• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of casting process on microstructures and f l ow stress behavior of Mg-9Gd-3Y-1.5Zn-0.8Zr semi-continuous casting billets

    2014-04-21 02:45:20*
    Journal of Magnesium and Alloys 2014年4期

    *

    Key Lab of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University,314Mailbox,Shenyang 110819,People's Republic of China

    Effects of casting process on microstructures and f l ow stress behavior of Mg-9Gd-3Y-1.5Zn-0.8Zr semi-continuous casting billets

    Xuan liu,Qichi Le*,Zhiqiang Zhang,Lei Bao,Zhengxing Fan,Jianzhong Cui

    Key Lab of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University,314Mailbox,Shenyang 110819,People's Republic of China

    Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is diff i cult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and f l ow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and f l ow stress behavior of the billets.The billets with the specif i c casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.

    Mg-Gd-Y-Zn-Zr;Semi-continuous casting;Microstructures;Flow stress behavior

    1.Introduction

    Recently,the lightening of materials has become a spot for research,due to the energy and resource limitation.Magnesium alloys become one of the most attractive metallic materials because of their low density,high specif i c stiffness and good damping capacity[1].However,the poor mechanical properties frustrate magnesium alloys'applications.

    As we know,magnesium alloys with RE additions could enhance the mechanical properties drastically,especially at elevated temperatures.It is reported that Mg-Gd-Y-Zr alloys exhibit the higher specif i c strength at both room temperature and elevated temperatures.Meanwhile,they own more excellent creep resistance than WE54[2,3].Thus,it provides an effective approach to improve the strength of Mg alloys.Recently,a Mg97Zn1Y2with excellent tensile yield strength above 600 MPa were manufactured through rapidly solidif i ed powder metallurgy[4].It should be attributed to the f i ne grains and distribution of long period stacking order phases(LPSO).It was reported that the LPSO phases showed outstanding effects on the mechanical properties of Mg-Gd-Y-Zn-Zr alloys[5-10].Meanwhile,a research has been developed about the effect of Zn addition on the aging hardening of Mg-2.0Gd-1.2Y-0.2Zr(at.%)[11].As a result,Mg-Gd-Y-Zn-Zr alloys could be the potential candidate to broaden the application of magnesium alloys.

    However,the fabrication of Mg-Gd-Y-Zn-Zr alloys was notwidely reported.Although the fabrication of Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr has been achieved by semicontinuous casting[12],it is still rarely covered that external f i eld like electromagnet(EM)was introduced during the semicontinuous casting of Mg-Gd-Y-Zn-Zr alloys.Lowfrequency electromagnetic casting(LFEC)has been applied in the semi-continuous casting of Al-Zn-Mg-Cu-Zr alloys[13],which could restrain the macrosegregation and uniform the structure[14].

    Fig.1.Schematic for the casting process.

    In this work,Mg-9Gd-3Y-1.5Zn-0.6Zr alloys are fabricated under electromagnetic f i eld by semi-continuous casting.Investigations were carried out around the effects of casting speed and electromagnetic intensity on the microstructures of the alloys.Meanwhile,f l ow stress behavior will be also discussed.

    2.Experimental

    An alloy of chemical composition Mg-9.3Gd-3.2Y-1.5Zn-0.8Zr(wt.%)waspreparedfromhigh-purity(99.9%)Mg andZn,Mg-25Gd(wt.%),Mg-50Y(wt.%)andMg-30Zr(wt. %)masteralloysbymeltinginresistancefurnaceandcastingwith ahot-topcrystallizerunderashieldinggasofmixedCO2andSF6at690°C.Fig.1 shows the schematicfor the casting process and casting apparatus are set as shown in Table 1.The billets have approximately a diameter of 190 mm and length of about 1000 mm,as shown in Fig.2.

    Fig.2.The photo of the billet fabricated by semi-continuous casting.

    Table 1Casting parameters in this study.

    The samples for the microstructure observation were cut from the center,1/2 radius and near the surface of the alloy billets along axial and radial directions.The microstructures were etched in 4%Nital and observed using optical microscope(OM).Linear intercept method was applied to determine the grain size of the alloys.Flow stress behaviors were studied on a Gleeble-1500D thermal mechanical simulator in the temperature 400 and 450°C,at constant strain rates of 0.1 s-1and 1 s-1.In addition,the Gleeble samples were 15 mm in diameter and 8 mm in height.

    3.Results and discussion

    3.1.Surface quality of the billets

    Fig.3 shows the surface qualities of billets.Structures of the hot-top crystallizer make severe inf l uence on the surface of billets.Obvious lengthways streaks(Fig.3a)are observed on the surface of the billet,and the depth of them could reach as much as about 3 mm.It would drastically decrease the f i nal yield of billets.As the hot-top mould is mainly made up of refractories with a rough skin(Rags and scratches spread along the inner wall of the mould),large friction force generate on the inner wall of the hot-top mould during semicontinuous casting.Consequently,it gives rise to the poor surface quality of the billets.Moreover,the melt adhered and solidif i ed on the inner wall of the mould at the primary stage. Thus,the billet(Fig.3b)has a cup-like tail.

    3.2.Microstructures of the as-cast billets

    Fig.4 shows the microstructures of the as-cast samples from edge to center of the billets.The microstructures of the billets are mainly composed of α-Mg and large amount of discontinuous eutectic around the grain boundaries.EM treatment reduces the grain sizes distinction ranging from edge to center of the billets.Fig.5 illustrates the grain sizes of the different positions with and without EM treatment.The billet without EM inf l iction owns a wide grain size distribution from edge to center.Grain size for the edge position is as small as 27 μm,while that for the center reaches as large as 58 μm. This should be ascribed to the large temperature gradient and variant cooling rate between the edge and center,during the semi-continuous casting process.

    Fig.3.Surface quality of the as-cast billets.(a)surface of the billets;(b)cup tail.

    The microstructures of the billet become uniform after casting under an EM f i eld(f=30 Hz,I=68 A),as shown in Fig.4b,e and h.Grain size from edge to center are also uniform,as shown in Fig.5.A forced convection in the liquid sump gives rise to the initial solidif i ed grains detached following the induced liquid f l ow[15,16].On the other hand, temperature gradient is also decreased by the induced convection,and it also make sense that the driving force bringing the overheated melt from the center to the periphery[17]. Moreover,the role of the hot top is also important.Its low heat convection coeff i cient ensures slow cooling of the melt from the edge in the initial stage of the cast.Consequently,the microstructures become uniform.While the EM treatment parameters change tof=30 Hz,I=90A,microstructures of the billet are ref i ned apparently,as shown in Fig.4c,f and i. Grain size from edge to center are also uniform.The average grain size are less than 30 μm,also shown in Fig.5.It reveals that EM plays an important role on the solidif i ed structure of the billets.The increasing of the current intensity enhances the force convection.Thus,electromagnetic stirring effect inhibits the grain growth eff i ciently.But 68 A is better than 90 A in the view of structure uniformity.What worth mentioning is that the grain size of the edge with EM(I=68 A)is a bit larger than that without EM treatment.Interpretation should be given as the change of heat convection coeff i cient led by soft contact with the mold.

    Fig.6 shows the microstructures of the billets with different casting speeds.It can be seen that grains are more ref i ned with a lower casting speed.That is because the liquid sump increases with the enlargement of the casting speed.Thus,the stirring effect made by EM is short and weak,and the temperature gradient is also increasing.As a result,the grainsbecome coarser,and the structures of the billets could be ref i ned with a low casting speed.Even so,microstructures become uniform with a casting speed of 65 mm/min,as shown in Fig.5.

    Fig.4.Optical microstructures of the as-cast billets(from left to right:edge to center).(a),(b)and(c)without EM;(d),(e)and(f)with EM(f=30 Hz,I=68 A); (g),(h)and(i)with EM(f=30 Hz,I=90 A).

    Fig.5.As-cast alloy grain size of different electromagnetic conditions.

    3.3.Flow stress of the as-cast alloy

    In the previous chapter,the low frequent electromagnet could ref i ne the microstructures of the billets.The different deformation ability between the edge and the center of the billets should be a key to the subsequent processes.Thus,the f l ow stress characters of the billets are now investigated to f i nd the optimist casting parameters for the uniform deformation. Fig.7 shows the true f l ow stress-true strain curves of the billets with different casting parameters.In general,low temperature and high strain rate will increase the f l ow stress,while higher temperature and lower strain rate will decrease the f l ow stress of the alloy[18].This is due to the thermal activation processes that become intense by raising the deformation temperature.

    Flow stress curves at 400°C exhibit a sharp increase of the initial stage of strain and then slowly increase up to a transient equilibrium.When stress reaches the maximum value at,the stress decreases gradually and then drives to a steady value with the increasing strain,as shown in Fig.7a,c,e and g.As the deformation temperature increases to 450°C,f l ow stress behaviors become quite different.After the sharp increase on the stress,slow stress growth to the maximum value is missing as shown in Fig.7b,d,f and h.Meanwhile,the f l ow stress behaviors are similar as the strain rate are 0.1 s-1and 1 s-1.

    Fig.8 shows the optical microstructures of samples with different strains at 400°C.Large amount of lamellar phase are observed inside the grains.This lamellar phase should be identif i ed as LPSO phase[11],which are formed during the hot compression process.From the microstructures of the sample with a strain of 0.1,some lamellar LPSO phase traverse the grains partially,while most of the LPSO run throughout the grains in the larger strained samples(ε=0.3 and 0.6).Thus,it could be seen that the LPSO phases gradually run through the grains as the increasing strain.In other word,these lamellar phases play an important role on the f l ow stress behavior of the as-cast billets.It can be found that the f l ow stress curve is mainly composed of three stages: stage I(work hardening stage),stage II(softening stage)and stage III(steady stage)[19].In the work hardening stage,the increasing number density of dislocations gives rise to the strong work hardening.On the other hand,the dynamic recovery is too weak to absorb the accumulating dislocations. Consequently,the f l ow stress quickly increases with the increase of strain.In the softening stage,the accumulated dislocation density exceeds the critical strain,giving rise to the formation of the lamellar LPSO phase.The nucleation and growth of LPSO phases need to absorb dislocations, which decreases the f l ow stress.In the short steady stage,the f l ow stress keeps a steady state due to the dynamic balance between the work hardening and dynamic softening.The nucleation and growth of LPSO phases is obviously signif icant to the soften stage.

    Fig.6.Optical microstructures of the ingots from edge to center with different casting speeds(from left to right:edge to center).(a),(b)and(c)v=55 mm/min; (d),(e)and(f)v=65 mm/min.

    Fig.7.True stress-strain curves of billets with different casting parameters.

    Fig.8.The optical microstructures of compressed samples with different strains at 400°C.(a) ε=0.1;(b) ε=0.3;(c) ε=0.6.

    From the f l ow stress curves in Fig.7,it could be seen that billets with different casting process own distinct deformation uniformity.On condition that the strain rate is 1 s-1and temperature is 400°C,the f l ow stress difference between the edge and the center of the billet without EM is enlarged after the strain increases from 0.12 to 0.7,as shown in Fig.7a,and similar situation occurs when the strain rate is 0.1 s-1.Stress distinction between the edge and the center of the billet (Fig.7c)with EM(I=68 A,V=65 mm/min)is much smaller than that without EM.The difference is not enlarged until the strain increases to 0.36,when the strain rate is 1 s-1.At a lower strain rate of 0.1 s-1,f l ow stress curves are nearly synchronous for the edge and the center as the strain rises up. While the EM intensity increases to 90 A as shown in Fig.7e, the f l ow stress difference is not narrowed further.It proves that large electromagnetic intensity could in turn do harm to the uniform deformation of the billets.

    After deformation temperature rises up to 450°C,EM intensity makes weak inf l uence on the f l ow stress difference between the edge and the center of the billet.The higher temperature gives rise to the easier nucleation and growth of the lamellar LPSO phases.Thus,uniform deformation occurs at 450°C.

    Fig.7 also shows the f l ow stress curves of billets with a casting speed of 55 mm/min.When deformation temperature is 400°C and EM intensity is a constant of 68 A,the f l ow stress distinction between the edge and the center is very small as the strain increases.Moreover,the f l ow stress-strain curves of the edge and the center of the billet made by a casting speed of 55 mm/min is almost overlapped,as shown in Fig.7g.It suggests a uniform deformation.When the casting speed increases to 65 mm/min and strain rate is 1 s-1,the difference rises up after strain increases to 0.36,as shown in Fig.7c. While the temperature increases to 450°C,billet with a casting speed of 55 mm/min show a great difference in the f l ow stress between the edge and the center(Fig.7h),however, it is better for the billet fabricated by a speed of 65 mm/min,as shown in Fig.7d,and the f l ow stress difference(strain rate of 1 s-1)is small when the strain is less than 0.34.It could be seen that the casting process shows an outstanding effect on the f l ow stress behavior of the billets in the viewpoint of deformation uniformity.Overall consideration,the billet with casting process(I=68 A,V=65 mm/min)shows the best deformation uniformity.Meanwhile,it also owns the largest maximum f l ow stress over others.

    4.Conclusion

    This work investigated the casting process on the microstructures and f l ow stress behaviors of the semi-continuous casting billets,aimed at the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process (electromagnetic intensity and casting speed) shows outstanding effects on the microstructures and f l ow stress behavior of the billets.The microstructures could be ref i ned by increasing the electromagnetic intensity as well as decreasing the casting speed.The LPSO phase has outstanding effects on the f l ow stress behaviors of the alloy. Billets with proper EM intensity and casting speed own good deformation uniformity.The billets with the specif i c casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.

    Acknowledgment

    This research was f i nancially supported by National Basic Research Program of China(Grant No.2013CB632203),the Liaoning Provincial Natural Science Foundation of China (Grant No.201202072),National Key Technology R&D Program of China(2012BAF09B01),and the Fundamental Research Foundation of Central Universities(Grant Nos. N120509002 and N120309003).

    [2]I.A.Anyanwu,S.Kamado,Y.Kojima,Mater.Trans.42(2001) 1212-1218.

    [3]X.Li,W.Qi,K.Zheng,N.Zhou,J.Magnesium Alloys 1(2013)54-63.

    [4]Y.Kawamura,K.Hayashi,A.Inoue,T.Masumoto,Mater.Trans.42 (2001)1171-1174.

    [5]C.Xu,M.Y.Zheng,K.Wu,E.D.Wang,G.H.Fan,S.W.Xu,S.Kamado, X.D.Liu,G.J.Wang,X.Y.Lv,Mater.Sci.Eng.A 559(2013)364-370.

    [6]C.Xu,M.Y.Zheng,K.Wu,E.D.Wang,G.H.Fan,S.W.Xu,S.Kamado, X.D.Liu,G.J.Wang,X.Y.Lv,Mater.Sci.Eng.A 559(2013)615-622.

    [7]C.Xu,M.Y.Zheng,K.Wu,E.D.Wang,G.H.Fan,S.W.Xu,S.Kamado, X.D.Liu,G.J.Wang,X.Y.Lv,M.J.Li,Y.T.Liu,Mater.Sci.Eng.A 559 (2013)232-240.

    [8]C.Xu,M.Y.Zheng,S.W.Xu,K.Wu,E.D.Wang,G.H.Fan,S.Kamado, X.D.Liu,G.J.Wang,X.Y.Lv,Mater.Sci.Eng.A 559(2013)844-851.

    [9]C.Xu,M.Y.Zheng,S.W.Xu,K.Wu,E.D.Wang,S.Kamado,G.J.Wang, X.Y.Lv,Mater.Sci.Eng.A 547(2012)93-98.

    [10]C.Xu,M.Y.Zheng,S.W.Xu,K.Wu,E.D.Wang,S.Kamado,G.J.Wang, X.Y.Lv,J.Alloys Compd.528(2012)40-44.

    [11]T.Honma,T.Ohkubo,S.Kamado,K.Hono,Acta Mater.55(2007) 4137-4150.

    [12]C.Xu,M.Y.Zheng,Y.Q.Chi,X.J.Chen,K.Wu,E.D.Wang,G.H.Fan, P.Yang,G.J.Wang,X.Y.Lv,S.W.Xu,S.Kamado,Mater.Sci.Eng.A 549(2012)128-135.

    [13]J.Dong,J.Cui,X.Zeng,W.Ding,Mater.Lett.59(2005)1502-1506.

    [14]B.Zhang,J.Cui,G.Lu,Mater.Lett.57(2003)1707-1711.

    [15]C.Vives,Metall.Trans.B 20(1989)623-629.

    [16]C.Vives,Metall.Trans.B 20(1989)631-643.

    [17]S.Guo,J.Cui,Q.Le,Z.Zhao,Mater.Lett.59(2005)1841-1844.

    [18]K.Zhang,M.Ma,X.Li,Y.Li,L.Liang,M.Bing,Rare Met.30(2011) 87-93.

    [19]X.-M.Chen,Y.C.Lin,D.-X.Wen,J.-L.Zhang,M.He,Mater.Des.57 (2014)568-577.

    Received 18 September 2014;revised 18 November 2014;accepted 19 November 2014 Available online 8 December 2014

    *Corresponding author.Tel.:+86 24 83683312;fax:+86 24 83681758.

    E-mail address:qichil@mail.neu.edu.cn(Q.Le).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2014.11.007.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    啦啦啦啦在线视频资源| 伦精品一区二区三区| 国产视频内射| 成人av在线播放网站| 在现免费观看毛片| 2021少妇久久久久久久久久久| 一区二区三区四区激情视频| 久久99热这里只频精品6学生 | 日日啪夜夜撸| 亚洲精品aⅴ在线观看| 天堂中文最新版在线下载 | 亚洲熟妇中文字幕五十中出| 久久这里只有精品中国| 国产三级中文精品| 国产女主播在线喷水免费视频网站 | 国产黄色小视频在线观看| 国产一区二区在线av高清观看| 免费电影在线观看免费观看| 少妇丰满av| av播播在线观看一区| 国产精品一区二区性色av| 国内精品美女久久久久久| 亚洲电影在线观看av| 精品一区二区三区人妻视频| 全区人妻精品视频| 在线a可以看的网站| 精品不卡国产一区二区三区| 亚洲性久久影院| 伊人久久精品亚洲午夜| 日本熟妇午夜| 99热精品在线国产| 啦啦啦啦在线视频资源| 欧美成人精品欧美一级黄| a级毛色黄片| 久久草成人影院| 18禁动态无遮挡网站| 国产精品久久电影中文字幕| 91精品国产九色| 91精品国产九色| 在线播放国产精品三级| 真实男女啪啪啪动态图| 中文字幕av在线有码专区| 少妇的逼水好多| 在线播放无遮挡| 国产精品不卡视频一区二区| 99热精品在线国产| 国产日韩欧美在线精品| 欧美一级a爱片免费观看看| 欧美97在线视频| 亚洲欧美成人精品一区二区| 国产精品不卡视频一区二区| 久久精品国产亚洲av涩爱| 国产伦在线观看视频一区| 黄色日韩在线| 亚洲成色77777| 国产探花在线观看一区二区| 久久精品熟女亚洲av麻豆精品 | 一边亲一边摸免费视频| www.色视频.com| av免费在线看不卡| 久久久久久国产a免费观看| 日本爱情动作片www.在线观看| 一级毛片我不卡| 99热这里只有是精品在线观看| 久久久久久久国产电影| 亚洲国产精品国产精品| 中文字幕久久专区| 18+在线观看网站| 亚洲,欧美,日韩| 人体艺术视频欧美日本| 欧美日韩一区二区视频在线观看视频在线 | 久久人人爽人人爽人人片va| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 熟妇人妻久久中文字幕3abv| 看非洲黑人一级黄片| 青春草视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 又爽又黄无遮挡网站| 国产精品一二三区在线看| 国产精品蜜桃在线观看| 嘟嘟电影网在线观看| 国产av一区在线观看免费| 国产亚洲av片在线观看秒播厂 | 18禁在线无遮挡免费观看视频| 亚洲精品成人久久久久久| av免费观看日本| 久久久久精品久久久久真实原创| 中文欧美无线码| av国产免费在线观看| 成人国产麻豆网| 黑人高潮一二区| 国产一区亚洲一区在线观看| 国产亚洲最大av| 青青草视频在线视频观看| 色播亚洲综合网| 亚洲欧美清纯卡通| 成人av在线播放网站| 99热这里只有是精品在线观看| 中文字幕免费在线视频6| 国产又黄又爽又无遮挡在线| 欧美97在线视频| 国产探花极品一区二区| 一级黄色大片毛片| 亚洲精品日韩在线中文字幕| 亚洲精品日韩av片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟妇中文字幕五十中出| 色综合亚洲欧美另类图片| 中文精品一卡2卡3卡4更新| 观看美女的网站| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 三级国产精品片| 国产精品永久免费网站| 久久久久久久亚洲中文字幕| 国产淫语在线视频| 久久亚洲国产成人精品v| 黄色日韩在线| 纵有疾风起免费观看全集完整版 | 人人妻人人看人人澡| 少妇高潮的动态图| 大话2 男鬼变身卡| 哪个播放器可以免费观看大片| 日韩制服骚丝袜av| 97超视频在线观看视频| 最近视频中文字幕2019在线8| 国语对白做爰xxxⅹ性视频网站| 免费在线观看成人毛片| 欧美极品一区二区三区四区| 久久久精品大字幕| 九草在线视频观看| 国产精品久久久久久久电影| 日本wwww免费看| 国产亚洲最大av| 国产老妇伦熟女老妇高清| 免费黄网站久久成人精品| 国产精品电影一区二区三区| 国产探花极品一区二区| 麻豆久久精品国产亚洲av| 夜夜看夜夜爽夜夜摸| .国产精品久久| 一区二区三区高清视频在线| 91aial.com中文字幕在线观看| 精品久久久久久电影网 | 国产在线一区二区三区精 | 亚洲精品,欧美精品| 高清日韩中文字幕在线| 在线观看美女被高潮喷水网站| 亚洲综合精品二区| 男人狂女人下面高潮的视频| 精品久久久久久久久久久久久| 18+在线观看网站| 最近中文字幕2019免费版| 亚洲精品日韩在线中文字幕| 黄片无遮挡物在线观看| 午夜a级毛片| a级毛片免费高清观看在线播放| 99国产精品一区二区蜜桃av| 一本一本综合久久| 女的被弄到高潮叫床怎么办| 免费观看精品视频网站| 欧美日韩国产亚洲二区| 免费观看在线日韩| 日本色播在线视频| 高清av免费在线| 男女视频在线观看网站免费| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 欧美高清成人免费视频www| 大香蕉久久网| 久久精品人妻少妇| 日韩大片免费观看网站 | 久久久国产成人精品二区| 男女那种视频在线观看| 高清视频免费观看一区二区 | 久久精品熟女亚洲av麻豆精品 | 亚洲一区高清亚洲精品| 黄色欧美视频在线观看| 三级男女做爰猛烈吃奶摸视频| av在线观看视频网站免费| 亚州av有码| 久久99热这里只频精品6学生 | 国产大屁股一区二区在线视频| 尾随美女入室| av.在线天堂| 午夜a级毛片| 深爱激情五月婷婷| 精品一区二区三区视频在线| 内地一区二区视频在线| 中文字幕av在线有码专区| av天堂中文字幕网| 国产不卡一卡二| 久久久精品94久久精品| 亚洲va在线va天堂va国产| 中文字幕制服av| 欧美高清成人免费视频www| 精品不卡国产一区二区三区| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 韩国高清视频一区二区三区| 亚洲丝袜综合中文字幕| 老司机影院毛片| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 亚洲国产精品久久男人天堂| 日本熟妇午夜| 亚洲精品乱码久久久久久按摩| 久久婷婷人人爽人人干人人爱| 舔av片在线| 久久久色成人| 国产av一区在线观看免费| 亚洲成人av在线免费| 精品国产三级普通话版| 日本免费a在线| 桃色一区二区三区在线观看| 欧美97在线视频| 你懂的网址亚洲精品在线观看 | 欧美另类亚洲清纯唯美| 18+在线观看网站| 欧美一区二区精品小视频在线| 国产私拍福利视频在线观看| 性插视频无遮挡在线免费观看| 午夜激情福利司机影院| 联通29元200g的流量卡| 精品不卡国产一区二区三区| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 嘟嘟电影网在线观看| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 欧美精品国产亚洲| 国产av一区在线观看免费| 午夜a级毛片| 亚洲av成人精品一二三区| 成人国产麻豆网| 人人妻人人澡欧美一区二区| 久久久久久大精品| 免费在线观看成人毛片| 亚洲av中文字字幕乱码综合| 22中文网久久字幕| 国产成人免费观看mmmm| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 神马国产精品三级电影在线观看| 国产亚洲午夜精品一区二区久久 | 99久久九九国产精品国产免费| av播播在线观看一区| 精品久久久久久久久av| 51国产日韩欧美| 午夜免费男女啪啪视频观看| 亚洲精品自拍成人| 床上黄色一级片| 午夜爱爱视频在线播放| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 久久久久性生活片| kizo精华| 亚洲欧美日韩无卡精品| 超碰av人人做人人爽久久| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影| 日韩中字成人| 搡老妇女老女人老熟妇| 国产精品一二三区在线看| 亚洲,欧美,日韩| 3wmmmm亚洲av在线观看| 日韩成人av中文字幕在线观看| 老司机福利观看| 熟妇人妻久久中文字幕3abv| 国产 一区精品| 日韩成人av中文字幕在线观看| 91精品国产九色| 色网站视频免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 22中文网久久字幕| 我要看日韩黄色一级片| 干丝袜人妻中文字幕| 熟妇人妻久久中文字幕3abv| 欧美bdsm另类| 少妇猛男粗大的猛烈进出视频 | 久久精品影院6| 男插女下体视频免费在线播放| 一级爰片在线观看| 寂寞人妻少妇视频99o| 欧美一区二区国产精品久久精品| 水蜜桃什么品种好| 久久久久免费精品人妻一区二区| 汤姆久久久久久久影院中文字幕 | 亚州av有码| 国产人妻一区二区三区在| 久久亚洲国产成人精品v| 国产 一区精品| 欧美成人a在线观看| 久久久久久久亚洲中文字幕| 午夜福利高清视频| 18禁在线播放成人免费| 91精品国产九色| 美女脱内裤让男人舔精品视频| 高清av免费在线| 麻豆乱淫一区二区| 久久鲁丝午夜福利片| 亚洲成人中文字幕在线播放| 性色avwww在线观看| 男女那种视频在线观看| 夜夜看夜夜爽夜夜摸| 五月玫瑰六月丁香| 中文字幕精品亚洲无线码一区| 免费看光身美女| 免费电影在线观看免费观看| 水蜜桃什么品种好| 内射极品少妇av片p| 一区二区三区高清视频在线| 久久久精品欧美日韩精品| 91精品国产九色| 国产熟女欧美一区二区| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| 啦啦啦韩国在线观看视频| 免费看a级黄色片| 六月丁香七月| 黄色欧美视频在线观看| 欧美日本亚洲视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 久久久久久大精品| 国产精品久久久久久久久免| 小说图片视频综合网站| 变态另类丝袜制服| 成年免费大片在线观看| 日本熟妇午夜| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 久久久久久久久久成人| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 夜夜爽夜夜爽视频| 91久久精品电影网| 欧美精品国产亚洲| 麻豆乱淫一区二区| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器| 日日摸夜夜添夜夜添av毛片| 国产成人91sexporn| 麻豆精品久久久久久蜜桃| 国产精品.久久久| 精品午夜福利在线看| 中文字幕精品亚洲无线码一区| 内射极品少妇av片p| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 免费av毛片视频| 久久精品国产亚洲网站| 人体艺术视频欧美日本| 欧美一区二区国产精品久久精品| 国产精品伦人一区二区| 亚洲中文字幕一区二区三区有码在线看| 久久久精品94久久精品| 99热这里只有精品一区| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 欧美高清性xxxxhd video| 欧美日韩一区二区视频在线观看视频在线 | 日韩精品有码人妻一区| 最近手机中文字幕大全| 欧美日本视频| 婷婷六月久久综合丁香| 久99久视频精品免费| 久久久久国产网址| 亚州av有码| 成人二区视频| 日本黄色视频三级网站网址| 激情 狠狠 欧美| 久久精品国产亚洲av天美| 日韩av不卡免费在线播放| 欧美zozozo另类| 日韩视频在线欧美| 欧美日韩在线观看h| 日韩高清综合在线| 在线播放无遮挡| av免费在线看不卡| 建设人人有责人人尽责人人享有的 | 亚洲欧美中文字幕日韩二区| 欧美+日韩+精品| 国产国拍精品亚洲av在线观看| 国产v大片淫在线免费观看| av在线蜜桃| 亚洲av熟女| 国产成人午夜福利电影在线观看| 免费电影在线观看免费观看| 久久精品国产99精品国产亚洲性色| 日本黄大片高清| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 国产精品,欧美在线| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 18禁裸乳无遮挡免费网站照片| 欧美日韩国产亚洲二区| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 欧美成人午夜免费资源| 又粗又爽又猛毛片免费看| 性色avwww在线观看| 色5月婷婷丁香| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线播| 久久精品人妻少妇| 日韩欧美国产在线观看| 国产女主播在线喷水免费视频网站 | 亚洲精品久久久久久婷婷小说 | 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 日韩av在线大香蕉| 小蜜桃在线观看免费完整版高清| 久久婷婷人人爽人人干人人爱| 51国产日韩欧美| 美女脱内裤让男人舔精品视频| 欧美一区二区亚洲| 国产欧美日韩精品一区二区| 精品久久久久久电影网 | 亚洲精品,欧美精品| 亚洲四区av| 久久精品国产亚洲av涩爱| 精品午夜福利在线看| 久热久热在线精品观看| 天天躁夜夜躁狠狠久久av| 成人无遮挡网站| 久久久久国产网址| 久久久久久大精品| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄 | 久久精品91蜜桃| 日本黄色视频三级网站网址| 69人妻影院| 国产成人一区二区在线| 一边亲一边摸免费视频| av在线老鸭窝| 国产一区二区在线观看日韩| 日本黄色片子视频| 蜜臀久久99精品久久宅男| 1024手机看黄色片| 亚洲成人av在线免费| 综合色丁香网| 尾随美女入室| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 日本wwww免费看| 成人二区视频| 欧美又色又爽又黄视频| 国产黄色视频一区二区在线观看 | 少妇猛男粗大的猛烈进出视频 | 水蜜桃什么品种好| 中文亚洲av片在线观看爽| 亚洲av熟女| 内射极品少妇av片p| 中文字幕熟女人妻在线| 国产精品野战在线观看| 国产一区亚洲一区在线观看| 日韩欧美国产在线观看| 久久精品久久久久久噜噜老黄 | 久久精品夜夜夜夜夜久久蜜豆| 久久精品久久久久久久性| 波多野结衣高清无吗| 国产淫片久久久久久久久| 亚洲色图av天堂| 天美传媒精品一区二区| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| 啦啦啦观看免费观看视频高清| 亚洲综合色惰| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 久久久久性生活片| 22中文网久久字幕| 2021少妇久久久久久久久久久| 亚洲色图av天堂| 精品免费久久久久久久清纯| 中文资源天堂在线| 丰满乱子伦码专区| 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国语对白做爰xxxⅹ性视频网站| 少妇熟女aⅴ在线视频| 久久99热这里只频精品6学生 | 少妇被粗大猛烈的视频| 免费看av在线观看网站| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 国语自产精品视频在线第100页| 欧美bdsm另类| 女人被狂操c到高潮| 精品国产一区二区三区久久久樱花 | 天天一区二区日本电影三级| 嫩草影院精品99| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免| 91av网一区二区| 女人被狂操c到高潮| 午夜福利在线在线| 人妻系列 视频| 国产av在哪里看| 成年免费大片在线观看| 亚洲av中文av极速乱| 国产中年淑女户外野战色| 麻豆久久精品国产亚洲av| 男人的好看免费观看在线视频| 全区人妻精品视频| 亚洲欧美清纯卡通| 欧美区成人在线视频| 日韩高清综合在线| 人体艺术视频欧美日本| 一边摸一边抽搐一进一小说| 国语自产精品视频在线第100页| 日韩av在线大香蕉| 久久久久国产网址| 久久6这里有精品| 国产精品一区二区三区四区免费观看| 校园人妻丝袜中文字幕| 欧美日韩国产亚洲二区| 嫩草影院新地址| 色综合色国产| 久久韩国三级中文字幕| 岛国毛片在线播放| 欧美成人a在线观看| 网址你懂的国产日韩在线| 97热精品久久久久久| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 国产一级毛片七仙女欲春2| 亚洲人与动物交配视频| av在线观看视频网站免费| 免费看av在线观看网站| 男人舔奶头视频| 久久精品国产亚洲网站| 中文欧美无线码| 午夜福利成人在线免费观看| 亚洲av成人精品一二三区| 高清在线视频一区二区三区 | 欧美成人a在线观看| 亚洲成人av在线免费| 99久久精品国产国产毛片| 精品一区二区三区人妻视频| 久久久国产成人免费| 精品熟女少妇av免费看| 国产淫片久久久久久久久| 波多野结衣高清无吗| 国产精品一二三区在线看| 欧美激情国产日韩精品一区| 18禁在线播放成人免费| 久久久久免费精品人妻一区二区| 一级二级三级毛片免费看| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 久久鲁丝午夜福利片| 好男人视频免费观看在线| 日本黄色视频三级网站网址| 国产淫片久久久久久久久| 国产爱豆传媒在线观看| 99热6这里只有精品| 国产精品福利在线免费观看| 99久国产av精品| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 97超视频在线观看视频| 啦啦啦观看免费观看视频高清| 欧美性猛交黑人性爽| 国产伦一二天堂av在线观看| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| 国产黄片视频在线免费观看| 老司机影院毛片| 毛片女人毛片| 日韩av不卡免费在线播放| 啦啦啦啦在线视频资源| 色噜噜av男人的天堂激情| 亚洲美女搞黄在线观看| av免费在线看不卡| 成人一区二区视频在线观看| 一级二级三级毛片免费看| 亚洲色图av天堂| 亚洲四区av| 亚洲精品久久久久久婷婷小说 | 国产成人freesex在线| 六月丁香七月| 亚洲欧美精品自产自拍| 少妇人妻精品综合一区二区| 美女大奶头视频| 国产v大片淫在线免费观看| 精品国产三级普通话版| 在线播放国产精品三级| 变态另类丝袜制服| 色5月婷婷丁香| 欧美成人a在线观看| 国产免费一级a男人的天堂| 99热全是精品| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 九色成人免费人妻av| 91狼人影院| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看|