• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Approach to a Fuzzy Time-Optimal Control Problem

    2014-04-23 05:46:48EmrahAmrahovGasilovandFatullayev

    ?S.Emrah Amrahov,N.A.Gasilovand A.G.Fatullayev

    1 Introduction

    Many researchers have investigated optimal control problems with uncertainties.Gabasov,Kirillova,and Poyasok(2010a)have considered optimal preposterous observation and optimal control problems for dynamic systems under uncertainty with use of a priori and current information about the controlled object behavior and uncertainty.For an optimal control problem under uncertainty,Gabasov,Kirillova,and Poyasok(2009)have investigated the positional solutions,which are based on the results of inexact measurements of input and output signals of controlled object.In another study,Gabasov,Kirillova,and Poyasok(2010b)have studied a problem of optimal control of a linear dynamical system under set-membership uncertainty.Optimal control problem with uncertainty has firstly been formulated as a fuzzy optimal control problem by Filev and Angelov(1992).They have solved the problem on the basis of fuzzy mathematical programming and transformed the fuzzy problem to the multicriteria optimal control problem.

    Sakawa et al.(1996)have proposed a fuzzy satisficing method for multiobjective linear optimal control problems.To solve these problems,they have discretized the time and replaced the system of differential equations by system of difference equations.Moon,VanLandingham,and Beliveau(1996)have developed a linear time varying state equation for hoisting and lowering operations of a crane system model.Wang(1998)have developed an optimal fuzzy controller for linear systems with quadratic cost function via Pontryagin’s Maximum Principle(PMP)[Pontryagin et al.(1986)].A fuzzy approach has been used by Kulczycki(2000)in the design of sub-time-optimal feedback controllers.

    Fuzzy time-optimal control problems have been investigated in different forms by Plotnikov(2000);and Molchanyuk and Plotnikov(2009).Plotnikov(2000)has proved necessary maximin and maximax conditions for a control problem,when the behavior of the object is described by a controllable differential inclusion with multivalued performance criterion.Molchanyuk and Plotnikov(2009)have study the problem of high-speed operation for linear control systems with fuzzy right hand sides.For this problem,they have introduced the notion of optimal solution and established necessary and sufficient conditions of optimality in the form of the PMP.

    A new fuzzy control system has been developed by Liu(2008)as an alternative approach to Mamdani(1974)and Takagi and Sugeno(1985)systems.Unlike the Mamdani and Takagi-Sugeno systems,the Liu fuzzy control system is not deterministic.Based on the concept of fuzzy Liu process,Zhao and Zhu(2010)have investigated a fuzzy optimal control model with a quadratic objective functional for a linear fuzzy control system.Likewise,based on Liu process a linear quadratic model have been proposed and the corresponding fuzzy optimal control problem have been solved by Qin,Bai,and Ralescu(2011).They have applied the approach to model production planning problems.

    Nagi et al.(2011)have investigated fuzzy time-optimal control problem for second order nonlinear systems.A synthesis problem for fuzzy systems have been considered by Aliev,Niftiyev,and Zeynalov(2011).

    In most of the application problems,the behavior of the object is determined by physics laws and is crisp.If the initial and final values are obtained from measurement,these values can be uncertain and often it is more adequate to model them by fuzzy numbers.Thus,optimal control problems arise with crisp dynamics but with fuzzy boundary values.In this paper,we consider such a problem.Namely,we consider a time-optimal control problem with crisp dynamics and with fuzzy start and target states.We interpret the optimal time as a fuzzy variable and propose a numerical method to calculate it.We demonstrate our method on a problem of fuzzy control of mathematical pendulum[Blagodatskikh(2001)].This problem is still an actual problem even in crisp case[Paoletti and Genesio(2011)],though it is investigated for a sufficiently long time.

    The present paper consists of 6 sections including the Introduction.In Section 2,we give preliminaries on fuzzy sets and describe the classical time-optimal control problem.In Section 3,we define the fuzzy time-optimal control problem.In Section 4,we propose a method for calculation of fuzzy optimal time.In Section 5,we show the proposed approach by an example.Finally,we give concluding remarks in Section 6.

    2 Preliminaries

    2.1 Fuzzy sets

    The notion of fuzzy set is an extension of the classical notion of set.In classical set theory,an element either belongs or does not belong to the given set.By contrast,in fuzzy set theory,an element has a degree of membership,which is a real number from[0,1],in the given fuzzy set.In fuzzy set theory,classical sets are usually called crisp sets.

    For eachx∈U,is called the membership degree ofxin

    LetU=R(whereRis the set of real numbers).Let alsoa,candbbe real numbers such thata

    is called a triangular fuzzy number and is denoted as

    Fuzzy sets can be represented also via their α-cuts.

    For each α ∈(0,1],the crisp setis called the α-cut ofFor α=0 we put

    It is easy to see that if α increases,Aαcan only be narrower.Therefore,in the coordinate space,the α-cuts of a fuzzy set are bodies nested within one another.

    2)is a bounded nonincreasing left-continuous function on(0,1]and right-continuous at α=0

    Triangular fuzzy numbers are a particular case of fuzzy numbers in parametric form.For a triangular fuzzy numberwe haveand

    2.2 Classical linear time-optimal control problem

    Let the behavior of a controlled object be definite and described by the following linear system of differential equations:

    Herexisn-dimensional vector-function that describes the phase state of the object,Ais ann×nmatrix,uisn-dimensional control vector-function.

    LetU?Rnbe a nonempty compact set.If measurable functionu,defined on the intervalI=[t0,t1],satisfies the conditionu(t)∈Ufor eacht∈I,thenuis called an admissible control.It is known that for any admissible functionuand for any initial statepthe initial value problem

    has a unique solution[Blagodatskikh(2001)].This solutionxdescribes how the phase state changes with time under the inf l uence of admissible controlu.

    Assume that the start timet0and the start statepare given.If we want to transfer the object to a given stateqin the shortest time by choosing an appropriate admissible controlu,we have the following Classical time-optimal control problem of 1-st type:

    Subject to

    Note,that the finish timet1is not known beforehand and is determined as a result of solving the problem.Summarizing,1-st type classical time-optimal problem(2)-(5)is a problem of finding an admissible controlu,which transfers the object from the initial phase statepto the final phase stateqin the shortest time.

    Now,let nonempty compact setsM0andM1fromRn,an intervalI=[t0,t1],and an admissible functionuon this interval be given.If the system(1)has a solutionx(t)such thatx(t0)∈M0andx(t1)∈M1,then it is said that the control functionutransfers the object from the initial phase setM0to the final phase setM1on the interval[t0,t1].If we want to transfer the object from the setM0to the setM1in the shortest time,we have the following Classical time-optimal control problem of 2-nd type:

    Subject to

    whereM0andM1are given start and target sets.The solutionuof the problem(6)-(9)is called optimal control.The solutionxof the system(7)-(9),corresponding to the optimal controlu,is called optimal trajectory.Ifu(t)is an optimal control andx(t)is a corresponding optimal trajectory,then(u(t),x(t))is called to be an optimal pair.

    We note that the classical problem of 2-nd type can also be reformulated as follows:

    2-nd type classical time-optimal problem(6)-(9)(or(10)-(13))is well studied[Pontryagin et al.(1986);Blagodatskikh(2001)].Below we give necessary conditions of optimality for this problem[Pontryagin et al.(1986);Blagodatskikh(2001)].

    Definition 1.(Maximum principle).Let u be an admissible control defined on an interval[t0,t1]and let x be a solution of the system(7)-(9).We say that the pair(u(t),x(t))satisfies maximum principle on the interval[t0,t1]if the conjugate system

    has such a nontrivial solution ψ =(ψ1,ψ2,...,ψn)that the following conditions hold:

    1)maximum condition:hu(t),ψ(t)i=c(U,ψ(t))for almost any t∈ [t0,t1];

    2)transversality condition on M0:hx(t0),ψ(t0)i=c(M0,ψ(t0));

    3)transversality condition on M1:hx(t1),?ψ(t1)i=c(M1,?ψ(t1)).

    HereA?is the conjugate transpose matrix ofA(Note thatA?=ATifAis a real matrix);hu,ψi=u1ψ1+u2ψ2+...+unψndenotes the inner product of vectorsuand ψ fromRnanddenotes the support function of the compact setSfromRn.

    Theorem 1.[Blagodatskikh(2001)](Necessary conditions of optimality for the time-optimal control problem).Let M0and M1be nonempty convex compact sets.Also let the function u defined on[t0,t1]be an optimal control for the problem(6)-(9)and x be a corresponding optimal trajectory.Then the pair(u(t),x(t))satisfies maximum principle on the interval[t0,t1].

    Remark 1:SinceM0andM1are nonempty compact sets and support functionc(·,ψ)is a linear function,the initial and final values of the optimal solutionx(t)of the problem(6)-(9)are achieved on boundaries of the setsM0andM1by Theorem 1.

    3 Fuzzy linear time-optimal control problem

    In most application problems,the behavior of the object is determined by laws of physics.Because of this the equations modeling the object’s behavior are crisp in nature.However,the initial and final states of the object may contain uncertainty.Depending on the nature of uncertainty,control problem can be modeled by different methods such as stochastic analysis,interval analysis,and fuzzy logic methods.For example,let the initial state be measured as a pointp=(a,b).Obviously,the certainty of this value depends on accuracy of the measuring device.If the measurement error is ε,then the initial state is a point from a square centered at(a,b)and with side length 2ε.If all points in this square are equivalent to each other as a candidate to the true value,then the problem can be modeled by interval analysis method.But often it is natural to expect that these points are not equivalent.For instance,degree of belief to the point(a,b)is more compared to any other point(x,y)from the square.And the degree of belief to(x,y)decreases as its distance from(a,b)increases.In this case,where the initial state is"close"to the measured value(a,b),it will be more appropriate to model the problem by means of fuzzy logic.In this paper,we consider such kind of model.For simplicity,we represent the"close"point’s coordinates(xandy)by fuzzy triangular numbers.

    If the start and target values in classical problem of 1-st type are fuzzy,we obtain the following Fuzzy time-optimal control problem:

    Subject to

    In Fig.1 we give a schematic representation to problem(14)-(17)for the case of 2-dimensional phase space(i.e.x∈R2)

    The problem shown in Fig.1 can be interpreted as follows:We want to transfer the object from start point to final point in the shortest time,where start point is"close"to(?5,3)and final point is"close"to(0,0).

    Depending on definition of derivative of fuzzy function or definition of solution of system of differential equations,the problem(14)-(17)can be interpreted by different ways.For the present time,there are many difficulties with solving differential equations when fuzzy derivatives(such as Hukuhara,or generalized Hukuhara derivatives[Kaleva(1987);Bede and Gal(2005)])are used.Therefore,today it seems to be unproductive to apply fuzzy derivative for solving fuzzy optimal control problem.

    We will interpret the problem(14)-(17)as a set of 1-st type classical problems(2)-(5).Each problem is obtained by taking the initial valuepfromand the final valueqfrom

    Figure 1:Schematic representation for the problem(14)-(17)in phase space.The initial and final states and)are represented with fuzzy rectangles ABCD and EFGH,respectively.Dashed and dotted rectangles indicate α =0.3 and α =0.7-cuts.Dots represent the crisp values,the line connecting them depicts a crisp optimal trajectory.

    De finition 2.Letanddenote the solutions of the problem(2)-(5).

    Let also(wheredenotes the membership degreemembership degree α.

    Set of allt1,pq,defined above,determines a fuzzy set.We will investigate how to calculateFunctionsandwhich indicate the left and right boundaries of α-cuts,determine the setfully.Thus,the problem of calculation of fuzzy optimal time is reduced to calculation of the functionsand

    Lemma 2.(where α ∈ [0,1])is a solution of the following classical timeoptimal control problem of 2-nd type:

    Proof.Ift1,pqis an optimal time with membership degreeμ≥α then,by the Definition 2,μeξ(p)≥α andμeζ(q)≥α,consequently,p∈ξαandq∈ζα(here ξαand ζαdenote α-cuts ofξeandζe,respectively).On the contrary,ifp∈ ξαandq∈ζαthen the corresponding solution has a membership degreeμ ≥α.is the shortest time among all solutions with membership degreeμ≥α.Therefore,can be obtained by solving the problem(6)-(9)with takingM0= ξαandM1= ζα,namely the problem(18)-(21).

    Taking into account(10),it can be seen that

    This formula can be used as alternative to(18)-(21)in numerical calculations.Note that,the valuemeans the shortest time between two points,one of them is from the set ξαand another is from ζα,in the best case.Similarly,means the shortest time in the worst case:

    4 Numerical method to calculate the fuzzy shortest time

    As it mentioned in Remark1,the initial and final states of the optimal trajectoryx(t)are achieved on boundaries of the sets ξαand ζα.Taking this fact into account we place equally spaced nodes on the boundaries of the regionsξαandζα.The shortest time among all possible start-destination node pairs(p,q)gives the approximate value ofaccording to the formula(22).Thus,to calculate the functionwe have to solvenα·n1·n2crisp problems of 1-st type(2)-(5).Heren1andn2denote the numbers of nodes approximating the boundaries of the regions ξαand ζα,respectively.

    Similarly,to calculate the functionwe discretize the problem(23)and solve it numerically.

    Remark 2:Considering of a fuzzy problem as a set of crisp problems becomes an effective tool in many cases,especially when other approaches fail.The main difficulty of this approach is that a set of crisp problems arises and new methods must be developed to combine their solutions in order to get a fuzzy solution.Gasilov,Amrahov,and Fatullayev(2011)applied the approach to the fuzzy initial value problem for linear system of differential equations;Gasilov,Amrahov,and Fatullayev(2013)and Gasilov et al.(2012)to the fuzzy boundary and initial value problems for high-order linear differential equation,respectively.

    Note that the straightforward calculation of the functionby formula(22)requires to solvenα·n2·n2~n5problems(2)-(5)(ifn×ngrids are used for initial and final sets).Lemma 2 and Remark 1 made it possible to reduce the number of calculations tonα·n·n~n3.

    5 Case study

    In this section,we apply the proposed approach to a fuzzy time-optimal control problem.The problem is a fuzzified version of the crisp problem of damping of mathematical pendulum,presented in[Blagodatskikh(2001)].

    Example 1.Solve the fuzzy time-optimal control problem(Note that below t0=0):

    Hereare triangular fuzzy numbers.

    Below the solution is given in 3 stages.

    a)General notes and preliminary investigation.Initial and final state vectors,,form in the phase planeR2the fuzzy squares with sides of 1 and 0.5,and with centers at(?5,3)and(0,0),respectively(see,Fig.1).

    It can be seen that ξα={(x1,x2)|α?6≤x1≤?4?α,α+2≤x2≤4?α}and ζα={(x1,x2)|0.5(α?1)≤x1≤0.5(1?α),0.5(α?1)≤x2≤0.5(1?α)}.The sets ξαand ζαalso are squares with the same centers aseξ andeζ,while with sides of 1?α and 0.5(1?α),respectively.

    To solve the given fuzzy problem we need a solution method for the according crisp problem of 1-st type(2)-(5),which can be applied for arbitrary start statepand final stateq.Below,we develop such a method.

    Support function ofUisc(U,ψ)=|ψ2|.Then,the maximum condition hu(t),ψ(t)i=c(U,ψ(t))impliesu2(t)ψ2(t)=|ψ2(t)|.Consequently,for optimal control we have:

    The system’s matrix isA=.Sincethe conjugate system is

    Let us find the solution of the conjugate system corresponding to an initial condition ψ(0)∈C,whereCis the unit circle.Initial points can be represented in the form of ψ(0)=(cosα,sinα)with α ∈ [0,2π).Then the solution of the conjugate system is ψ1(t)=cos(α ?t),ψ2(t)=sin(α ?t).The function ψ2(t)=sin(α ?t)changes its sign for first time at τ≤π (τ=π if α =0;τ=α if 0<α ≤π;and τ=α?π if π < α <2π)and then after each π time period.Depending on α,the sign of the function ψ2(t)=sin(α ?t)in the interval[0,τ]is either positive or negative.Thus,according to the maximum condition,the initial value of the optimal controlu2(t)is either 1 or?1.After τ≤π time units,it switches from 1 to?1 or vice versa.Then,it repeatedly changes its sign after each π time period.

    Below we interpret the behavior of the object as a motion of the object in the phase planex1x2.

    Solutions of dynamic system corresponding tou2(t)=1 are in the formx(t)=(1+ccos(? ?t),csin(? ?t)).In the phase planeR2these solutions constitute concentric circles with center atL(1,0)(Fig.2).The motion on these circles is clockwise with constant speed and whole turn takes 2π time units.

    Similarly,solutions of dynamic system corresponding tou2(t)=?1 are in the formx(t)=(?1+ccos(??t),csin(??t)).InR2these solutions constitute circles with center atK(?1,0)(Fig.2).The motion on these circles is clockwise with constant speed and whole turn takes 2π time units.

    Figure 2:An optimal trajectory can be realized by combining of clockwise motions on circles with centers K and L.

    Note that angular speed is ω=1 for both motions mentioned above.So,the angle formed by the object during its motion and the passed time are equal in value.

    Let us emphasize two facts which will be used in arguments below.1)In circular motion with ω =1 after π time period the object will be in the position which is opposite(central symmetric point)of the current position.2)The symmetric point of(a,b)is(?a?2,?b)with respect to center pointK.If center isL,then the symmetry of point(c,d)is(?c+2,?d).

    b)Semi-analytical solution of 1-st type crisp problem.Now we investigate how is a motion of the object corresponding to an optimal control in the phase plane for a start pointSand a target pointT.Let us consider the case when the object starts with controlu=?1(The case with start controlu=1 can be investigated similarly).Letkdenote the number of control switches.We consider the casesk=0(motion without switch)andk≥1 separately.

    In the casek=0,running from the start positionSand moving along a circle with centerKthe object reaches the target positionT.This case occurs,only if|KS|=|KT|(Here|AB|denotes the length of the segmentAB).The motion time ist1=θ=∠SKT(Here∠SKTdenotes the value of the angleSKT).

    Now letk≥1.We differ the cases whenkis odd and whenkis even.

    Figure 3:A sample of optimal trajectory with 3 switches.

    Let us consider the case thatkis odd number and takek=3 for clarity.The object runs from the pointSalong a circle with centerKand after τ time period arrives a pointX1(x,y)(Fig.3).The pointsSandX1are on the same circle.Consequently:

    At the pointX1the control switches for the first time and becomesu=1.Under this control,the object moves along a circle with centerL.After π time units it arrives a pointX2(?x+2,?y).Here the control switches for the second time and under new controlu= ?1(moving on circle with centerK)after π time the object reaches a pointXk=X3(x?4,y).At the pointXkthe control switches for last time and becomesu=1.The object continues its motion on a circle with centerLup to the target pointT.For the aforementioned motion,the pointsXkandTmust be on the same circle with centerL,i.e.,

    It can be seen from Table 1 that for an oddk(includingk=1)the last point of control switch is

    Table 1:Point of k-th control switch for optimal motion

    LetS=(px,py)andT=(qx,qy).To calculate unknown coordinatesxandywe use equations(24)and(25).Using(26),these equations can be rewritten in coordinates as follows:

    Subtracting(28)from(27)we have:4k(x+1)?4k2=?.Then we can determinexandyas follows:

    Ifxandyhave been determined we can calculate the passed time:

    Let us find an evaluation fork.From(29)and(30)we have

    Hence,we obtain the following evaluation

    Then,we havekopt

    The case whenk≥1 andkis even can be investigated by similar way.In this case the last point of the control switch is(see,Table 1):

    The last control isu=?1 and,consequently,the object finishes its motion on a circle with centerK.Hence,.Except this value,the formulas forxandybecome the same as(29)and(30).The motion time is:

    Above we have investigated the case when the start controluequals to?1.In the case whereuis 1 we have the following final formulas:

    The above formulas,given for different situations,were obtained on the base of the necessary conditions for optimality.Therefore,every solution constructed on these formulas may not be optimal.However,the optimal solution is among all solutions,constructed for different start controls and for different values ofk.

    Based on the above arguments and formulas a computer program is implemented to calculate the optimal control for a given pair of start pointSand target pointT.Firstly,by taking start controlu=?1,after takingu=1 and in both cases by changing the value ofkfromkmintokmaxa solution is constructed(if there is any).The solution with the shortest time is the optimal solution,transferring the object fromStoT.

    Figure 4:The membership function of fuzzy optimal time

    c)Results of the numerical calculations.The membership function of fuzzy optimal timeobtained from calculations,is depicted in Fig.4.Although the initial and final states are expressed by fuzzy triangular numbers,we can see thatis not triangular.The valuet1≈8.78 with membership degree 1 corresponds to the solution of the crisp problem(p=(?5,3)andq=(0,0).The corresponding optimal trajectory is shown in Fig.1.The least valuet1≈5.97 with membership degree 0 occurs whenp=(?4,2)andq=(?0.5,0.5).The largest valuet1≈11.76 with membership degree 0 corresponds to the pairp=(?6,4)andq=(0.5,0.5).We can note the following in regard to the obtained solution.The solution of according crisp problem is≈8.78.When the initial and final states are fuzzy it could be expected that the optimal time would be a fuzzy number with vertex atThe obtained solution determines the parameters of this fuzzy number:the size of the uncertainty(i.e.how wide is it),its shape(is it triangular or not,etc.).

    6 Conclusion

    In this paper,we investigated the time-optimal control problem with fuzzy initial and final states.We interpreted the problem as a set of crisp problems.This approach allows to transform a fuzzy problem to a set of crisp problems,that can be solved with known methods.The approach can be applied to the problems when the behavior of the object is described by the system of differential equations or by the higher-order differential equation.As it is known,the application of the Hukuhara or generalized derivatives to these problems is difficult because the number of cases have to be analyzed increases exponentially with order.

    Based on the approach we proposed a numerical method to solve the fuzzy time optimal control problem.The complexity of the method isO(n3)for the2-dimensional phase space,ifn×ngrids are used for the initial and final sets.

    We demonstrated the proposed method on a numerical example.To solve the arising crisp time-optimal control problem of 1-st type we developed a numerical algorithm.Also,we showed how to obtain the fuzzy solution from the solutions of the corresponding crisp problems.

    Acknowledgement:This work is supported by Scientific and Technological Re

    search Council of Turkey(TUBITAK)under the project ID 114E269.

    Aliev,F.A.;Niftiyev,A.A.;Zeynalov,C.I.(2011):Optimal synthesis problem for the fuzzy systems,Optim.Control Appl.Meth.,vol.32,pp.660–667.

    Bede,B.;Gal,S.G.(2005):Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation,Fuzzy Sets and Systems,vol.151,pp.581–599.

    Blagodatskikh,V.I.(2001):Introduction to Optimal Control[in Russian],Vysshaya Shkola,Moscow.

    Filev,D.;Angelov,P.(1992):Fuzzy optimal control,Fuzzy Sets and Systems,vol.47,issue 2,pp.151–156.

    Gabasov,R.;Kirillova,F.M.;Poyasok,E.I.(2009):Robust optimal control on imperfect measurements of dynamic systems states,Appl.Comput.Math.,vol.8,issue 1,pp.54–69.

    Gabasov,R.;Kirillova,F.M.;Poyasok,E.I.(2010):Optimal real-time control of nondeterministic models on imperfect measurements of input and output signals,TWMS J.Pure Appl.Math.,vol.1,issue 1,pp.24–40.

    Gabasov,R.;Kirillova,F.M.;Poyasok,E.I.(2010):Optimal control of linear systems under uncertainty,Proceedings of the Steklov Institute of Mathematics,vol.268,supplement 1,pp.95–111.DOI:10.1134/S0081543810050081

    Gasilov,N.A.;Amrahov,?S.E.;Fatullayev,A.G.(2011):A geometric approach to solve fuzzy linear systems of differential equations,Appl.Math.Inf.Sci.,vol.5,pp.484–495.

    Gasilov,N.;Amrahov,?S.E.;Fatullayev,A.G.(2013):Solution of linear differential equations with fuzzy boundary values,Fuzzy Sets and Systems.http://dx.doi.org/10.1016/j.fss.2013.08.008

    Gasilov,N.A.;Hashimoglu,I.F.;Amrahov,?S.E.;Fatullayev,A.G.(2012):A new approach to non-homogeneous fuzzy initial value problem,CMES:Computer Modeling in Engineering&Sciences,vol.85,issue 4,pp.367–378.

    Kaleva,O.(1987):Fuzzy differential equations,Fuzzy Sets and Systems,vol.24,pp.301–317.

    Kulczycki,P.(2000):Fuzzy controller for mechanical systems,IEEE Transactions on Fuzzy Systems,vol.8,issue 5,pp.645–652.

    Liu,B.(2008):Fuzzy process,hybrid process and uncertain process,Journal of Uncertain Systems,vol.2,issue 1,pp.3–16.

    Mamdani,E.H.(1974):Applications of fuzzy algorithms for control of simple dynamic plant,Proceedings of the Institution of Electrical Engineers“Control&Science”,vol.121,issue 12,pp.1585–1588.

    Molchanyuk,I.V.;Plotnikov,A.V.(2009):Necessary and suf ficient conditions of optimality in the problems of control with fuzzy parameters,Ukrainian Mathematical Journal,vol.61,issue 3,pp.457–466.

    Moon,M.S.;VanLandingham,H.F.;Beliveau,Y.J.(1996):Fuzzy time optimal control of crane load,in:Proceedings of the 35th Conference on Decision and Control,Kobe,Japan,December 1996,pp.1127–1132.

    Nagi,F.;Ahmed,S.K.;Zularnain,A.T.;Nagi,J.(2011):Fuzzy time-optimal controller(FTOC)for second order nonlinear systems,ISA Transactions,vol.50,pp.364–375.

    Paoletti,P.;Genesio,R.(2011):Rate limited time optimal control of a planar pendulum,Systems&Control Letters,vol.60,pp.264–270.

    Plotnikov,A.V.(2000):Necessary optimality conditions for a nonlinear problem of control of trajectory bundles,Cybernetics and Systems Analysis,vol.36,issue 5,pp.730–733.

    Pontryagin,L.S.;Boltyanskii,V.G.;Gamkrelidze,R.V.;Mishchenko,E.F.(1986):The Mathematical Theory of Optimal Processes(ISBN 2-88124-134-4),Gordon and Breach Science Publishers,New York.

    Qin,Z.;Bai,M.;Ralescu,D.(2011):A fuzzy control system with application to production planning problems,Information Sciences,vol.181,pp.1018–1027.

    Sakawa,M.;Inuiguchi,M.;Kato,K.;Ikeda,T.(1996):A fuzzy satis ficing method for multiobjective linear optimal control problems,Fuzzy Sets and Systems,vol.78,pp.223–229.

    Takagi,T.;Sugeno,M.(1985):Fuzzy identification of systems and its applications to modelling and control,IEEE Transactions on Systems,Man and Cybernetics,vol.15,issue 1,pp.116–132.

    Wang,L.-X.(1998):Stable and optimal fuzzy control of linear systems.IEEE Trans.Fuzzy Sys.,vol.6,issue 1,pp.137–143.

    Zhao,Y.;Zhu,Y.(2010):Fuzzy optimal control of linear quadratic models,Computers and Mathematics with Applications,vol.60,pp.67–73.

    一级毛片电影观看| av线在线观看网站| 国产日韩欧美在线精品| 伦理电影大哥的女人| 一级,二级,三级黄色视频| 国产精品人妻久久久影院| 青青草视频在线视频观看| 成人无遮挡网站| 18禁动态无遮挡网站| 中文在线观看免费www的网站| 日日摸夜夜添夜夜添av毛片| 欧美日韩一区二区视频在线观看视频在线| 五月伊人婷婷丁香| 一级二级三级毛片免费看| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃 | 少妇精品久久久久久久| 女人久久www免费人成看片| 亚洲真实伦在线观看| 午夜久久久在线观看| 国内精品宾馆在线| 乱码一卡2卡4卡精品| 色94色欧美一区二区| 国产黄频视频在线观看| 18禁在线播放成人免费| 男人狂女人下面高潮的视频| 免费看光身美女| 一级,二级,三级黄色视频| 亚洲国产日韩一区二区| 国产极品粉嫩免费观看在线 | 性色avwww在线观看| 国产欧美日韩一区二区三区在线 | 亚洲天堂av无毛| 亚洲av电影在线观看一区二区三区| 简卡轻食公司| 国产精品人妻久久久久久| 亚洲av欧美aⅴ国产| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 欧美 日韩 精品 国产| 国产伦在线观看视频一区| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 国产精品一区www在线观看| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三| 国产精品成人在线| 国产高清国产精品国产三级| 嘟嘟电影网在线观看| 两个人免费观看高清视频 | 国产中年淑女户外野战色| 成年女人在线观看亚洲视频| av网站免费在线观看视频| 亚洲av福利一区| 免费观看性生交大片5| 水蜜桃什么品种好| 国产淫语在线视频| 国产女主播在线喷水免费视频网站| 亚州av有码| 日韩欧美精品免费久久| 精品人妻一区二区三区麻豆| 夜夜看夜夜爽夜夜摸| 国产成人免费观看mmmm| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 97超视频在线观看视频| 国产精品一区www在线观看| 国产乱人偷精品视频| 黄色一级大片看看| 十分钟在线观看高清视频www | 18+在线观看网站| 久久免费观看电影| 免费大片18禁| 国产精品伦人一区二区| 九九在线视频观看精品| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 久久狼人影院| 日韩一本色道免费dvd| 国内揄拍国产精品人妻在线| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线观看99| 草草在线视频免费看| 99久久综合免费| 久久精品国产a三级三级三级| 夫妻性生交免费视频一级片| 久久久久视频综合| 欧美日韩av久久| 国产av一区二区精品久久| 日韩欧美 国产精品| 久久久精品94久久精品| 精品一区二区三区视频在线| h视频一区二区三区| 美女大奶头黄色视频| 精品一区在线观看国产| 啦啦啦啦在线视频资源| 国产精品.久久久| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 亚洲第一av免费看| 在线观看免费日韩欧美大片 | 如何舔出高潮| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 插阴视频在线观看视频| 午夜影院在线不卡| 成人毛片a级毛片在线播放| 一级a做视频免费观看| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 日本av免费视频播放| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 国产欧美亚洲国产| 黑人高潮一二区| 五月天丁香电影| h视频一区二区三区| 婷婷色麻豆天堂久久| 人人澡人人妻人| 18禁动态无遮挡网站| 国产一区二区三区综合在线观看 | 国产黄频视频在线观看| 性色avwww在线观看| 欧美97在线视频| 边亲边吃奶的免费视频| 青春草亚洲视频在线观看| 少妇熟女欧美另类| 久久鲁丝午夜福利片| 五月伊人婷婷丁香| 中文乱码字字幕精品一区二区三区| 精品视频人人做人人爽| 欧美日韩在线观看h| 偷拍熟女少妇极品色| 18禁动态无遮挡网站| 精品酒店卫生间| 99热国产这里只有精品6| 人妻人人澡人人爽人人| 久久久欧美国产精品| 最新的欧美精品一区二区| 观看美女的网站| 自线自在国产av| 肉色欧美久久久久久久蜜桃| 青青草视频在线视频观看| 欧美日韩亚洲高清精品| 久久国产精品大桥未久av | 欧美+日韩+精品| 日本wwww免费看| 男男h啪啪无遮挡| 免费黄频网站在线观看国产| 久久久亚洲精品成人影院| 99九九线精品视频在线观看视频| 国产深夜福利视频在线观看| 日本免费在线观看一区| 久久ye,这里只有精品| 一级av片app| 波野结衣二区三区在线| 在线观看一区二区三区激情| 欧美日韩视频精品一区| 欧美 亚洲 国产 日韩一| a级一级毛片免费在线观看| 黄片无遮挡物在线观看| 亚洲成人手机| 少妇的逼水好多| 亚洲熟女精品中文字幕| 午夜老司机福利剧场| 日韩欧美一区视频在线观看 | av黄色大香蕉| 国产精品成人在线| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| 成人美女网站在线观看视频| 日本午夜av视频| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 最黄视频免费看| 一本一本综合久久| 十八禁网站网址无遮挡 | 欧美高清成人免费视频www| 欧美bdsm另类| 国产黄色视频一区二区在线观看| 国产白丝娇喘喷水9色精品| 一级片'在线观看视频| 国产69精品久久久久777片| 99精国产麻豆久久婷婷| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| 国产精品久久久久久av不卡| 精品一品国产午夜福利视频| 99热网站在线观看| 免费在线观看成人毛片| 亚洲欧美一区二区三区黑人 | 夫妻性生交免费视频一级片| 高清av免费在线| 少妇熟女欧美另类| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久| 内地一区二区视频在线| 亚洲欧美精品专区久久| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 日本wwww免费看| 亚洲国产精品成人久久小说| 国产黄片美女视频| 亚洲av电影在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 91久久精品电影网| 插阴视频在线观看视频| 在线精品无人区一区二区三| 有码 亚洲区| 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 久久青草综合色| 在线观看一区二区三区激情| 一区二区av电影网| 亚洲av综合色区一区| 日本黄大片高清| 青青草视频在线视频观看| 99久久人妻综合| 交换朋友夫妻互换小说| 亚洲精品国产av成人精品| kizo精华| 大码成人一级视频| 美女视频免费永久观看网站| 亚洲精品自拍成人| 国产精品久久久久久av不卡| 久热这里只有精品99| 精品国产乱码久久久久久小说| 国产 精品1| 成人亚洲精品一区在线观看| 丰满迷人的少妇在线观看| 国产日韩欧美亚洲二区| 久久精品国产自在天天线| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 日本爱情动作片www.在线观看| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 简卡轻食公司| 国产成人精品久久久久久| 国产精品女同一区二区软件| 免费少妇av软件| 久久精品国产自在天天线| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 自拍欧美九色日韩亚洲蝌蚪91 | 精品一区二区免费观看| 国产一级毛片在线| 22中文网久久字幕| 久久午夜福利片| 国产精品不卡视频一区二区| 亚洲欧洲国产日韩| 少妇 在线观看| 国产精品久久久久久久电影| 一区二区三区四区激情视频| 大又大粗又爽又黄少妇毛片口| 一区在线观看完整版| 国产 精品1| 99视频精品全部免费 在线| 久久久久久久精品精品| 在线播放无遮挡| 嫩草影院入口| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 男人狂女人下面高潮的视频| 只有这里有精品99| 老司机影院成人| 九草在线视频观看| 精品一区在线观看国产| 一级爰片在线观看| 亚洲美女视频黄频| 美女视频免费永久观看网站| 亚洲精品乱码久久久久久按摩| 嫩草影院入口| 成人免费观看视频高清| 亚洲,一卡二卡三卡| 人人妻人人看人人澡| 国产欧美另类精品又又久久亚洲欧美| 亚洲图色成人| 日本av免费视频播放| 国产美女午夜福利| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 久久久久久久久久人人人人人人| av卡一久久| 国产午夜精品一二区理论片| 亚洲av成人精品一二三区| 欧美日韩av久久| 国产精品久久久久久久电影| 午夜老司机福利剧场| 岛国毛片在线播放| 人人澡人人妻人| 人妻 亚洲 视频| av又黄又爽大尺度在线免费看| 蜜桃久久精品国产亚洲av| 国产真实伦视频高清在线观看| 国产精品熟女久久久久浪| 免费大片黄手机在线观看| 日韩强制内射视频| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 在线观看www视频免费| 欧美xxⅹ黑人| 一本大道久久a久久精品| 精品酒店卫生间| 九色成人免费人妻av| 高清在线视频一区二区三区| www.色视频.com| 中文字幕亚洲精品专区| 亚洲精品日韩在线中文字幕| 亚洲av免费高清在线观看| 国产精品一区二区在线观看99| 久久青草综合色| 午夜福利,免费看| 午夜久久久在线观看| 99热这里只有是精品50| 观看免费一级毛片| freevideosex欧美| 一级毛片我不卡| 伊人久久精品亚洲午夜| 男女边吃奶边做爰视频| 如何舔出高潮| 亚洲熟女精品中文字幕| 如何舔出高潮| 日韩中字成人| 纯流量卡能插随身wifi吗| 久久99蜜桃精品久久| 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 综合色丁香网| 久久av网站| 免费av中文字幕在线| 免费人成在线观看视频色| 一本—道久久a久久精品蜜桃钙片| 久久久久久久久久久丰满| av免费观看日本| 久久精品国产亚洲网站| 亚洲欧美精品自产自拍| 精品少妇内射三级| 成人亚洲精品一区在线观看| videossex国产| 国产欧美亚洲国产| 黄色毛片三级朝国网站 | 亚洲综合精品二区| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 国产黄片美女视频| 日韩欧美精品免费久久| 亚洲av二区三区四区| 国产高清有码在线观看视频| 亚洲国产日韩一区二区| 久久 成人 亚洲| 国产成人精品福利久久| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 青青草视频在线视频观看| 80岁老熟妇乱子伦牲交| 97在线视频观看| 黄色欧美视频在线观看| 亚洲av男天堂| 丁香六月天网| 777米奇影视久久| 免费少妇av软件| 亚洲自偷自拍三级| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 一个人免费看片子| 国产国拍精品亚洲av在线观看| 精品一区二区三卡| 色哟哟·www| av专区在线播放| 男女边吃奶边做爰视频| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 极品人妻少妇av视频| 国产乱人偷精品视频| 少妇人妻 视频| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 新久久久久国产一级毛片| 中国三级夫妇交换| 在线观看人妻少妇| 国产亚洲欧美精品永久| 成人午夜精彩视频在线观看| 2018国产大陆天天弄谢| 久热这里只有精品99| 伦理电影免费视频| 久久精品国产亚洲av涩爱| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看 | 欧美另类一区| 麻豆成人av视频| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 一区二区三区免费毛片| 寂寞人妻少妇视频99o| 性色avwww在线观看| 欧美三级亚洲精品| 国产片特级美女逼逼视频| 欧美日韩一区二区视频在线观看视频在线| 高清欧美精品videossex| 黄色一级大片看看| 偷拍熟女少妇极品色| 欧美高清成人免费视频www| 久久影院123| 夜夜爽夜夜爽视频| 少妇被粗大猛烈的视频| videos熟女内射| 久久久久久久久大av| 国产一区有黄有色的免费视频| 一级毛片 在线播放| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频| 国产色婷婷99| 男女国产视频网站| 国产成人一区二区在线| 久久99热这里只频精品6学生| 人妻制服诱惑在线中文字幕| 精品国产国语对白av| 亚洲欧美精品自产自拍| 男人和女人高潮做爰伦理| 国内少妇人妻偷人精品xxx网站| 亚洲精品成人av观看孕妇| 如日韩欧美国产精品一区二区三区 | 最近中文字幕高清免费大全6| 国产一区二区三区综合在线观看 | 国产综合精华液| 黄色一级大片看看| 高清欧美精品videossex| 国产成人精品无人区| 狂野欧美白嫩少妇大欣赏| 国产精品国产三级专区第一集| 国产精品一二三区在线看| 只有这里有精品99| 如何舔出高潮| 丰满人妻一区二区三区视频av| 精品久久久噜噜| 在线观看三级黄色| 蜜桃在线观看..| 黄色怎么调成土黄色| 人人妻人人澡人人爽人人夜夜| 我要看黄色一级片免费的| 天天操日日干夜夜撸| 麻豆精品久久久久久蜜桃| 日本与韩国留学比较| 亚洲精品国产av蜜桃| 成人国产av品久久久| 女性生殖器流出的白浆| 亚洲四区av| 国产成人精品久久久久久| 丝袜脚勾引网站| 亚洲精品,欧美精品| 亚洲av综合色区一区| 一区二区av电影网| 日韩电影二区| 欧美性感艳星| 波野结衣二区三区在线| 简卡轻食公司| 精华霜和精华液先用哪个| 国产乱人偷精品视频| 久久久久视频综合| 在线播放无遮挡| 一二三四中文在线观看免费高清| 国产日韩欧美亚洲二区| 国产男女内射视频| 国产伦在线观看视频一区| 精品少妇内射三级| 中文天堂在线官网| 少妇 在线观看| 婷婷色综合大香蕉| 精品亚洲成a人片在线观看| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 天美传媒精品一区二区| 全区人妻精品视频| 麻豆乱淫一区二区| 一区在线观看完整版| 中文字幕人妻熟人妻熟丝袜美| 国产男女内射视频| 欧美日本中文国产一区发布| av不卡在线播放| 22中文网久久字幕| 成人二区视频| www.色视频.com| av专区在线播放| 最近中文字幕高清免费大全6| h日本视频在线播放| 国产片特级美女逼逼视频| 久久久午夜欧美精品| 妹子高潮喷水视频| 18禁裸乳无遮挡动漫免费视频| 国产又色又爽无遮挡免| 久久6这里有精品| 国产黄色视频一区二区在线观看| 日韩伦理黄色片| 国产一区有黄有色的免费视频| 成人影院久久| 成人亚洲欧美一区二区av| 亚洲四区av| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三区在线 | 久久久久网色| av播播在线观看一区| 高清毛片免费看| 777米奇影视久久| 亚洲久久久国产精品| 亚洲国产最新在线播放| 天天操日日干夜夜撸| 如何舔出高潮| 一级片'在线观看视频| 十八禁网站网址无遮挡 | 日本与韩国留学比较| 极品少妇高潮喷水抽搐| 在线观看国产h片| 黑丝袜美女国产一区| 51国产日韩欧美| 最新中文字幕久久久久| 99久久精品一区二区三区| 国产成人免费无遮挡视频| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 五月玫瑰六月丁香| 国产在线视频一区二区| 久久久久网色| 久久国产乱子免费精品| 涩涩av久久男人的天堂| 9色porny在线观看| 精品熟女少妇av免费看| 国产视频内射| 各种免费的搞黄视频| 高清视频免费观看一区二区| 99久久精品国产国产毛片| a级毛片在线看网站| 特大巨黑吊av在线直播| 亚洲内射少妇av| 国产成人freesex在线| 99九九在线精品视频 | 丝瓜视频免费看黄片| 一级毛片电影观看| 黑丝袜美女国产一区| 麻豆精品久久久久久蜜桃| 国产欧美日韩综合在线一区二区 | 一本—道久久a久久精品蜜桃钙片| 亚洲精品一二三| 最近手机中文字幕大全| 久久免费观看电影| 久久久久久久久久久丰满| √禁漫天堂资源中文www| 成人亚洲精品一区在线观看| 午夜激情福利司机影院| av免费在线看不卡| 赤兔流量卡办理| 好男人视频免费观看在线| 日韩av不卡免费在线播放| 国产91av在线免费观看| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 女性被躁到高潮视频| 99热国产这里只有精品6| 国产在线男女| 精品久久久精品久久久| 亚洲欧美精品专区久久| 国产在线一区二区三区精| 久久午夜综合久久蜜桃| 国产精品久久久久久久电影| 丝袜在线中文字幕| 日韩av免费高清视频| 黄色日韩在线| 麻豆乱淫一区二区| 亚洲av男天堂| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 91aial.com中文字幕在线观看| 一个人免费看片子| 国产高清有码在线观看视频| 在线观看av片永久免费下载| 中文字幕人妻熟人妻熟丝袜美| 视频中文字幕在线观看| 欧美xxⅹ黑人| 成年av动漫网址| av黄色大香蕉| 亚洲情色 制服丝袜| 日本-黄色视频高清免费观看| 国产亚洲一区二区精品| 18禁裸乳无遮挡动漫免费视频| 久久鲁丝午夜福利片| 亚洲国产色片| 亚洲伊人久久精品综合| 欧美激情国产日韩精品一区| 精品一区二区三区视频在线| 99久久精品热视频| 欧美人与善性xxx| 国内精品宾馆在线| 精华霜和精华液先用哪个| 赤兔流量卡办理| 99久久精品国产国产毛片| 亚洲熟女精品中文字幕| 两个人免费观看高清视频 | 国产黄色免费在线视频| 国产一区有黄有色的免费视频| 黄色毛片三级朝国网站 | 高清在线视频一区二区三区| 午夜免费鲁丝| 91午夜精品亚洲一区二区三区| 久久精品国产鲁丝片午夜精品| 中国国产av一级| 日本-黄色视频高清免费观看| 如何舔出高潮|