unknown heat sourceF(x)and unknown initial conditionf(x),which merely requires the boundary conditions and initial condition given by Eqs.(7)-(9)for estimatingF(x),and the boundary conditions given by Eqs.(2)and(3)for estimatingf(x).

    The numerical method of lines is simple that for a given system of PDEs we discretize all but one of the independent variables.The semi-discrete procedure yields a coupled system of ordinary differential equations(ODEs),which are then being numerically integrated to obtain solution.For Eq.(6)we adopt the numerical method of lines to discretize the time coordinatetbyti,by lettingSi(x)=Tx(x,ti)andTi(x)=T(x,ti),and keepxa continuous variable,whereti=(i? 1)?t=(i?1)tf/(m?1)and?tis a uniform time-stepsize.Such that we can derive

    whereHi=H(x,ti,Ti+f,Si+f0)=H(x,ti,Ti+Tm+1,Si+Sm+1)byde finingTm+1(x)=f(x)andSm+1(x)=f0(x).If we can knowF(x),we can integrate Eqs.(10)-(14)by using the group preserving scheme(GPS)developed by Liu(2001),where we denote the spatial stepsize by?x=‘/(n?1).Besides the above ODEs we have a constraint equation:

    which is obtained from Eq.(9).Here,we must emphasize thatT1(x)plays two roles:satisfying Eqs.(10)and(15).Recently,Liu(2014c)has argued that the Cauchy problem of heat equation is solvable,because the field equation is extend able to the initial time by using the concept of analytic continuation.The above technique to treat the temperatureT1(x)on the line at initial time is indeed an application of the analytic continuation method.

    3 Lie-group differential algebraic equations method

    Eqs.(10)-(15)constitute a set of differential algebraic equations(DAEs)withF(x)to be an unknown function.Here we generalize the above DAEs to and propose a novel method to solve the above DAEs,which govern the evolution ofN+qvariablesxi,i=1,...,Nandyj,j=1,...,qwithNordinary differential equations(ODEs)andqnonlinear algebraic equations(NAEs).The vector y in Eq.(16)is viewed as unknown parameter.We have replacedxin Eqs.(10)-(15)bytfor a purpose of the demonstration for the general DAEs written in a time domain.There are many numerical methods used to solve ODEs.But only a few is used to solve DAEs.The present technique used to solve the inverse heat source problem is a DAE method,whose pre-requirement is however a powerful and stable method to solve the DAEs as to be described below.The DAEs are more difficult to be solved numerically than ODEs and NAEs.

    Liu(2013a)was the first to find the essential form forn-dimensional nonlinear ordinary differential equations(ODEs)in terms of the Lie-algebragl(n,R)ofGL(n,R),and developed a very effective Lie-groupGL(n,R)preserving scheme to solve ODEs.Then,Liu(2013b)developed a Lie-groupGL(n,R)preserving scheme to solve ODEs by assuming that the coefficient matrix is constant in a small time incremental step.Moreover,Liu(2013c)has developed a powerful numerical method to solve the nonlinear DAEs based on the above Lie-groupGL(n,R)preserving scheme,which is named the Lie-group DAE(LGDAE)method.It is also interesting that the LGDAE can be used to solve the sliding control problem by Liu(2014d).Liu and Atluri(2013)have employed the LGDAE to solve the problem of numerical differential of a noisy signal.

    4 The GL(N,R)structure of differential equations system

    The Lie-group is a differentiable manifold,which is endowed with a group structure that is compatible with the underlying topology of the manifold.The Lie-group solver can provide a better algorithm that retains the orbit generated from numerical solution on the manifold which is associated with the Lie-group.

    The general linear group is a Lie group,whose manifold is an open subsetGL(N,R):={G∈RN×N|detG 6=0}of the linear space of allN×Nnon-singular matrices.Thus,GL(N,R)is also anN×N-dimensional manifold.

    The general linear groupGL(N,R)gives uniquely a real Lie-algebragl(N,R).Consider a one-parameter subgroup G(t),t∈R,of the general linear groupGL(N,R),which is a curve passing through the group identity att=0,

    and which operates from the left on theN-dimensional Euclidean space RN,resulting in a Lie-group equation:

    where A∈gl(N,R)is the corresponding Lie-algebra.

    Here we give a new form of the dynamics in Eq.(16)from theGL(N,R)Lie-group structure.In order to fit the form in Eq.(19),the vector field f on the right-hand side of Eq.(16)can be written as

    where

    is the coefficient matrix.Here u?y denotes the dyadic operation of u and y,i.e.,(u?y)z=y·zu.

    Because the coefficient matrix A is well-defined for kxk>0,the Lie-group element G generated from the above dynamical system(20)with˙G=AG satis fies det G(t)6=0,such that G∈GL(N,R).

    5 An implicit GL(N,R)Lie-group scheme

    Eq.(20)is a new starting point for the development of the Lie-groupGL(N,R)scheme.In order to develop a numerical scheme from Eqs.(20)and(21),we suppose that the coefficient matrix A is constant with

    being two constant vectors,which can be obtained by taking the values of f and x at a suitable mid-point ofˉt∈[t0=0,t],wheret≤t0+handhis a small time stepsize.Thus from Eqs.(20)and(21)it follows that

    Let

    and Eq.(23)becomes

    At the same time,from the above two equations we can derive the following ODE forw:

    where

    is supposed to be a constant value in a small time interval oft∈[t0,t0+h].Thus,we have

    wherew0=b·x0.

    Inserting Eq.(28)forw(t)into Eq.(25)and integrating the resultant equation we can obtain

    where x0is the initial value of x at an initial timet=t0=0,and

    Then we can prove

    which means that G is a Lie-group element ofGL(N,R).

    Accordingly,we can develop the following scheme based on the Lie-groupGL(N,R)for solving the ODEs in Eq.(16):

    (i)Give 0≤θ≤1.

    (ii)Give an initial value of x0at an initial timet=t0and a time stepsizeh.

    (iii)Fork=0,1,...,we repeat the following computations to a specified terminal timet=tf:

    With the above xk+1generated from an Euler step as an initial guess we iteratively solve the new xk+1by

    在配電網(wǎng)中,由于受到變電站選址和通道受限的影響,往往需要對(duì)已有變電站進(jìn)行升級(jí)改造,以滿足長(zhǎng)期負(fù)荷增長(zhǎng)需求;但由于現(xiàn)場(chǎng)施工條件限制和電網(wǎng)安全規(guī)程要求,不得不選擇全站停電改造,且改造周期較長(zhǎng)。以某地市公司110 kV變電站為例,停電時(shí)間長(zhǎng)達(dá)5個(gè)月,在此改造期間,配電網(wǎng)運(yùn)行壓力巨大,能否平穩(wěn)度過負(fù)荷高峰時(shí)期,缺乏理論支撐和可行性論證,施工中能否安排全站停電進(jìn)行升級(jí)改造缺乏有效規(guī)程參考和指導(dǎo)意見。

    If zk+1converges according to a given stopping criterion:

    then go to(iii)to the next time step;otherwise,let xk+1=zk+1and go to Eq.(34).In the above ykis viewed as a constant vector within a small time step.In order to determine ykthe present Lie-group scheme is coupled with the following Newton iterative scheme.

    Within a small time step we can suppose that the variablesyj,j=1,...,qare constant in the interval oftk

    until the following convergence criterion is satisfied:

    otherwise,go to Eq.(34)and insert the new.In above,the componentBijof the Jacobian matrix B is given by?Fi/?yj.

    The numerical scheme is a combination of the Lie-group method based onGL(N,R)and the Newton iterative method to solve the DAEs in Eqs.(16)and(17),which is called the Lie-group differential algebraic equations(LGDAE)method.

    6 Numerical algorithm

    Now we apply the above LGDAE withN=2m+2 andq=1 to solve T=(T1,...,Tm,Tm+1)T,S=(S1,...,Sm,Sm+1)Tand hencef(x)=Tm+1(x)through Eqs.(10)-(14),and simultaneously solve the unknown functionF(x)through Eq.(15)by the Newton iterative method.The numerical processes are given below:

    (i)Give an initial guess ofF0,for example,F0=0.

    (ii)Give initial conditions of T0and S0at an initial pointx=0 and a spatial stepsize?x.

    (iii)Fork=0,1,...,we repeat the following computations to a terminal pointx=‘:

    where fkdenotes thek-th step value of the right-hand side in Eqs.(11)-(14).With the above Tk+1and Sk+1generated from an Euler step as an initial guess we then iteratively solve the new Tk+1and Sk+1by

    then go to(iv);otherwise,let Tk+1=and Sk+1=and go to Eq.(38).(iv)Forj=0,1,...,we repeat the following computations:

    where the prime denotes the differential with respect toF,and

    Obviously,from Eqs.(11)-(14)one has=(?1m,1)T=(?1,...,?1,1)T,where 1m=(1,...,1)T.Ifconverges according to

    then go to(iii)for the next step;otherwise,letand go to Eq.(38).The above iteration with ε1as a convergence criterion is called the outer iteration or outer loop,while that with ε2as a convergence criterion is called the inner iteration or inner loop.In the computations given below the maximum numbers of iterations for inner and outer iterations are fixed to be 100 and 200,respectively.In all the computations given below we will fix the weighting factor θ to be θ =1/2.

    7 Numerical tests

    In this section we test the proposed LGDAE in the solution of the Cauchy problem without initial condition.All the required left boundary conditions can be derived from exact solutions.Here we consider the noise being imposed on the left-boundary conditions by

    whereR(i)are random numbers in[?1,1],and σ is the intensity of noise.

    We define the root-mean-square-error(RMSE)in the recoveries of initial condition and right boundary conditions by

    wheremis the number of the discretized times andnis the number of steps used in the integration of the governing equations along thex-direction.Whenu?(xj,0),u?(‘,tk)andu?x(‘,tk)denote the numerical solutions,u(xj,0),u(‘,tk)andux(‘,tk)denote the exact solutions.

    7.1 Example 1

    In this example the exact solution ofuis

    Under the convergence criteria ε2=10?12for inner iterations and ε1=10?4for outer iterations,we apply the LGDAE to solve the above problem,where the following parameters:m=21,n=251 and a noise with σ=0.01 are considered.As shown in Fig.1(a),the numbers of iterations are few with one,four or six for inner iterations and one for outer iterations.It shows that the LGDAE is a highly efficient method,which is convergent very fast.In Fig.1(b)we compare the recovered temperature with the exact one,and in Fig.1(c)we compare the recovered heat flux with the exact one,which are almost coincident.Thus we plot the numerical error in Fig.2,of which the maximum error and RMSE1 of initial temperatures are,respectively,1.7×10?2and 4×10?3,the maximum error and RMSE2 of right-end temperatures are,respectively,2.1×10?2and 9.9×10?3,and the maximum error and RMSE3 of right-end heat fluxes are 3.4×10?2and 1.6×10?2,respectively.

    Figure 1:For example 1:(a)the numbers of inner and outer iterations,(b)comparing right-end temperatures,and(c)comparing right-end heat fluxes.

    Figure 2:For example 1 showing the numerical errors of(a)initial temperature,(b)right-end temperature,and(c)right-end heat flux.

    7.2 Example 2

    Next,we assume that the exact solution ofuis

    Under the following parameters:m=31,n=251 and under a noise with σ=0.01,we use the LGDAE to solve the above inverse problem to recover the initial temperature and two right-end boundary conditions as shown in Fig.3,of which the maximum error and RMSE1 of initial temperatures are,respectively,1.3×10?2and 7.9×10?3,the maximum error and RMSE2 of right-end temperatures are,respectively,5.6×10?3and 1.3×10?3,and the maximum error and RMSE3 of right-end heat fluxes are 3.4×10?2and 9.1×10?3,respectively.

    7.3 Example 3

    Then we consider a nonlinear heat conduction equation:

    where the exact solution is supposed to be

    Inserting Eq.(5)into Eq.(49)we can obtain

    Now we can apply the LGDAE to solve the above equation to findf(x)andF(x)under the following parameters:m=21,n=251 and under a noise with σ=0.005.The numerical errors are shown in Fig.4,of which the maximum error and RMSE1 of initial temperatures are,respectively,5.2×10?2and 2.4×10?2,the maximum error and RMSE2 of right-end temperatures are,respectively,6.5×10?3and 3×10?3,and the maximum error and RMSE3 of right-end heat fluxes are 6×10?2and 1.7×10?2,respectively.

    Figure 3:For example 2 showing the numerical errors of(a)initial temperature,(b)right-end temperature,and(c)right-end heat flux.

    Figure 4:For nonlinear example 3 showing the numerical errors of(a)initial temperature,(b)right-end temperature,and(c)right-end heat flux.

    Figure 5:For example 4 of Burgers equation showing the numerical errors of(a)initial temperature,(b)right-end temperature,and(c)right-end heat flux.

    7.4 Example 4

    Finally,we consider a nonlinear Burgers equation:

    where the exact solution is supposed to be

    Inserting Eq.(5)into Eq.(52)we can obtain

    When we apply the LGDAE to solve the above inverse problem under the following parameters:m=21,n=101 and under a noise with σ=0.002,the numerical errors are shown in Fig.5,of which the maximum error and RMSE1 of initial temperatures are,respectively,2.5×10?4and 1.6×10?4,the maximum error and RMSE2 of right-end temperatures are,respectively,1.1×10?2and 3.5×10?3,and the maximum error and RMSE3 of right-end heat fluxes are,respectively,9.8×10?2and 2.3×10?2.

    8 Conclusions

    There are very few methods that can solve the nonlinear sideways heat conduction problem without initial condition,which is a highly ill-posed inverse heat conduction problem.The existing methods in the literature are most restricted to solve linear Cauchy problems.We have transformed the nonlinear Cauchy problem without initial condition into a nonlinear heat source identification problem with a zero initial condition.Then,we have explained that the discretized version after using the numerical method of lines is a set of nonlinear differential algebraic equations,for which we have used the newly developed LGDAE to solve the unknown initial temperature and recover boundary temperature and heat flux on the right-end.Although under a large noisy disturbance on the Cauchy data,the accuracy and efficiency of numerical solutions were con firmed by comparing the recovered results with exact solutions.

    Acknowledgement:Taiwan’s National Science Council project NSC-102-2221-E-002-125-MY3 and the 2011 Outstanding Research Award,granted to the author,are highly appreciated.

    Berntsson,F.(2003):Sequential solution of the sideways heat equation by windowing of the data.Inv.Prob.Sci.Eng.,vol.11,pp.91-103.

    Chang,C.W.;Liu,C.-S.;Chang,J.R.(2005):A group preserving scheme for inverse heat conduction problems.CMES:Computer Modeling in Engineering&Sciences,vol.10,pp.13-38.

    Chi,C.C.;Yeih,W.;Liu,C.-S.(2009):A novel method for solving the Cauchy problem of Laplace equation using the fictitious time integration method.CMES:Computer Modeling in Engineering&Sciences,vol.47,pp.167-190.

    Dorroh,J.R.;Ru,X.(1999):The application of the method of quasi-reversibility to the sideways heat equation.J.Math.Anal.Appl.,vol.236,pp.503-519.

    Eld′en,L.(1987):Approximations for a Cauchy problem for the heat equation.Inverse Problem,vol.3,pp.263-273.

    Eld′en,L.;Berntsson,F.;Reginska,T.(2000):Wavelet and Fourier methods for solving the sideways heat equation.SIAM J.Sci.Comput.,vol.21,pp.2187-2205.

    Hao,D.N.;Reinhardt,H.J.;Schneider,A.(2001):Numerical solution to a sideways parabolic equation.Int.J.Numer.Meth.Engng.,vol.50,pp.1253-1267.

    Liu,C.-S.(2001):Cone of non-linear dynamical system and group preserving schemes,Int.J.Non-Linear Mech.,vol.36,pp.1047-1068.

    Liu,C.-S.(2008a):A highly accurate MCTM for inverse Cauchy problems of Laplace equation in arbitrary plane domains.CMES:Computer Modeling in Engineering&Sciences,vol.35,pp.91-111.

    Liu,C.-S.(2008b):A highly accurate MCTM for direct and inverse problems of biharmonic equation in arbitrary plane domains.CMES:Computer Modeling in Engineering&Sciences,vol.30,pp.65-75.

    Liu,C.-S.(2011):A self-adaptive LGSM to recover initial condition or heat source of one-dimensional heat conduction equation by using only minimal boundary thermal data.Int.J.Heat Mass Transfer,vol.54,pp.1305-1312.

    Liu,C.-S.(2013a):A method of Lie-symmetryGL(n,R)for solving non-linear dynamical systems.Int.J.Non-Linear Mech.,vol.52,pp.85-95.

    Liu,C.-S.(2013b):A state feedback controller used to solve an ill-posed linear system by aGL(n,R)iterative algorithm.Commu.Numer.Anal.,vol.2013,Article ID cna-00181,22 pages.

    Liu,C.-S.(2013c):Solving nonlinear differential algebraic equations by an implicitGL(n,R)Lie-group method.J.Appl.Math.,vol.2013,ID 987905,8 pages.

    Liu,C.-S.(2014a):An iterative method to recover heat conductivity function of a nonlinear heat conduction equation.Num.Heat Transfer,B:Fundamentals,vol.65,pp.80-101.

    Liu,C.-S.(2014b):An iterative algorithm for identifying heat source by using a DQ and a Lie-group method.Inv.Prob.Sci.Eng.,dx.doi.org/10.1080/17415977.2014.880907.

    Liu,C.-S.(2014c):Lie-group differential algebraic equations method to recover heat source in a Cauchy problem with analytic continuation data.Int.J.Heat Mass Transfer,vol.78,pp.538-547.

    Liu,C.-S.(2014d):A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method.Commun.Nonlinear Sci.Numer.Simulat.,vol.19,pp.2012-2038.

    Liu,C.-S.;Atluri,S.N.(2013):AGL(n,R)differential algebraic equation method for numerical differentiation of noisy signal.CMES:Computer Modeling in Engineering&Sciences,vol.92,pp.213-239.

    Liu,C.-S.;Kuo,C.L.(2011):A spring-damping regularization and a novel Liegroup integration method for nonlinear inverse Cauchy problems.CMES:Computer Modeling in Engineering&Sciences,vol.77,pp.57-80.

    Liu,C.-S.;Kuo,C.L.;Liu D.(2011):The spring-damping regularization method and the Lie-group shooting method for inverse Cauchy problems.CMC:Computers,Materials&Continua,vol.24,pp.105-123.

    Liu,J.C.;Wang,J.G.(2014):Cauchy problem for the heat equation in a bounded domain without initial value.CMES:Computer Modeling in Engineering&Sciences,vol.97,pp.437-462.

    Liu,J.C.;Zhang,Q.G.(2013):Cauchy problem for the Laplace equation in 2D and 3D doubly connected domains.CMES:Computer Modeling in Engineering&Sciences,vol.93,pp.203-220.

    Marin,L.(2009):An alternating iterative MFS algorithm for the Cauchy problem in two-dimensional anisotropic heat conduction.CMC:Computers,Materials&Continua,vol.12,pp.71-99.

    Qian,Z.;Fu,C.L.(2007):Semi-discrete central difference method for determining surface heat flux of IHCP.J.Korean Math.Soc.,vol.44,pp.1397-1415.

    Wang,Y.;Cheng,J.;Nakagawa,J.;Yamamoto,M.(2010):A numerical method for solving the inverse heat conduction problem without initial value.Inv.Prob.Sci.Eng.,vol.18,pp.655-671.

    Yeih,W.;Liu,C.-S.;Kuo,C.L.,Atluri,S.N.(2010):On solving the direct/inverse Cauchy problems of Laplace equation in a multiply connected domain,using the generalized multiple-source-point boundary-collocation Trefftz method&characteristic lengths.CMC:Computers,Materials&Continua,vol.17,pp.275-302.

    Yeih,W.;Chan,I.Y.;Fan,C.M.;Chang,J.J.;Liu,C.-S.(2014):Solving the Cauchy problem of the nonlinear steady-state heat equation using double iteration process.CMES:Computer Modeling in Engineering&Sciences,vol.99,pp.169-194.

    猜你喜歡
    全站規(guī)程可行性
    PET/CT配置的可行性分析
    基于規(guī)程法的雷擊跳閘率計(jì)算
    省農(nóng)業(yè)技術(shù)推廣總站完成2022年度全站職工考核工作
    No.1 三星堆“上新”引發(fā)關(guān)注
    《四川省工傷認(rèn)定工作規(guī)程(試行)》出臺(tái)
    中國(guó)新車評(píng)價(jià)規(guī)程
    世界汽車(2020年6期)2020-12-28 02:40:14
    國(guó)內(nèi)外風(fēng)電有功控制規(guī)程要求的研究與探討
    風(fēng)能(2015年4期)2015-02-27 10:14:39
    PPP物有所值論證(VFM)的可行性思考
    自由選擇醫(yī)??尚行远啻?
    智能變電站全站統(tǒng)一式通信網(wǎng)絡(luò)研究
    国产精品久久久久久精品电影| 欧美精品啪啪一区二区三区| 精品第一国产精品| 精品乱码久久久久久99久播| 在线永久观看黄色视频| 国产精品一区二区三区四区久久| 男女下面进入的视频免费午夜| 男人舔女人下体高潮全视频| 天堂动漫精品| 亚洲无线在线观看| videosex国产| 国产成人精品无人区| 久久久久久大精品| 老汉色av国产亚洲站长工具| 十八禁网站免费在线| 国产野战对白在线观看| 亚洲成人中文字幕在线播放| 18禁观看日本| 国产成人系列免费观看| 日韩免费av在线播放| 国产99白浆流出| 欧美日韩精品网址| 在线国产一区二区在线| 国产精品亚洲av一区麻豆| 日本一区二区免费在线视频| 午夜免费激情av| 亚洲成人久久爱视频| 国产成人aa在线观看| 一个人观看的视频www高清免费观看 | 欧美日本亚洲视频在线播放| 两个人免费观看高清视频| 久久婷婷人人爽人人干人人爱| 欧美黑人欧美精品刺激| 精品久久久久久久毛片微露脸| 我要搜黄色片| a在线观看视频网站| 又大又爽又粗| 午夜老司机福利片| 成人三级做爰电影| 国产又黄又爽又无遮挡在线| 中文字幕av在线有码专区| 亚洲va日本ⅴa欧美va伊人久久| 手机成人av网站| 熟女电影av网| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美日韩高清专用| 亚洲狠狠婷婷综合久久图片| 国产一区二区三区在线臀色熟女| 听说在线观看完整版免费高清| 岛国视频午夜一区免费看| 精品国产美女av久久久久小说| 91九色精品人成在线观看| 精品国产乱码久久久久久男人| 精品乱码久久久久久99久播| 男女之事视频高清在线观看| 18禁黄网站禁片午夜丰满| 热99re8久久精品国产| 真人一进一出gif抽搐免费| a级毛片在线看网站| 亚洲五月天丁香| 亚洲一卡2卡3卡4卡5卡精品中文| xxxwww97欧美| 天堂影院成人在线观看| 亚洲av成人一区二区三| 精品第一国产精品| 中文字幕久久专区| 国产精品久久电影中文字幕| www.熟女人妻精品国产| 亚洲天堂国产精品一区在线| 国产高清videossex| 高清在线国产一区| 怎么达到女性高潮| 一本综合久久免费| 午夜两性在线视频| 亚洲色图av天堂| 亚洲成人久久性| 不卡一级毛片| av中文乱码字幕在线| 99久久精品热视频| 亚洲中文av在线| 深夜精品福利| 深夜精品福利| 黄片小视频在线播放| 我要搜黄色片| 亚洲精品中文字幕一二三四区| 免费观看人在逋| 亚洲精华国产精华精| 久久人妻福利社区极品人妻图片| 日韩高清综合在线| 欧美色欧美亚洲另类二区| www.精华液| 一级作爱视频免费观看| 精品久久久久久成人av| 老司机深夜福利视频在线观看| 妹子高潮喷水视频| 草草在线视频免费看| 久久久久久久午夜电影| 亚洲男人天堂网一区| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产亚洲av高清一级| 成人手机av| 亚洲人成77777在线视频| 99久久精品热视频| 男女午夜视频在线观看| 亚洲 国产 在线| 日韩精品青青久久久久久| 中文字幕人妻丝袜一区二区| 亚洲精品久久国产高清桃花| 日韩大尺度精品在线看网址| 精品不卡国产一区二区三区| 97碰自拍视频| 丁香欧美五月| www.999成人在线观看| 亚洲av第一区精品v没综合| 欧美色视频一区免费| 熟女少妇亚洲综合色aaa.| 久久久久国产精品人妻aⅴ院| 午夜a级毛片| 1024视频免费在线观看| 亚洲色图 男人天堂 中文字幕| 观看免费一级毛片| 手机成人av网站| av中文乱码字幕在线| 欧美性猛交黑人性爽| 国产真实乱freesex| 日日爽夜夜爽网站| 一区二区三区高清视频在线| 宅男免费午夜| 亚洲精品久久国产高清桃花| 国产高清videossex| 一级黄色大片毛片| 一进一出好大好爽视频| 久久中文字幕一级| av片东京热男人的天堂| 午夜日韩欧美国产| 99久久久亚洲精品蜜臀av| 久久99热这里只有精品18| 老鸭窝网址在线观看| 国产视频内射| 精品久久久久久久久久免费视频| 成年版毛片免费区| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 99riav亚洲国产免费| 校园春色视频在线观看| 国产精品乱码一区二三区的特点| 人人妻,人人澡人人爽秒播| 亚洲真实伦在线观看| 国产不卡一卡二| 国产黄色小视频在线观看| 在线观看免费午夜福利视频| 国产高清videossex| 不卡av一区二区三区| 男人舔女人的私密视频| 国产精品免费一区二区三区在线| 成人午夜高清在线视频| 麻豆成人午夜福利视频| 精品日产1卡2卡| 国产成人精品久久二区二区免费| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 亚洲熟妇熟女久久| 1024视频免费在线观看| 亚洲男人的天堂狠狠| 熟妇人妻久久中文字幕3abv| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| 制服诱惑二区| 熟妇人妻久久中文字幕3abv| 国产精品,欧美在线| 麻豆国产av国片精品| 可以在线观看毛片的网站| 此物有八面人人有两片| 琪琪午夜伦伦电影理论片6080| 免费在线观看成人毛片| 国产黄片美女视频| a级毛片a级免费在线| 精品久久久久久成人av| 神马国产精品三级电影在线观看 | 国内毛片毛片毛片毛片毛片| 国内精品一区二区在线观看| 伊人久久大香线蕉亚洲五| 亚洲av成人av| 啪啪无遮挡十八禁网站| 午夜老司机福利片| 色精品久久人妻99蜜桃| 91老司机精品| 老司机靠b影院| 久久久久久久午夜电影| 桃色一区二区三区在线观看| 欧美激情久久久久久爽电影| 亚洲欧美日韩无卡精品| 床上黄色一级片| 在线看三级毛片| 亚洲专区字幕在线| 在线观看一区二区三区| 高清毛片免费观看视频网站| 一级毛片精品| 2021天堂中文幕一二区在线观| 淫秽高清视频在线观看| 亚洲成a人片在线一区二区| 欧美乱码精品一区二区三区| 神马国产精品三级电影在线观看 | 很黄的视频免费| netflix在线观看网站| 亚洲 国产 在线| 久久久久久大精品| 中文字幕精品亚洲无线码一区| 免费在线观看日本一区| 精品一区二区三区视频在线观看免费| 宅男免费午夜| 亚洲在线自拍视频| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 丝袜美腿诱惑在线| 黄色视频,在线免费观看| 黄色片一级片一级黄色片| 国产精品电影一区二区三区| www.自偷自拍.com| 国产精品精品国产色婷婷| 老司机福利观看| 久久精品91蜜桃| 久久精品影院6| 最新在线观看一区二区三区| 手机成人av网站| 亚洲国产看品久久| 91av网站免费观看| 日本在线视频免费播放| 一区二区三区激情视频| 床上黄色一级片| 成人国语在线视频| 欧美日韩瑟瑟在线播放| 1024香蕉在线观看| 久久久久久久精品吃奶| 观看免费一级毛片| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 国产一区在线观看成人免费| 两性夫妻黄色片| 在线观看舔阴道视频| 在线永久观看黄色视频| 成人手机av| 黄色毛片三级朝国网站| 国产一区二区在线观看日韩 | 香蕉久久夜色| 男女做爰动态图高潮gif福利片| 欧美乱妇无乱码| 亚洲欧美日韩高清在线视频| 国产探花在线观看一区二区| 一区二区三区高清视频在线| 女生性感内裤真人,穿戴方法视频| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 波多野结衣高清无吗| 丝袜美腿诱惑在线| 亚洲欧美日韩高清专用| 成人一区二区视频在线观看| 成人国产一区最新在线观看| 亚洲男人天堂网一区| 人成视频在线观看免费观看| 国内久久婷婷六月综合欲色啪| 国产视频一区二区在线看| 色综合亚洲欧美另类图片| 久9热在线精品视频| 欧美乱色亚洲激情| 久久精品aⅴ一区二区三区四区| 日本 av在线| 国产精品综合久久久久久久免费| 天堂√8在线中文| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费一区二区三区在线| 亚洲黑人精品在线| 欧美黄色淫秽网站| 亚洲va日本ⅴa欧美va伊人久久| 国产免费男女视频| 亚洲国产精品sss在线观看| 亚洲五月天丁香| 中文字幕久久专区| 久久亚洲精品不卡| 中文字幕人妻丝袜一区二区| 人妻夜夜爽99麻豆av| 日韩三级视频一区二区三区| 一本一本综合久久| av片东京热男人的天堂| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲美女久久久| 午夜福利18| 最近最新免费中文字幕在线| 久久久国产成人精品二区| 亚洲午夜精品一区,二区,三区| 五月玫瑰六月丁香| 欧美色视频一区免费| 久久午夜综合久久蜜桃| 999久久久精品免费观看国产| 九色成人免费人妻av| 两人在一起打扑克的视频| 精品高清国产在线一区| 日本一二三区视频观看| 久久久久久亚洲精品国产蜜桃av| 欧美精品亚洲一区二区| 天堂√8在线中文| 国产成人欧美在线观看| 久热爱精品视频在线9| 黄色视频不卡| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区视频在线观看免费| 88av欧美| 18禁黄网站禁片午夜丰满| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 日本 欧美在线| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 18禁美女被吸乳视频| 欧美一级毛片孕妇| 91在线观看av| 久久亚洲精品不卡| 成年人黄色毛片网站| 韩国av一区二区三区四区| 亚洲国产欧洲综合997久久,| 久久久精品大字幕| 亚洲av美国av| 亚洲在线自拍视频| 国产精品一及| 久9热在线精品视频| 久久精品国产亚洲av高清一级| 国产亚洲av嫩草精品影院| 真人做人爱边吃奶动态| 999精品在线视频| 日本免费a在线| 国产成人一区二区三区免费视频网站| 国产精品久久久久久人妻精品电影| 人妻久久中文字幕网| 国产精品99久久99久久久不卡| 巨乳人妻的诱惑在线观看| 一二三四在线观看免费中文在| 亚洲五月天丁香| 操出白浆在线播放| 久久精品91无色码中文字幕| 级片在线观看| 午夜视频精品福利| 国产一区二区三区在线臀色熟女| 亚洲国产中文字幕在线视频| 欧美日韩黄片免| 欧美性猛交╳xxx乱大交人| 成熟少妇高潮喷水视频| 黑人巨大精品欧美一区二区mp4| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| 麻豆久久精品国产亚洲av| 90打野战视频偷拍视频| 国产区一区二久久| 国产探花在线观看一区二区| 国产99白浆流出| 国产亚洲欧美在线一区二区| 亚洲成人久久爱视频| 亚洲欧美日韩高清在线视频| 久久国产精品影院| 国产精品久久久av美女十八| 亚洲五月天丁香| 99久久精品国产亚洲精品| 国语自产精品视频在线第100页| 在线免费观看的www视频| 99热6这里只有精品| 亚洲欧美日韩东京热| 久久中文看片网| xxxwww97欧美| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| 国产在线精品亚洲第一网站| 国产av在哪里看| 久久性视频一级片| 成人精品一区二区免费| 国产精品亚洲一级av第二区| 午夜福利欧美成人| 最近最新免费中文字幕在线| 亚洲第一电影网av| 麻豆久久精品国产亚洲av| 淫秽高清视频在线观看| 精品日产1卡2卡| 日本黄大片高清| 国产亚洲精品久久久久5区| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 男插女下体视频免费在线播放| 搡老熟女国产l中国老女人| 一a级毛片在线观看| aaaaa片日本免费| 亚洲电影在线观看av| 日本免费a在线| 成年免费大片在线观看| 日本一本二区三区精品| 老汉色∧v一级毛片| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 日本熟妇午夜| 亚洲,欧美精品.| xxxwww97欧美| 中文亚洲av片在线观看爽| 精品国产乱码久久久久久男人| 国产精品一区二区免费欧美| 丁香欧美五月| 久久久国产成人免费| 国产精品一区二区三区四区免费观看 | 国产蜜桃级精品一区二区三区| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 免费观看精品视频网站| 亚洲av电影在线进入| 日日爽夜夜爽网站| 亚洲九九香蕉| 欧美日韩精品网址| 成人手机av| 两个人的视频大全免费| 99久久精品国产亚洲精品| 美女大奶头视频| 欧美中文综合在线视频| 免费电影在线观看免费观看| 九色国产91popny在线| 免费高清视频大片| 91在线观看av| 亚洲aⅴ乱码一区二区在线播放 | 母亲3免费完整高清在线观看| 亚洲中文日韩欧美视频| 国产精品一及| 老司机午夜十八禁免费视频| 久久精品国产综合久久久| 国产一区二区在线观看日韩 | 欧美大码av| 日本成人三级电影网站| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| 亚洲欧美日韩高清专用| 国产精品1区2区在线观看.| 性色av乱码一区二区三区2| 淫妇啪啪啪对白视频| 日韩精品免费视频一区二区三区| 国产亚洲欧美98| 老司机靠b影院| 久久九九热精品免费| 国产精品乱码一区二三区的特点| 久久久久久久午夜电影| 日韩欧美国产在线观看| 亚洲av成人不卡在线观看播放网| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 久久精品aⅴ一区二区三区四区| 亚洲av电影不卡..在线观看| 精品人妻1区二区| 午夜免费激情av| 一夜夜www| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看| 国产精品99久久99久久久不卡| 91成年电影在线观看| 91大片在线观看| 国产男靠女视频免费网站| 午夜福利在线观看吧| 丁香六月欧美| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 日本黄大片高清| 亚洲五月天丁香| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 黄色毛片三级朝国网站| 五月玫瑰六月丁香| 正在播放国产对白刺激| 18禁黄网站禁片免费观看直播| 精品一区二区三区四区五区乱码| 身体一侧抽搐| 毛片女人毛片| 日本成人三级电影网站| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看 | 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 亚洲片人在线观看| 久99久视频精品免费| 亚洲成人免费电影在线观看| 一级片免费观看大全| 亚洲国产日韩欧美精品在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 男女午夜视频在线观看| 中文字幕精品亚洲无线码一区| 91字幕亚洲| 亚洲人成电影免费在线| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩高清专用| 欧美日韩黄片免| 在线观看免费日韩欧美大片| 国产精品久久久久久久电影 | 久久久久亚洲av毛片大全| 制服诱惑二区| 国产精品99久久99久久久不卡| 2021天堂中文幕一二区在线观| 国产视频内射| 久久久久久人人人人人| 亚洲国产欧美一区二区综合| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 日日爽夜夜爽网站| 国产精品免费一区二区三区在线| 精品第一国产精品| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 亚洲av五月六月丁香网| 亚洲九九香蕉| 久久精品亚洲精品国产色婷小说| 亚洲人成77777在线视频| 国产男靠女视频免费网站| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| a在线观看视频网站| 亚洲一区中文字幕在线| 亚洲一码二码三码区别大吗| 国产激情欧美一区二区| 免费电影在线观看免费观看| 亚洲精品国产一区二区精华液| 美女大奶头视频| 亚洲人与动物交配视频| 精品福利观看| 搡老妇女老女人老熟妇| 99国产精品99久久久久| 麻豆国产97在线/欧美 | 可以在线观看毛片的网站| 99在线人妻在线中文字幕| 可以在线观看毛片的网站| 欧美性猛交黑人性爽| 国产亚洲精品综合一区在线观看 | 91在线观看av| 九九热线精品视视频播放| 在线国产一区二区在线| 91av网站免费观看| 国产精品99久久99久久久不卡| 亚洲成av人片免费观看| 精品电影一区二区在线| 大型黄色视频在线免费观看| 中国美女看黄片| 国产激情欧美一区二区| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久| 亚洲精品色激情综合| 久久热在线av| 国产一区二区在线av高清观看| 黑人操中国人逼视频| 听说在线观看完整版免费高清| 亚洲国产欧美网| 在线观看美女被高潮喷水网站 | 一级毛片高清免费大全| 淫秽高清视频在线观看| 黑人操中国人逼视频| 成在线人永久免费视频| 国产免费男女视频| 99久久无色码亚洲精品果冻| 黑人巨大精品欧美一区二区mp4| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av在线| 国产v大片淫在线免费观看| av国产免费在线观看| 免费看日本二区| 亚洲成人中文字幕在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一及| 99热这里只有是精品50| 女生性感内裤真人,穿戴方法视频| 精品高清国产在线一区| 欧美日韩亚洲综合一区二区三区_| 岛国在线观看网站| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区mp4| 久9热在线精品视频| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 国产精品野战在线观看| 日韩av在线大香蕉| 老司机靠b影院| 国产久久久一区二区三区| av有码第一页| 精品福利观看| 亚洲人成电影免费在线| 久久国产乱子伦精品免费另类| 国产精品久久电影中文字幕| 淫妇啪啪啪对白视频| 亚洲精品色激情综合| 成人精品一区二区免费| 少妇裸体淫交视频免费看高清 | 亚洲电影在线观看av| 最近最新免费中文字幕在线| 一二三四在线观看免费中文在| 国产成人影院久久av| 12—13女人毛片做爰片一| xxxwww97欧美| 99re在线观看精品视频| 日本一本二区三区精品| 国产av不卡久久| 波多野结衣巨乳人妻| 亚洲无线在线观看| 99国产精品一区二区三区| 老鸭窝网址在线观看| 精品少妇一区二区三区视频日本电影| 久久精品成人免费网站| 在线观看www视频免费| 国产成人av教育| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 99久久精品热视频| 九色国产91popny在线| 天堂动漫精品| 精品久久久久久久人妻蜜臀av| 99国产综合亚洲精品| 国产精品乱码一区二三区的特点|