• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ductility enhancement of EW75 alloy by multi-directional forging

    2014-04-21 02:45:16***
    Journal of Magnesium and Alloys 2014年4期

    ***

    aShenyang Aerospace University,School of Materials Science and Engineering,Shenyang 110136,China

    bThe Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    Ductility enhancement of EW75 alloy by multi-directional forging

    M.Honga,1,D.Wub,*,R.S.Chenb,**,X.H.Dua

    aShenyang Aerospace University,School of Materials Science and Engineering,Shenyang 110136,China

    bThe Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500°C,its grain size can be ref i ned from 292 um to 58 um.As the forging temperature decreased,f i ne particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410°C,and the severe deformed grains distributed as streamlines perpendicular to the f i nal compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470°C,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Ref i ned grains as well as the weakened texture were the key factors to its high ductility.

    Mg alloys;Ductility;Multi-directional forging;DRX;Precipitates

    1.Introduction

    Mg and Mg based alloyshave attracted intensive researching activities due to their low densities,high specif i c strength and advantage of easy recycle.Recently,much work has been done in the development of high strength Mg-RE alloy,as it exhibits pronounced age harden response and good creep resistance[1].

    The mechanical properties both at ambient and elevated temperaturesofMg-Gd-Y system canbeeffectively improved by optimizing the microstructure through the process of plastic deformation,such as warm rolling and hot extrusion,and the subsequent annealing process,so the mechanical properties with high strength at room temperature and good creep resistance can be achieved for these Mg-Gd-Y alloys[2].Rare earth elements Gd and Y showed excellent solid solubility in the Mg matrix,and the combination energy betweenMg-Y andMg-Gdwassostrongthatthe Mg-Gd-Y alloys can reach a high strength.The strong combination energy between Mg-Y and Mg-Gd exhibit obvious brittleness at the same time,which was harmful to the ductility of the alloys.For instance,Mg-9Gd-3Y alloy exhibit an elongation to failure of 1%at cast condition,and reach 2%after solution treatment.Plastic working was an effective method to obtain alloys with high strength property, but in most outcomes,high strength alloys have moderate evenworse ductility.For instance,Yu,et al.[3]developed a high strength Mg-11Gd-4.5Y-1.5Zn-1-Nd-0.5Zr alloy by hot extrusion and subsequent aging,with an ultimate tensile strength of 473 MPa,but the elongation to failure was merely 4.1%at room temperature.Xu et al.reported that the asextrudedMg-3.5Al-3.3Ca-0.4Mnalloyexhibitedboth high tensile strength and ultimate tensile strength,which have nearly equal values of 410 MPa and 420 MPa.The minor differential of tensile proof strength and ultimate tensile strength indicated a low strain-hardening ability,so the ductility was inferior,only with an elongation to failure of 5.6%[4].Kim et al.applied high ratio differential speed rolling to AZ91 alloy,after two-step hot rolling at a speed ratio of 2,the rolled sheet shows a high 0.2%yield stress of 386 MPa,total elongation of 5%[5].Obviously,the backwards of low ductility would restrict the extensive application of Mg-Gd-Y high strength alloys,so the research of ductility enhancement on high strength Mg-Gd-Y alloys will be discussed.

    An inferior ductility of most of the samples could be ascribed to the strong basal texture formed by extrusion or rolling,so the samples with good ductility must guarantee a weak basal texture.Multi-directional forging process is effective to weaken the basal texture,and it is also crucial to ref i ne the grains as well as the precipitates,so it can produce a uniform material with ideal ductility.According to Xia,the EW75 alloy could reach an elongation to failure of 12%after six passes multi-directional forging[6],which had an obvious improvement compared with the solutionized samples.But,in his work,the recrystallization structure was non-uniform,so the ductility could be further improved through multidirectional forging as long as we can optimize the recrystallization structure by adjusting the forging parameter.

    In this paper, an investigation on Mg-7Gd-5Y-1Nd-0.5Zr alloy processed by multidirectional forging was reported.The inf l uence of forging passes and temperature on the evolution of microstructure and mechanical properties was presented.

    2.Experimental procedure

    Fig.1.The principle of multi-directional forging process.

    The nominal composition of the Mg-7.5Gd-4.5Y-1Nd-0.5Zr(wt%)(EW75)alloy was prepared with high purity(99.9%)Mg,Y,Nd,Mg-30Gd and Mg-30Zr(wt%)master alloys in electric resistance heating furnace under the protection of a mixed atmosphere of SF6(1 vol%)and CO2(bal).The melt was held at 780°C for 30 min then cast into ingot with a diameter of 250 mm.The ingot was homogenized at 535°C for 16 h followed by air cooling,and some rectangular shaped samples were cut from the center of the ingot.The principle of the forging process was presented in Fig.1.At f i rst,the samples were multidirectional forged for one cycle at certain temperature.A pass strain of 0.4 was employed.Then,some of the forged samples were selected to be compressed to plate with a large strain of 0.75,at the same temperature,while the other ones continued to the multi-directional forging process of next cycle at a lower temperature.The forging temperature decreased from 500°C to 410°C and the forging speed was 1.5 mm/min.The samples were quenched in cold water after each forging or compressing pass,and were lubricated with graphite oil and hold in the furnace for 10 min before each forging or compressing pass.The specimens for OM and SEM were cut parallel to the plate and perpendicular to the plate. Texture of the samples was examined by X-ray diffraction in the f i nal compressed plane of the plates,i.e.the TD-TD plane (TD:transverse direction parallel to the f i nal compressed plane).EBSD specimens were prepared by electric polishing in the 10%perchloric acid ethanol solution.The tensile specimens were cut parallel to the f i nal compressed plate for tensile testing at a strain rate of 0.001 s-1at room temperature, and the tensile fracture was observed through the SEM.

    3.Results and discussion

    3.1.Initial microstructure

    Fig.2 shows OM and SEM images of the solutionized Mg-7.5Gd-4.5Y-1Nd-0.5Zr alloy.After homogenization treatment,the eutectic phases dissolved into the matrix,and only small number of block shaped particles exist,as shown in Fig.2b.The average grain size was about 224 um,and the EDX results shows that these blocked phases were rich of Y elements.

    3.2.Microstructure after multi-directional forging at different temperature

    Fig.3 shows the microstructures of alloys processed by multi-directional forging at 500°C,470°C,440°C and 410°C,respectively.It is clear from Fig.3a that recrystallization occurred after the forging process at 500°C,but the grains were coarse and non-uniform because of the abnormal grain growth.When continued forging was conducted at subsequenttemperature,more and more f i ne particles precipitated both at the boundaries and interior of the grains.The f i ne equiaxed grains demonstrate that fully recrystallization was obtained at 470°C.When the samples were continue forged at 440°C and 410°C,the grain size was unchanged, which may be result from the recrystallization behavior restricted by the more precipitates.

    Fig.2.Structure of EW75 alloy after solution:(a)OM(b)SEM.

    Fig.4 shows the microstructures which were parallel and perpendicular to the f i nal compressed plate.The f i ne recrystallization structure was obtained,after the sample was compressed at both 500°C and 470°C,and the microstructure of the sample compressed at 470°C was hard to identify.It was worth to notice that the grain ref i nement of the sample compressed at 470°C was more remarkable,because a large amount of phases which precipitated along the original grain boundaries play an important role in restricting the growth of the recrystallization[7].The ref i nement of the grains was result from dynamic recrystallization during multi-directional forging,and the microstructures were similar when observed parallel and perpendicular to the plate.

    When the samples were compressed at a lower temperature of 440°C and 410°C,there was an obvious distinction between the microstructures parallel and perpendicular to the plate.As illustrated in Fig.4e and f,compressed streamlines which parallel to the plate were observed in the orientation perpendicular to the f i nal compression axis.Recrystallization was restricted in these samples,and the grain size remains the condition before f i nal compression,and more phases precipitates at boundaries and interior of the grains,which may contributed to the resistance of recrystallization[8].Accordingto the above speculation,the formation of the streamlines can be explained by the effect of severe deformation,that the globular grains were compressed into slices with minor thickness,so we could notidentify the whole grain morphology.

    Fig.3.Microstructure of the alloys processed by multi-directional forging at different temperature:(a)500°C(b)470°C(c)440°C(d)410°C.

    Fig.4.Microstructure observed perpendicular(a,c,e,g)and(b,d,f,h)parallel to the f i nal compressing direction of the plate compressed at different temperature: 500°C(a,b),470°C(c,d),440°C(e,f),410°C(g,h).

    Fig.5.EBSD results showing the IPF map of the plate f i nal compressed at 470°C.

    To analysis the vague microstructure of the plate compressed at 470°C,we characterize it with EBSD technology to get a detailed understanding.As illustrated in Fig.5,recrystallization grains were uniform with a mean size of 15um.The f i nal compression could signif i cantly ref i ne the microstructure, and the misorientation angle revels that a high proportion of boundaries were high-angle recrystallization boundaries and a small number of low-angle boundaries exist in some large grains.Ref i ned recrystallization grains with a messy orientation could coordinate the deformation and favor to the basal slip,so the ductility could be enhanced[9].

    Fig.6 shows the phase distribution of the plate in the orientation perpendicular to the f i nal compression axis. There was a big difference about precipitates in the SEM outcome,in both quantity and distribution.The sample compressed at 500°C has an uniform microstructure with some block Y-rich phases.When the sample was compressed at 470°C,most globular phases precipitated along the grain boundary,as shown in Fig.6c and d,and complete recrystallization microstructure was obtained.The precipitates dispersed at the original grain boundary,so it is diff i cult to identify the microstructure of the f i ne recrystallizations.The dispersed phases at original boundary could restrict grain growth,so it is benef i cial to obtain f i ne recrystallization microstructure.When the samples were compressed at 440°C and 410°C,the volume fraction of precipitates increased sharply.Large quantity of precipitates restricted the recrystallization,and the grainswere compressed severely in thickness,so the stream-line morphology was infactthe deformed grainswith precipitatesalong its boundaries.

    Fig.6.SEM in orientation perpendicular to the plate f i nal compressed at different temperature:(a)500°C(b)470°C(c)440°C(d)410°C.

    Fig.7.(0002)Pole f i gures of the plate f i nal compressed at different temperature:(a)500°C,(b)470°C,(c)440°C,(d)410°C.

    3.3.Texture evolution

    The(0002)pole f i gures in Fig.7 shows the texture of the plate f i nal compressed at 500°C,470°C,440°C and 410°C respectively.It can be seen the basal plane pole have an inclination about 40°from the normal direction of the plate and the inclination increased with decreasing forging temperature,suggesting that the grain orientation became more dispersed.In addition,the max-value of texture intensity was relatively low,so the alloys exhibit a weak texture after multidirectional forging.Recrystallization can be the reason for the weak texture of the samples when compressed from 500°C to 470°C,and the texture intensity decreased sharply from 4.92 to 2.79.In comparison with coarse recrystallization grains obtained at 500°C,the f i ner and more uniform structure was obtained at 470°C as a result of restriction of grain growth by precipitates,and the precipitates could prevent the grain rotation by inhibiting grain boundary sliding or lock grain boundaries during deformation,avoiding the formation of the deformation textures[10].There is no recrystallization at 440°C and 410°C,but the maximum values of the texture intensity continue decreased,so the weak texture could be ascribe to the increased forging passes,which means that the changed load direction make more dispersed grain orientation [11].

    3.4.Mechanical properties

    The ambient mechanical properties of the solutionized samples and samples compressed at different temperatures were presented in Fig.8.As shown in Fig.8a,after forging and f i nal compression,the samples have a remarkably improvement in its mechanical properties compared with the solutionized alloys.As shown in Fig.8b,both the UTS and YS increased with decreasing forging temperature.The best ductility of 21%reached at 470°C,which is increased by 200%in comparison with the solutionized condition of 1%, and the f i ne recrystallization grains,weak texture contributed to its excellent ductility.Fig.9 shows the fracture to failure of these tensile specimens.At solutionized condition,the brittle fracture was the main characteristic because of coarse grains, which was the same with the specimens compressed at 500°C as a result of coarse recrystallization grains.Ductile fracture was the key mechanism to failure in tensile specimens compressed at 470°C,and the f i ne dimples indicated a good ductility of these samples[12].There is an obvious decrease in ductility of these samples compressed at 440°C and 410°C, because too many precipitates restricted recrystallization which result in a sever deformed microstructure with a high level of residual stress.The micro-crack generated easily from these coarse particles,and as a result of high volume of precipitates,too many micro-cracks initiated from these precipitates and connected to each other till the formation of the macro-cleavage[13].It is the residual stress and high volumeof precipitates deteriorating the ductility of the samples forged and compressed at lower temperature[14].

    Fig.8.Tensile properties of EW75 alloys at solutionized condition and f i nal compressed at different temperatures:(a)tensile curves of samples at different state(b) comparison of the mechanical properties.

    Fig.9.Fracture appearance of tensile specimens at solutionized condition(a)and f i nal compressed at(b)500°C,(c)470°C,(d)440°C and(e)410°C.

    4.Conclusions

    (1)Due to the precipitation of high volume of f i ne particles, only deformed stream-lines could be observed when the samples were compressed at 410°C and 440°C.

    (2)Finemicrostructurehasformedwhencompressedat470°C because of the grain growth was restricted by the precipitates.The EBSD results revealed that the grains have been ref i ned to 15um,and the high proportion of high angle grain boundary indicated a fully recrystallization structure.

    (3)The texture intensity gets weaker during the MDF process, resulting in a high Schmid factor for basal slip when the tension is tested in direction parallel to the f i nal compressed plate.

    (4)The highest ductility of 21%was obtained when the sample was compressed at 470°C,which is increased by 200%,in comparison with that of the initial solutionized sample.The excellent ductility of the sample can be attributed to its f i ne recrystallization grains and weak texture.

    Acknowledgments

    This work was funded by the National Basic Research Program of China(973 Program)through project No. 2013CB632202,and National Natural Science Foundation of China(NSFC)through projects No.51105350 and No. 51301173,respectively.

    [1]T.M.Pollock,Science 328(2010)986-987.

    [2]Z.H.Chen,Wrought Magnesium Alloys[M],Chemical Industry Press, Beijing,2005,p.p.37.

    [3]Z.J.Yu,Y.D.Huang,X.Qiu,Mater.Sci.Eng.A 578(2013)346-353.

    [4]S.W.Xu,K.Oh-ishi,S.Kamado,F.Uchida,T.Homma,K.Hono,Scr. Mater.65(2011)269-271.

    [5]W.J.Kim,I.K.Moon,S.H.Han,Mater.Sci.Eng.A 538(2012) 374-385.

    [6]X.S.Xia,Study on the Microstructures and Mechanical Properties of EW75 Alloy During Multidirectional Forging[D](Master dissertation), General Research Institute for Nonferrous Metals,Beijing,2012,p.70.

    [7]K.Liu,X.D.Wang,W.B.Du,Mater.Sci.Eng.A 573(2013)12-131.

    [8]Z.Yang,J.P.Li,Y.C.Guo,T.Liu,F.Xia,Z.W.Zeng,M.X.Liang,Mater. Sci.Eng.A 454-455(2007)274-280.

    [9]R.Zhu,Y.J.Wu,J.Q.Liu,J.T.Wang,J.Wuhan Univ.Technol.26(2011) 1128-1132.

    [10]T.Peng,Q.D.Wang,J.B.Lin,M.P.Liu,H.J.Roven,Mater.Sci.Eng.A 528(2011)1143-1148.

    [11]T.Li,K.Zhang,X.G.Li,Z.W.Du,Y.J.Li,M.L.Ma,G.L.Shi,J. Magnesium Alloys 1(2013)47-53.

    [12]W.P.Yang,X.F.Guo,J.Wuhan Univ.Technol.28(2013)389-395.

    [13]F.Duan,Physics of Metals,third ed.,Beijing:Science Press,1999,pp. 495-498.

    [14]S.W.Xu,M.Y.Zheng,S.Kamado,K.Wu,G.J.Wang,X.Y.Lv,Mater. Sci.Eng.A 528(2011)4055-4067.

    Received 30 September 2014;revised 13 November 2014;accepted 18 November 2014 Available online 8 December 2014

    *Corresponding author.Tel.:+86 24 23915891;fax:+86 24 23894149.

    **Corresponding author.Tel.:+86 24 23926646;fax:+86 24 23894149.

    E-mail addresses:dwu@imr.ac.cn(D.Wu),rschen@imr.ac.cn(R.S. Chen).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    1Foundation item:Project supported by the National Foundation of Natural Science (No.51105350 and No.51301173)and project973 (No. 2013CB632202)of National Ministry of Science and Technology.

    http://dx.doi.org/10.1016/j.jma.2014.11.005.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲一区二区三区色噜噜| 色播亚洲综合网| 动漫黄色视频在线观看| 国产午夜精品久久久久久一区二区三区 | 国产视频一区二区在线看| 亚洲精华国产精华精| 国产久久久一区二区三区| 简卡轻食公司| .国产精品久久| 高清在线国产一区| 日本撒尿小便嘘嘘汇集6| 一本一本综合久久| 一边摸一边抽搐一进一小说| 日韩强制内射视频| 91麻豆精品激情在线观看国产| 国产 一区精品| 成人毛片a级毛片在线播放| 日本熟妇午夜| 国产精品野战在线观看| 直男gayav资源| 久久久国产成人精品二区| 毛片女人毛片| 男人和女人高潮做爰伦理| 99九九线精品视频在线观看视频| 一区福利在线观看| 国产精品无大码| 亚洲性久久影院| 韩国av在线不卡| 在线免费十八禁| 色播亚洲综合网| 国产精品精品国产色婷婷| 悠悠久久av| 在线观看免费视频日本深夜| 国产伦精品一区二区三区四那| xxxwww97欧美| 午夜精品在线福利| 97热精品久久久久久| 最近视频中文字幕2019在线8| 国产精品国产三级国产av玫瑰| 国产免费一级a男人的天堂| 亚洲欧美日韩东京热| 午夜免费男女啪啪视频观看 | 日本一二三区视频观看| 91在线精品国自产拍蜜月| 亚洲自偷自拍三级| 日本五十路高清| 午夜福利高清视频| 2021天堂中文幕一二区在线观| 91午夜精品亚洲一区二区三区 | 国产精品精品国产色婷婷| 精品午夜福利在线看| 美女免费视频网站| 国产午夜精品久久久久久一区二区三区 | 免费观看人在逋| 波多野结衣高清作品| 动漫黄色视频在线观看| 成人国产综合亚洲| 少妇的逼水好多| 亚洲四区av| 色综合站精品国产| 女生性感内裤真人,穿戴方法视频| 婷婷六月久久综合丁香| 少妇被粗大猛烈的视频| 亚洲成人免费电影在线观看| 99视频精品全部免费 在线| 国产免费男女视频| 波多野结衣巨乳人妻| 99久久成人亚洲精品观看| 简卡轻食公司| 免费观看的影片在线观看| 久久久久国内视频| 久久九九热精品免费| 国内精品宾馆在线| 少妇猛男粗大的猛烈进出视频 | 国产私拍福利视频在线观看| 大型黄色视频在线免费观看| 少妇的逼水好多| 久久草成人影院| 啦啦啦啦在线视频资源| 久久午夜亚洲精品久久| 欧美激情在线99| 久久精品综合一区二区三区| 久久99热这里只有精品18| 国产一区二区在线观看日韩| 男女啪啪激烈高潮av片| 麻豆成人av在线观看| 亚洲国产日韩欧美精品在线观看| 国产在线精品亚洲第一网站| a级毛片免费高清观看在线播放| 亚洲美女视频黄频| 男人舔女人下体高潮全视频| 久久欧美精品欧美久久欧美| 精品一区二区三区人妻视频| 国产午夜精品论理片| 亚洲中文日韩欧美视频| 久久人妻av系列| 亚洲久久久久久中文字幕| 国产色爽女视频免费观看| 国产伦在线观看视频一区| 99久久久亚洲精品蜜臀av| 国产免费av片在线观看野外av| 亚洲内射少妇av| 少妇被粗大猛烈的视频| 黄片wwwwww| 亚洲成人免费电影在线观看| 国产精品久久久久久久电影| 亚洲男人的天堂狠狠| 校园春色视频在线观看| 又爽又黄a免费视频| 非洲黑人性xxxx精品又粗又长| 深爱激情五月婷婷| 欧美黑人欧美精品刺激| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻一区二区三区视频av| 精品久久久久久久久亚洲 | 少妇人妻一区二区三区视频| 成人国产一区最新在线观看| 在线观看av片永久免费下载| 欧美日韩黄片免| 成人特级黄色片久久久久久久| 亚洲第一区二区三区不卡| 国产白丝娇喘喷水9色精品| 国产亚洲精品av在线| 91狼人影院| 在线国产一区二区在线| 中文字幕高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩大尺度精品在线看网址| 亚洲午夜理论影院| 伊人久久精品亚洲午夜| 搞女人的毛片| av.在线天堂| 女同久久另类99精品国产91| 99久久成人亚洲精品观看| 午夜老司机福利剧场| 最后的刺客免费高清国语| 波多野结衣高清作品| 少妇的逼好多水| 我的女老师完整版在线观看| 午夜福利欧美成人| 黄片wwwwww| 日本免费一区二区三区高清不卡| 国产乱人视频| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 国产成人a区在线观看| 如何舔出高潮| 国产伦人伦偷精品视频| 欧美黑人巨大hd| av女优亚洲男人天堂| 久久久国产成人免费| 亚洲va在线va天堂va国产| 亚洲精品久久国产高清桃花| 天天躁日日操中文字幕| 日韩在线高清观看一区二区三区 | 国产精品久久久久久久久免| 干丝袜人妻中文字幕| 女的被弄到高潮叫床怎么办 | 老熟妇乱子伦视频在线观看| 国产精品不卡视频一区二区| 小蜜桃在线观看免费完整版高清| 成人综合一区亚洲| 99久国产av精品| 九九爱精品视频在线观看| 特大巨黑吊av在线直播| 欧美3d第一页| 啦啦啦啦在线视频资源| 午夜激情福利司机影院| 日本黄色片子视频| 美女 人体艺术 gogo| 久久久国产成人免费| 99热这里只有是精品50| 中文资源天堂在线| 久久香蕉精品热| 国产三级中文精品| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 99在线视频只有这里精品首页| 简卡轻食公司| 老司机午夜福利在线观看视频| 级片在线观看| 国内精品久久久久精免费| av在线老鸭窝| 老熟妇乱子伦视频在线观看| 黄色日韩在线| 婷婷精品国产亚洲av| 国产免费一级a男人的天堂| 22中文网久久字幕| 最好的美女福利视频网| 成年女人永久免费观看视频| 国产一区二区三区在线臀色熟女| 18禁在线播放成人免费| 亚洲av一区综合| 97热精品久久久久久| 国产精品美女特级片免费视频播放器| 联通29元200g的流量卡| 三级国产精品欧美在线观看| 国产精品,欧美在线| 美女cb高潮喷水在线观看| 直男gayav资源| 亚洲经典国产精华液单| 91麻豆精品激情在线观看国产| 一边摸一边抽搐一进一小说| 天堂网av新在线| 韩国av一区二区三区四区| 午夜福利18| 偷拍熟女少妇极品色| 无人区码免费观看不卡| 两性午夜刺激爽爽歪歪视频在线观看| 黄片wwwwww| 日本a在线网址| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 久久久久久久久久黄片| 亚洲图色成人| 久久热精品热| 成人午夜高清在线视频| 精品人妻一区二区三区麻豆 | 国产一级毛片七仙女欲春2| eeuss影院久久| 免费电影在线观看免费观看| 国产黄色小视频在线观看| 国内精品久久久久久久电影| 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 91麻豆精品激情在线观看国产| 男人和女人高潮做爰伦理| 蜜桃久久精品国产亚洲av| 天堂网av新在线| 内射极品少妇av片p| 欧美不卡视频在线免费观看| 国产精品99久久久久久久久| 日韩精品中文字幕看吧| 我的老师免费观看完整版| 国产男靠女视频免费网站| 欧美黑人欧美精品刺激| 欧美激情在线99| 色精品久久人妻99蜜桃| 两人在一起打扑克的视频| 国产 一区 欧美 日韩| 国产精品一区二区免费欧美| 亚洲,欧美,日韩| 亚洲人成网站在线播放欧美日韩| av天堂中文字幕网| 在线观看舔阴道视频| 欧美不卡视频在线免费观看| 国产精品嫩草影院av在线观看 | av在线蜜桃| 22中文网久久字幕| 国产三级中文精品| 999久久久精品免费观看国产| 国产精品综合久久久久久久免费| 亚洲成人精品中文字幕电影| 精品一区二区三区视频在线观看免费| 午夜福利欧美成人| 丰满人妻一区二区三区视频av| 三级国产精品欧美在线观看| 国产精品伦人一区二区| 中文在线观看免费www的网站| 午夜精品一区二区三区免费看| 国产精品亚洲美女久久久| 两个人的视频大全免费| 亚洲一级一片aⅴ在线观看| 久久6这里有精品| 一进一出抽搐动态| 日日摸夜夜添夜夜添小说| 一区二区三区激情视频| 欧美bdsm另类| 九色成人免费人妻av| 欧美日韩乱码在线| 精品无人区乱码1区二区| 日韩欧美国产在线观看| 欧美人与善性xxx| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| 国产三级中文精品| 日本精品一区二区三区蜜桃| 69av精品久久久久久| 国产视频内射| 成人精品一区二区免费| 日本黄大片高清| 久久久久久伊人网av| 国产午夜精品久久久久久一区二区三区 | 91久久精品国产一区二区三区| 99九九线精品视频在线观看视频| 亚洲人与动物交配视频| av在线老鸭窝| 国产黄片美女视频| 色噜噜av男人的天堂激情| 亚洲狠狠婷婷综合久久图片| 最近在线观看免费完整版| 美女被艹到高潮喷水动态| 婷婷亚洲欧美| 村上凉子中文字幕在线| 高清日韩中文字幕在线| 免费人成视频x8x8入口观看| 亚洲不卡免费看| 成人欧美大片| 男女啪啪激烈高潮av片| 99热只有精品国产| 亚洲黑人精品在线| 中文字幕免费在线视频6| a级一级毛片免费在线观看| 在线a可以看的网站| 免费看a级黄色片| 色综合站精品国产| 变态另类丝袜制服| 精品人妻熟女av久视频| 国产真实乱freesex| 国产av一区在线观看免费| 免费看光身美女| 悠悠久久av| 亚洲熟妇熟女久久| 俺也久久电影网| 又爽又黄无遮挡网站| 伦理电影大哥的女人| 亚洲精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| av国产免费在线观看| 精品免费久久久久久久清纯| 亚洲成a人片在线一区二区| 婷婷丁香在线五月| 亚洲av五月六月丁香网| 色综合亚洲欧美另类图片| 一个人免费在线观看电影| 国产美女午夜福利| 校园春色视频在线观看| 亚洲欧美日韩东京热| 久久精品久久久久久噜噜老黄 | 欧美成人一区二区免费高清观看| 一个人观看的视频www高清免费观看| 国产亚洲精品久久久com| 精品无人区乱码1区二区| 亚洲av成人精品一区久久| 欧美日韩瑟瑟在线播放| 深夜a级毛片| 国产精品爽爽va在线观看网站| 国产日本99.免费观看| 国产精品亚洲美女久久久| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 黄色欧美视频在线观看| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 亚洲国产欧洲综合997久久,| 99久国产av精品| 国产老妇女一区| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 国产伦一二天堂av在线观看| 亚洲熟妇中文字幕五十中出| 韩国av在线不卡| 精品国内亚洲2022精品成人| 婷婷色综合大香蕉| 久久久久九九精品影院| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 欧美xxxx性猛交bbbb| 内射极品少妇av片p| 亚洲精品色激情综合| 非洲黑人性xxxx精品又粗又长| 成人毛片a级毛片在线播放| 中亚洲国语对白在线视频| 村上凉子中文字幕在线| 久久中文看片网| 国产 一区 欧美 日韩| 国产成人一区二区在线| 深爱激情五月婷婷| 欧美日韩国产亚洲二区| 欧美性猛交╳xxx乱大交人| 在线观看舔阴道视频| 偷拍熟女少妇极品色| 在线国产一区二区在线| 国产精品自产拍在线观看55亚洲| 色5月婷婷丁香| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜添小说| 国产一区二区激情短视频| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 精品久久久噜噜| 一进一出好大好爽视频| 精品一区二区三区av网在线观看| 亚洲18禁久久av| 啦啦啦韩国在线观看视频| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添av毛片 | 国产亚洲欧美98| 成人av一区二区三区在线看| 一边摸一边抽搐一进一小说| 色综合色国产| 日本爱情动作片www.在线观看 | 国产高清激情床上av| 国产av一区在线观看免费| 国产精品,欧美在线| 日本一本二区三区精品| 久久久久久久午夜电影| 国产成人一区二区在线| 最近中文字幕高清免费大全6 | 国产一区二区三区在线臀色熟女| 一个人看视频在线观看www免费| 美女xxoo啪啪120秒动态图| 人人妻人人看人人澡| 舔av片在线| 一个人看视频在线观看www免费| 制服丝袜大香蕉在线| 老司机深夜福利视频在线观看| 女人十人毛片免费观看3o分钟| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦人伦偷精品视频| av福利片在线观看| 最近在线观看免费完整版| 男女啪啪激烈高潮av片| www日本黄色视频网| 亚洲人成网站在线播| 少妇丰满av| 欧美极品一区二区三区四区| 免费av毛片视频| 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 免费av观看视频| a级毛片a级免费在线| 国产成人一区二区在线| 久久6这里有精品| 99久久九九国产精品国产免费| 日韩av在线大香蕉| 免费观看在线日韩| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 欧美丝袜亚洲另类 | 国产在视频线在精品| 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清在线视频| 亚洲性夜色夜夜综合| 熟妇人妻久久中文字幕3abv| 欧美成人一区二区免费高清观看| 亚洲第一区二区三区不卡| 国内精品宾馆在线| 精品人妻偷拍中文字幕| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看免费完整高清在 | 看十八女毛片水多多多| 黄色丝袜av网址大全| 精品久久久久久,| 国产人妻一区二区三区在| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 国产成人一区二区在线| 中文字幕熟女人妻在线| 亚洲成av人片在线播放无| 国产精品日韩av在线免费观看| 国产在线男女| 香蕉av资源在线| 久久精品国产鲁丝片午夜精品 | 可以在线观看的亚洲视频| 国产一级毛片七仙女欲春2| 亚洲精品久久国产高清桃花| 成人高潮视频无遮挡免费网站| 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址| 亚洲av日韩精品久久久久久密| 亚洲无线观看免费| 男女啪啪激烈高潮av片| 欧美3d第一页| 99久久中文字幕三级久久日本| 又黄又爽又刺激的免费视频.| 美女黄网站色视频| 国产精品人妻久久久久久| 国内毛片毛片毛片毛片毛片| .国产精品久久| 久久久久国内视频| 国产毛片a区久久久久| 男女视频在线观看网站免费| 久久精品91蜜桃| 三级毛片av免费| 午夜福利欧美成人| 国产色婷婷99| 亚洲狠狠婷婷综合久久图片| 黄色日韩在线| 1024手机看黄色片| 成人三级黄色视频| 久久人妻av系列| 亚洲最大成人av| 老司机深夜福利视频在线观看| 国模一区二区三区四区视频| 悠悠久久av| 欧美3d第一页| 亚洲av免费在线观看| 麻豆一二三区av精品| 男女之事视频高清在线观看| 久久精品91蜜桃| 99热这里只有是精品在线观看| 美女免费视频网站| 国产色爽女视频免费观看| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 俺也久久电影网| 日日啪夜夜撸| 欧美日韩亚洲国产一区二区在线观看| 88av欧美| 国产探花极品一区二区| 亚洲精华国产精华精| 久久热精品热| 91麻豆av在线| 天堂动漫精品| 亚洲最大成人中文| 99在线视频只有这里精品首页| 成人国产一区最新在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲真实伦在线观看| 国产精品一区www在线观看 | 99久久无色码亚洲精品果冻| 老熟妇仑乱视频hdxx| 免费看日本二区| 日本精品一区二区三区蜜桃| 国产伦一二天堂av在线观看| 禁无遮挡网站| 亚洲自拍偷在线| 久久久久精品国产欧美久久久| a级毛片免费高清观看在线播放| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| av天堂在线播放| 久久精品国产鲁丝片午夜精品 | 看十八女毛片水多多多| 一边摸一边抽搐一进一小说| 日韩人妻高清精品专区| 日本 av在线| 国内精品久久久久精免费| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线观看免费| 成年女人毛片免费观看观看9| 免费不卡的大黄色大毛片视频在线观看 | 免费在线观看日本一区| 狠狠狠狠99中文字幕| 国产女主播在线喷水免费视频网站 | 国产在视频线在精品| 国产成人福利小说| 老司机深夜福利视频在线观看| 久久午夜亚洲精品久久| 亚洲国产精品sss在线观看| 天堂网av新在线| 日韩欧美免费精品| 成年女人看的毛片在线观看| 在线看三级毛片| 免费av毛片视频| 亚洲性久久影院| 99riav亚洲国产免费| 国产午夜精品久久久久久一区二区三区 | 女人被狂操c到高潮| 亚洲国产欧洲综合997久久,| 日韩精品中文字幕看吧| 国产麻豆成人av免费视频| 国产免费av片在线观看野外av| 少妇的逼水好多| 欧美激情在线99| 国产女主播在线喷水免费视频网站 | 亚洲天堂国产精品一区在线| 免费看美女性在线毛片视频| 不卡一级毛片| 精品99又大又爽又粗少妇毛片 | 国产精品一区二区三区四区免费观看 | 亚洲成a人片在线一区二区| 精品一区二区免费观看| 午夜日韩欧美国产| 俺也久久电影网| 搡老岳熟女国产| 99久久精品一区二区三区| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 校园春色视频在线观看| 国产精品爽爽va在线观看网站| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 亚洲av中文字字幕乱码综合| 91久久精品国产一区二区成人| av在线蜜桃| 欧美成人免费av一区二区三区| 国产国拍精品亚洲av在线观看| 欧美绝顶高潮抽搐喷水| 久久九九热精品免费| 男女下面进入的视频免费午夜| 日韩欧美在线乱码| 久久九九热精品免费| 深夜a级毛片| 久久久久久久亚洲中文字幕| 一级毛片久久久久久久久女| 动漫黄色视频在线观看| 精品午夜福利视频在线观看一区| 成人特级av手机在线观看| 亚洲国产精品合色在线| 一级黄片播放器| 少妇被粗大猛烈的视频| 联通29元200g的流量卡| 亚洲国产精品成人综合色| 悠悠久久av| 精品久久久久久久久久久久久| 我要搜黄色片| 国产女主播在线喷水免费视频网站 | 蜜桃久久精品国产亚洲av| 亚洲精品国产成人久久av| 亚洲国产精品合色在线| 久久精品国产亚洲网站| 美女黄网站色视频| 白带黄色成豆腐渣| 国产视频内射|