• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stress corrosion cracking susceptibility of a high strength Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy

    2014-04-21 02:45:18Dong
    Journal of Magnesium and Alloys 2014年4期

    *C.Dong

    aLaboratory of Materials Modif i cation by Laser,Electron and Ion Beams,School of Materials Science and Engineering,Dalian University of Technology, Dalian 116024,China

    bEnvironmental Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    Stress corrosion cracking susceptibility of a high strength Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy

    S.D.Wanga,b,D.K.Xub,*,E.H.Hanb,C.Donga

    aLaboratory of Materials Modif i cation by Laser,Electron and Ion Beams,School of Materials Science and Engineering,Dalian University of Technology, Dalian 116024,China

    bEnvironmental Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    Through performing the tensile tests with different strain rates in 3.5 wt.%NaCl solution,the stress corrosion cracking(SCC)behavior and the effect of strain rate on the SCC susceptibility of an extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr(EW75)alloy have been investigated.Results demonstrate that the alloy is susceptible to SCC when the strain rate is lower than 5 × 10-6s-1.At the strain rate of 1 × 10-6s-1,the SCC susceptibility index(ISCC)is 0.96 and the elongation-to-failure(εf)is only 0.11%.Fractography indicates that the brittle quasi-cleavage feature is very obvious and become more pronounced with decreasing the strain rate.Further analysis conf i rms that the cracking mode is predominantly transgranular,but the partial intergranular cracking at some localized area can also occur.Meanwhile,it seems that the crack propagation path is unrelated to the existing phase particles.

    Magnesium alloy;Stress corrosion cracking;Strain rate;Pitting corrosion

    1.Introduction

    Due to the low density and high specif i c strength,magnesium alloys become the potential structural materials for the applications in the f i elds of the automotive,railway and aerospace[1-4].However,the low absolute strength and poor corrosion resistance greatly limited their industrial applications[5].Recently,researchers reported that the newly developed Mg-Gd-Y-Nd-Zr alloys have the superior mechanical property and could meet the mechanical requirements of industrial components [6,7]. After thermal-mechanical processing,the mechanical properties of Mg-Gd-Y-Nd-Zr alloy could be further improved[8-10].Zhang et al.reported that the yield strength and ultimate strength(UTS)of an extruded Mg-8Gd-4Y-Nd-Zr alloy could reach up to 357 and 423 MPa,respectively[11].Although the strength of the Mg-8Gd-4Y-Nd-Zr alloy can be comparable to that of some industrially used Al alloys,their corrosion behavior especially the stress corrosion cracking(SCC)resistance is still unknown and so far few relevant literature papers can be referred. Generally,the SCC is extremely dangerous and complicated in the real industries,which can cause sudden fracture and then lead to catastrophic accidents[12].For Mg alloys,their SCC susceptibility to the service environment is very strong and mainly inf l uenced by various factors such as alloying element, microstructure,environment,mechanical processing and heat treatment[12-16].In Mg-Gd-Y-Nd-Zr alloys,the main existing phases are Mg5Gd,Mg24Y5,Mg41Nd5and the α-Mg matrix[9,10,17,18].Previous work demonstrated that phasecomposition and grain size can greatly inf l uence the mechanical properties and static corrosion performance of the Mg-Gd-Y-Nd-Zr alloys[6,8-10].Li et al.reported that the dissolution of Mg5Gd phases and the ref i nement of grains can be benef i cial for the improvement of the strength and elongation of an as-cast Mg-5Y-5Gd-xNd-0.5Zr alloy[8].However,Zhang et al.reported that the smaller grain size and inhomogeneous grain structure can deteriorate the corrosion resistance of the as-extruded Mg-5Y-7Gd-1Nd-0.5Zr alloy [6,7].Meanwhile,the existing coarse second phase particles acted as strong cathodes and further accelerated the corrosion attack of the surrounding α-Mg matrix[6,7].Following this,it can be predicted that the phase composition and grain structure could affect the interaction between the mechanics and chemistry especially the SCC.

    In this work,through investigating the microstructure and SCC susceptibility to the strain rate of an as-extruded Mg-7% Gd-5%Y-1%Nd-0.5%Zr alloy,the underlying failure mechanism of the SCC and their relationship with the existing phases and grain structure will be deeply discussed.

    2.Experimental procedures

    2.1.Material and microstructural analysis

    The material used in the current investigation was an asextrudedMg-7%Gd-5%Y-1%Nd-0.5%Zralloy(inwt.%) with the thickness of 20 mm and deformation ratio of 20, which was prepared in the Magnesium Alloy Research Department of IMR,China.Samples cut from the extruded plate were ground with SiC paper up to 2000 grit,f i nely polished to a 1 μm f i nish with ethanol.Phase analysis was determined with a D/Max 2400 X-ray diffractometer(XRD) using monochromatic Cu Kαradiation (wavelength: 0.154056 nm),a step size of 0.02°and a scan rate for data acquisition of 4°/min.To reveal the start melting points associated with the melting of the existing phases,differential scanning calorimetry(DSC)with the temperature ranging from 200 to 650°C was carried out using a Setaram system at a heating rate of 10°C/min.The specimens for metallographic examination were etched with 4 ml of nitric acid and 96 ml of alcohol,and the average grain size was determined using the mean linear intercept method.Microstructures were observed by optical microscopy(OM)and scanning electron microscopy(SEM;XL30-FEG-ESEM)in conjunction with energy dispersive X-ray spectroscopy(EDS).

    2.2.Slow strain rate tensile(SSRT)testing

    The SCC behavior of the as-extruded Mg-7%Gd-5%Y-1% Nd-0.5%Zr alloy was investigated using the slow strain rate tensile(SSRT)method.Tensile samples with a gauge length of 25 mm,width of 3 mm and thickness of 3 mm were machined from the extruded sheets.The axial direction of the tensile specimens was parallel to the extrusion direction(ED)of the plate.The surfaces of the gauge sections were polished to a 1 μm f i nish and cleaned up using ethanol immediately before testing.During the SCC tests,samples were stretched at a range of strain rates(1 × 10-6s-1to 5 × 10-5s-1)in 3.5 wt.%NaCl solution or air,as illustrated in Fig.1.The gauge section of the specimen were immersed in 3.5 wt.% NaCl solution at room temperature in an environment cell, while the solution was circulated at a speed of about 167 ml/ min using a circulating pump.Strain was recorded by an axial extensometer attached to the specimen gauge length outside of the environment cell(Fig.1).To ensure the reliability of the measured data,at least three repeated measurements were carried out for each condition.After testing,the fracture surfaces were cleaned in a hot chromic acid bath consisting of 180 g/L CrO3[19],washed in distilled water and rinsed with acetone,and then observed using SEM with secondary electron imaging(SEI)mode.

    3.Results

    3.1.Microstructural characterization

    Fig.2 shows XRD pattern of the as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy,indicating that the main phases in the alloy are Mg5Gd,Mg24Y5,Mg41Nd5,Zr and α-Mg.DSC analysis demonstrates that two endothermic peaks occurred at about 551°C and 631°C can be determined,as shown in Fig.3.It is well-known that the endothermic peaks occurred during the heating process stand for the melting temperatures associated with the existing phases[20].In the previous work, Zhang et al.reported that in an as-cast Mg-7.09%Gd-4.56%Y-1.31%Nd-0.52%Zr alloy(in wt.%),the melting temperature of the Mg5Gd is 549.4°C,whereas the melting temperature of α-Mg matrix is 634.3°C[10].Therefore,it can be determined that the 551°C endothermic peak stands for the melting temperature of Mg5Gd phase and the 631°C endothermic peak is related to melting temperature of α-Mg matrix.No endothermic peaks were found for Mg24Y5,Mg41Nd5and Zr, which may be attributed to the relatively lower content of Mg24Y5and Mg41Nd5and the higher melting point of Zr.

    Fig.1.Experimental system for SSRT test with circulated 3.5 wt.%NaCl solution or air at various strain rates.

    Fig.2.XRD pattern of the as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy.

    Fig.4 shows the backscattered electron image of the asextruded Mg-7%Gd-5%Y-1%Nd-0.5%Zralloy and the existing phases were analyzed by EDS,as listed in Table 1.It reveals that the main particles dispersed in the alloy were Gdrich phases composed of Mg-Gd-Y-Nd(point A),the small amount of cubic-shaped phases were identif i ed as Y-rich phases composed of Mg-Gd-Y-Nd(point B).The etched microstructure of the alloy is shown in Fig.5,which consists of f i ne equiaxed grains with an average grain size of 14.5 μm. However,the grain size was quite inhomogeneous.Moreover, the broken phase particles were distributed parallel to the extrusion direction.

    3.2.Mechanical evaluation

    Fig.6 shows the tensile curves of the alloy tested at various strain rates in air and 3.5 wt.%NaCl solution.To compare the mechanical properties of the alloy at various strain rates,the 0.2%proof yield stress(σ0.2),ultimate tensile strength(UTS), elongation-to-failure(εf)and time-to-failure(tf)are listed in Table 2.It can be seen that the yield strength and UTS of the alloy at the strain rate of 1 × 10-6s-1in air are 305 and 432 MPa,respectively.At the same strain rate,the UTS is decreased to 274 MPa when immersed in 3.5 wt.%NaCl solution.However,the yield strength of the alloy can hardly be determined because the εfmeasured was only 0.11%in 3.5 wt.%NaCl solution.

    Fig.3.DSC curve of the as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy.

    Fig.4.Backscattered electron image of the as-extruded Mg-7%Gd-5%Y-1% Nd-0.5%Zr alloy.

    Table 1Chemical compositions of secondary phases labeled in Fig.4(wt.%).

    Fig.5.The etched microstructure of the as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy.

    Additionally,the effect of strain rate on SCC susceptibility was also analyzed.It can be seen that the strength and εfof the alloy were improved,while thetfwas decreased as the strain rates increased in 3.5 wt.%NaCl solution,as shown in Table 2.At the strain rate of 5 × 10-5s-1,the strength of the alloy was even higher while the εfwas increased about 18 times as high as that measured at 1 × 10-6s-1,indicating that the alloy shows remarkable susceptibility to SCC in 3.5 wt.%NaCl solution.

    Fig.6.Stress-strain curves of the as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy at various strain rates in air and 3.5 wt.%NaCl solution.

    Table 2Mechanical properties of as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy tested at various strain rates in air and 3.5 wt.%NaCl solution.

    Fig.7.SEM observations to the fractographs of specimen failed at various strain rates in air and 3.5 wt.%NaCl solution.Image a)is overall fracture surface of specimen in air at strain rate of 1 × 10-6s-1;Images c),e)and g)are overall fracture surfaces of specimens in 3.5 wt.%NaCl at strain rates of 1 × 10-6s-1, 5 × 10-6s-1and 5 × 10-5s-1,respectively;Images b),d),f)and h)are high-magnif i cation observation of the squared area in images a),c),e)and g),respectively.

    The fracture surfaces of tensile specimens are shown in Fig.7.The fracture surface of the specimen failed in air at the strain rate of 1 × 10-6s-1exhibited brittle quasi-cleavage feature(Fig.7(a)and(b)).On the other hand,the fracture surface of the specimen tested in 3.5 wt.%NaCl solution at the same strain rate is almost completely composed of brittle cleavage facets(Fig.7(c)and(d)).From the high-magnif i cation observation to the fracture surface,it can be seen that some cracks and local dissolution sites exist on the fracture surface(Fig.7(d)).Moreover,the cleavage features become less obvious as the strain rate increased and even transform into quasi-cleavage feature at the strain rate of 5 × 10-5s-1(Fig.7(c)-(h)).In addition,the cracks and local dissolution sites can hardly be observed in the high strain rate cases in 3.5 wt.%NaCl solution(Fig.7(f)and (h)).

    Fig.8 shows the overall longitudinal surfaces of specimens tested at various strain rates in 3.5 wt.%NaCl solution.It reveals that for the specimen tested at the strain rate of 1 × 10-6s-1,the surface is severely corroded with a large amount of localized pits and secondary cracks existing away from the actual fracture surface(Fig.8(a)and(b)).As for the specimen tested at the strain rate of 5 × 10-6s-1,the corrosion attack is relatively weak with shallow localized pits and secondary cracks on the gauge surface(Fig.8(c)and(d)). When the strain rate is increased to 5 × 10-5s-1,the secondary cracks can hardly be observed and the localized pits were only existing at some particular sites on the surface (Fig.8(e)and(f)).

    In order to investigate the stress corrosion cracking mechanism,the fracture surface which is perpendicular to the longitudinalaxialofthespecimen atthestrain rateof 1 × 10-6s-1in 3.5 wt.%NaCl is etched for metallographic observation,as shown in Fig.9.It reveals that the cracks mainly initiate from the localized pits on the surface of the gauge section.Meanwhile,the crack propagation mode is dominated by transgranular cracking and partial intergranular cracking.Additionally,the crack propagation path is unrelated to the existing second phase particles.

    Fig.8.SEM observations to the corroded surfaces of tensile samples immersed in 3.5 wt.%NaCl.Images a),c)and e)are overall surfaces of specimens at strain rates of 1 × 10-6s-1,5 × 10-6s-1and 5 × 10-5s-1,respectively;Images b),d)and f)are high-magnif i cation observation of the squared area in images a),c)and e),respectively.

    Fig.9.The etched microstructure observation to the fracture surface of specimen failed at the strain rate of 1 × 10-6s-1in 3.5 wt.%NaCl.

    4.Discussion

    4.1.SCC mechanism of the extruded EW75 alloy

    To evaluate the SCC susceptibility of the alloy,the SCC susceptibility index(ISCC)was calculated by the loss in elongation[16]:

    whereEsolutionandEairare εfin 3.5 wt.%NaCl solution and air,respectively.When the value ofISCCapproaches unity,it is assumed that the alloy is highly susceptible to SCC.Based on the equation(1),the calculatedISCCwas 0.96 at the strain rate of 1 × 10-6s-1,suggesting the investigated alloy was very susceptible to SCC in 3.5 wt.%NaCl solution.The main reason for its high SCC susceptibility will be discussed as follows:

    Generally,the existed second phases can cause great impact on the SCC behaviour of magnesium alloy[21-23].In the investigated alloy,the main existing phases are Mg5Gd, Mg24Y5,Mg41Nd5and Zr.Among them,Zr usually reacts with deleterious impurities(i.e.Fe and Ni)to form Zr-rich particles and the Zr-rich particles can exhibit the most positive Volta potential with respect to the matrix[24].Thus,a strong microgalvanic corrosion can occur due to potential difference between the Zr-rich particles and the matrix.Apart from the Zrrich particles,other second phases such as Gd-rich and Y-rich particles can also act as the galvanic cathode to accelerate corrosion because they are much nobler than the Mg matrix [6,7,24].Therefore,localized pits could easily form during the tensile test in 3.5 wt.%NaCl solution(Fig.8(a)and(b)). Kannan et al.reported that hydrogen could diffuse into the Mg matrix through corrosion pits and then cause the hydrogen embrittlement,which signif i cantly decreased the mechanical strength of Mg alloys[15].In fact,the magnesium dissolution/ passivation is an anodic reaction and accompanies with a hydrogen reduction reaction[15,25].Thus,the hydrogen embrittlement due to the hydrogen diffusion can easily occur when Mg alloys are exposed to the aqueous corrosive environment[15].In this study,the micro crack initiation at the pits(Fig.9)further demonstrates that the occurrence of the hydrogen embrittlement.

    Stampella et al.reported that grain size could inf l uence the cracking mode of the SCC[26].For the f i ne-grained Mg alloys (~30 μm),the SCC cracking mode is transgranular,whereas the cracking mode is the mixed transgranular and intergranular for the corase-grained Mg alloys(>60 μm)[23].Moreover,it was demonstrated that for Mg alloys,the propagation of intergranular cracks could be accelerated by the electrochemical corrosion of the continuously distributed grain boundary precipitates[23].In this study,the grain size of the alloy is just 14.5 μm and phase particles are scarcely distributed at grain boundaries(Fig.5).Then,the cracking mode is predominantly transgranular and the partial intergranular cracking can only occur at some localized area(Fig.9). Additionally,the crack propagation route of the alloy seems unrelated to the existing phase particles,which might be ascribed to their homogenous distribution.

    4.2.Effect of strain rate on the SCC susceptibility

    Previous studies demonstrated that the inf l uence of strain rate on the SCC susceptibility of magnesium alloys can be summarized as follows:1)at a higher strain rate,the propensity for the inert fracture mechanism to overwhelm the SCC fracture mechanism;2)at a lower strain rate,the balance between repassivation and mechanical f i lm rupture at the crack tip[22,27,28].In the current investigation,the SCC susceptibility increases with decreasing the strain rate and the high SCC susceptibility is associated with hydrogen embrittlement. Therefore,it should exist a close relationship between the strain rate and hydrogen embrittlement susceptibility of the alloy.It is well known that the SCC susceptibility is associated with both corrosion and mechanical effect,which is prone to be inf l uenced by strain rates[22,23,29,30].At low strain rates (≤1 × 10-6s-1),the corrosion effect is predominant and thetfvalue is 8.55 h.Then,the time is enough for the diffusion of the generated hydrogen from reduction reaction into the matrix through the localized pits,leading to the occurrence of the hydrogen embrittlement fracture.On the contrary,thetfis only 0.35 h at a high strain rate(5 × 10-5s-1).Then,the time is too short for hydrogen diffusion and thus the mechanical effect was much greater than the corrosion effect,leading to a brittle quasi-cleavage failure much resemble the fracture features that tested in air(Fig.7(b)and(h)).Based on the discussion above, it can be concluded that the as-extruded Mg-7%Gd-5%Y-1% Nd-0.5%Zr alloy is very susceptible to SCC in 3.5 wt.%NaCl solution when the strain rate is below 1 × 10-6s-1.

    5.Conclusions

    (1)The as-extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy is very susceptible to SCC in 3.5 wt.%NaCl solution when the strain rate is lower than 1 × 10-6s-1.

    (2)The fractograph of the alloy exhibits brittle quasi-cleavage feature,and the cleavage feature becomes more pronounced as the strain rate decreasing.

    (3)The crack propagation is dominated by transgranular cracking and partial intergranular cracking,however,itspropagating path is unrelated to the existing second phases.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China projects under Grant Nos.51171192, 51271183 and 51301172,the National Basic Research Program of China(973 Program)project under Grant No. 2013CB632205 and the Innovation Fund of Institute of Metal Research(IMR),Chinese Academy of Sciences(CAS).

    [1]J.W.Chang,X.W.Guo,P.H.Fu,L.M.Peng,W.J.Ding,Electrochim. Acta.52(2007)3160-3167.

    [2]Q.Chen,S.J.Luo,Z.D.Zhao,J.Alloy.Compd.477(2009)726-731.

    [3]A.A.Luo,Int.Mater.Rev.49(2004)13-30.

    [4]Q.Chen,Z.D.Zhao,Z.X.Zhao,C.K.Hu,D.Y.Shu,J.Alloy.Compd. 509(2011)7303-7315.

    [5]Y.Unigovski,A.Eliezer,E.Abramov,Y.Snir,E.M.Gutman,Mat.Sci. Eng.A-Struct.360(2003)132-139.

    [6]X.Zhang,K.Zhang,X.G.Li,X.Deng,H.W.Li,B.D.Zhang,C.S.Wang, T.Nonferr,Metal.Soc.22(2012)1018-1027.

    [7]X.Zhang,K.Zhang,X.G.Li,C.Wang,H.W.Li,C.S.Wang,X.Deng, Prog.Nat.Sci.Mater-Int.21(2011)314-321.

    [8]Y.J.Li,K.Zhang,Y.Zhang,X.G.Li,M.L.Ma,Rare Met.29(2010) 317-322.

    [9]M.L.Ma,K.Zhang,X.G.Li,Y.J.Li,H.Z.Wang,L.Q.He,Rare Met. Mat.Eng.40(2011)635-639.

    [10]K.Zhang,X.G.Li,Y.J.Li,M.L.Ma,T.Nonferr,Met.Soc.18(2008) 12-16.

    [11]X.M.Zhang,J.L.Hu,L.Y.Ye,Y.L.Deng,C.P.Tang,L.Yang,Z.Y.Liu, Mater.Des.43(2013)74-79.

    [12]N.Winzer,A.Atrens,G.L.Song,E.Ghali,W.Dietzel,K.U.Kainer, N.Hort,C.Blawert,Adv.Eng.Mater.7(2005)659-693.

    [13]R.M.Wang,A.Eliezer,E.Gutman,Mat.Sci.Eng.A-Struct.344(2003) 279-287.

    [14]G.R.Argade,W.Yuan,K.Kandasamy,R.S.Mishra,J.Mater.Sci.47 (2012)6812-6822.

    [15]M.B.Kannan,W.Dietzel,Mater.Des.42(2012)321-326.

    [16]L.C.Tsao,Int.J.Mater.Res.101(2010)1166-1171.

    [17]K.Zhang,M.L.Ma,X.G.Li,Y.J.Li,L.C.Liang,M.F.Bing,Rare Met. 30(2011)87-93.

    [18]Y.Uematsu,K.Tokaji,T.Ohashi,Strength Mater.40(2008)130-133.

    [19]V.S.Raja,B.S.Padekar,Corros.Sci.75(2013)176-183.

    [20]J.W.Geng,X.Y.Teng,G.R.Zhou,Z.W.Zhao,Phys.B:Condens.Matt 420(2013)64-69.

    [21]A.Atrens,N.Winzer,W.Dietzel,Adv.Eng.Mater.13(2011)11-18.

    [22]N.Winzer,A.Atrens,W.Dietzel,V.S.Raja,G.L.Song,K.U.Kainer, Mat.Sci.Eng.A-Struct.488(2008)339-351.

    [23]M.B.Kannan,W.Dietzel,C.Blawert,A.Atrens,P.Lyon,Mat.Sci.Eng. A-Struct.480(2008)529-539.

    [24]A.E.Coy,F.Viejo,P.Skeldon,G.E.Thompson,Corros.Sci.52(2010) 3896-3906.

    [25]A.Pardo,M.C.Merino,A.E.Coy,R.Arrabal,F.Viejo,E.Matykina, Corros.Sci.50(2008)823-834.

    [26]R.Stampella,R.Procter,V.Ashworth,Corros.Sci.24(1984)325-341.

    [27]G.L.Makar,J.Kruger,K.Sieradzki,Corros.Sci.34(1993)1311-1342.

    [28]W.R.Wearmouth,G.P.Dean,R.N.Parkins,Corrosion 29(1973) 251-260.

    [29]E.Aghion,G.Levy,J.Mater.Sci.45(2010)3096-3101.

    [30]E.Aghion,N.Lulu,Mater.Charact.61(2010)1221-1226.

    Received 19 September 2014;revised 17 November 2014;accepted 18 November 2014 Available online 8 December 2014

    *Corresponding author.Environmental Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016, China.Tel.:+86 24 23915897;fax:+86 24 23894149.

    E-mail address:dkxu@imr.ac.cn(D.K.Xu).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2014.11.004.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    美女黄网站色视频| 国产成人freesex在线| 99久久精品一区二区三区| 久久精品影院6| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 国产精品蜜桃在线观看| 免费看美女性在线毛片视频| 日韩,欧美,国产一区二区三区 | 亚洲欧洲日产国产| 欧美激情在线99| 国产极品天堂在线| 亚洲,欧美,日韩| 亚洲av中文字字幕乱码综合| 国内精品宾馆在线| 国产高清有码在线观看视频| 只有这里有精品99| av在线蜜桃| 欧美日韩综合久久久久久| 成年版毛片免费区| 精品国产一区二区三区久久久樱花 | 人妻制服诱惑在线中文字幕| 天天一区二区日本电影三级| 免费观看精品视频网站| 真实男女啪啪啪动态图| 又爽又黄a免费视频| 成人综合一区亚洲| 中文字幕久久专区| 久久久欧美国产精品| 精品久久久久久久人妻蜜臀av| 伦理电影大哥的女人| av在线老鸭窝| 国产亚洲精品av在线| 亚洲av二区三区四区| 亚洲电影在线观看av| 边亲边吃奶的免费视频| 日韩欧美 国产精品| ponron亚洲| 只有这里有精品99| 中文字幕av成人在线电影| 亚洲精品日韩av片在线观看| 亚洲av男天堂| 国产精品爽爽va在线观看网站| 久久午夜福利片| 午夜爱爱视频在线播放| 中文字幕免费在线视频6| av在线老鸭窝| 亚洲,欧美,日韩| 免费观看在线日韩| 91av网一区二区| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 99热6这里只有精品| 少妇的逼水好多| 我的老师免费观看完整版| 精品午夜福利在线看| 午夜福利视频1000在线观看| 久久这里有精品视频免费| 成人毛片a级毛片在线播放| 久久久成人免费电影| 国产国拍精品亚洲av在线观看| 亚洲精品,欧美精品| 丰满少妇做爰视频| 久久韩国三级中文字幕| 精品一区二区三区视频在线| 最近的中文字幕免费完整| 99久国产av精品| 亚洲在线观看片| 精品不卡国产一区二区三区| 国产一区二区在线观看日韩| 国产精品国产三级国产av玫瑰| 99国产精品一区二区蜜桃av| 亚洲欧美精品综合久久99| 精品久久久噜噜| 看十八女毛片水多多多| 国内少妇人妻偷人精品xxx网站| 国内揄拍国产精品人妻在线| 我要搜黄色片| 建设人人有责人人尽责人人享有的 | 亚洲精品影视一区二区三区av| 国产中年淑女户外野战色| 一本一本综合久久| 内地一区二区视频在线| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 最近最新中文字幕免费大全7| 亚洲成人中文字幕在线播放| 97超视频在线观看视频| 亚洲最大成人av| 国产真实乱freesex| 高清在线视频一区二区三区 | 91午夜精品亚洲一区二区三区| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 中文字幕av成人在线电影| 色噜噜av男人的天堂激情| 国产亚洲午夜精品一区二区久久 | 日产精品乱码卡一卡2卡三| 菩萨蛮人人尽说江南好唐韦庄 | 欧美成人午夜免费资源| 国产精品电影一区二区三区| 男人舔奶头视频| 我要搜黄色片| 国产亚洲av片在线观看秒播厂 | 久久欧美精品欧美久久欧美| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 三级国产精品欧美在线观看| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 欧美不卡视频在线免费观看| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看| 久久人人爽人人爽人人片va| 乱系列少妇在线播放| 尾随美女入室| 色综合亚洲欧美另类图片| 亚洲四区av| 久久久久久久亚洲中文字幕| 99久久九九国产精品国产免费| 国产精品综合久久久久久久免费| 国产亚洲精品久久久com| 热99re8久久精品国产| 99久国产av精品| 精品久久久久久久人妻蜜臀av| 九九在线视频观看精品| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 美女黄网站色视频| 热99re8久久精品国产| av福利片在线观看| 久久精品国产鲁丝片午夜精品| 成人美女网站在线观看视频| 久久久精品大字幕| 在线播放无遮挡| 亚洲精品亚洲一区二区| 亚洲精品乱久久久久久| 国产免费视频播放在线视频 | 99在线视频只有这里精品首页| 日本三级黄在线观看| 国产成人freesex在线| 男人舔奶头视频| 麻豆国产97在线/欧美| 插阴视频在线观看视频| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 国产乱人视频| 国产av不卡久久| 亚洲av免费高清在线观看| 女的被弄到高潮叫床怎么办| 精品一区二区三区人妻视频| 欧美性感艳星| 午夜精品一区二区三区免费看| 在线观看av片永久免费下载| 99久久无色码亚洲精品果冻| 成人午夜精彩视频在线观看| 国产av在哪里看| 变态另类丝袜制服| 人人妻人人澡人人爽人人夜夜 | 久久久色成人| 国产单亲对白刺激| 精品久久久噜噜| 女人久久www免费人成看片 | 最后的刺客免费高清国语| 午夜激情福利司机影院| 亚洲精品一区蜜桃| 老师上课跳d突然被开到最大视频| 男女啪啪激烈高潮av片| 午夜视频国产福利| 欧美成人免费av一区二区三区| videos熟女内射| 精品酒店卫生间| 亚洲精品久久久久久婷婷小说 | 日日干狠狠操夜夜爽| 久久久色成人| 尤物成人国产欧美一区二区三区| 波野结衣二区三区在线| 3wmmmm亚洲av在线观看| 观看美女的网站| 99热这里只有是精品在线观看| 天堂av国产一区二区熟女人妻| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 久99久视频精品免费| 看免费成人av毛片| 91久久精品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 日本免费在线观看一区| 久久精品久久精品一区二区三区| 日本一本二区三区精品| 村上凉子中文字幕在线| 99在线视频只有这里精品首页| 内射极品少妇av片p| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清视频在线观看网站| 国产91av在线免费观看| 日韩一本色道免费dvd| 麻豆国产97在线/欧美| 一边摸一边抽搐一进一小说| 久久久国产成人免费| 国产精品美女特级片免费视频播放器| 乱码一卡2卡4卡精品| 女人久久www免费人成看片 | 亚洲国产精品成人久久小说| 蜜桃久久精品国产亚洲av| 午夜精品一区二区三区免费看| 国产毛片a区久久久久| 秋霞伦理黄片| 精品少妇黑人巨大在线播放 | 我要看日韩黄色一级片| 观看美女的网站| 国产精品久久视频播放| 好男人在线观看高清免费视频| 国产美女午夜福利| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻一区二区三区麻豆| 国产白丝娇喘喷水9色精品| 亚洲精品成人久久久久久| 国产一区二区在线av高清观看| 好男人在线观看高清免费视频| 又爽又黄无遮挡网站| 日韩视频在线欧美| 黄色日韩在线| 色噜噜av男人的天堂激情| 我的女老师完整版在线观看| 视频中文字幕在线观看| 国产淫片久久久久久久久| av在线老鸭窝| 国产精品一区二区三区四区免费观看| 亚洲精品亚洲一区二区| 亚洲国产欧洲综合997久久,| 少妇猛男粗大的猛烈进出视频 | 18禁动态无遮挡网站| 色尼玛亚洲综合影院| 亚洲三级黄色毛片| 亚洲第一区二区三区不卡| 国产私拍福利视频在线观看| 变态另类丝袜制服| 国产成人精品久久久久久| 亚洲成人精品中文字幕电影| 亚洲av成人av| 日日摸夜夜添夜夜添av毛片| 久久久久九九精品影院| 日韩强制内射视频| av福利片在线观看| 国产精品一区二区三区四区免费观看| 男的添女的下面高潮视频| 色综合亚洲欧美另类图片| 97在线视频观看| 性色avwww在线观看| 国产亚洲一区二区精品| 亚洲av中文字字幕乱码综合| 亚洲成人av在线免费| 美女大奶头视频| 亚洲高清免费不卡视频| 国产大屁股一区二区在线视频| 中文天堂在线官网| 美女xxoo啪啪120秒动态图| 三级毛片av免费| 亚洲成av人片在线播放无| 九草在线视频观看| 又黄又爽又刺激的免费视频.| 亚洲成av人片在线播放无| 国产爱豆传媒在线观看| 精品午夜福利在线看| 色播亚洲综合网| 啦啦啦啦在线视频资源| 秋霞伦理黄片| av天堂中文字幕网| 2021天堂中文幕一二区在线观| av又黄又爽大尺度在线免费看 | 国产免费视频播放在线视频 | 国产精品美女特级片免费视频播放器| 欧美极品一区二区三区四区| 日韩在线高清观看一区二区三区| 精品熟女少妇av免费看| 欧美bdsm另类| 欧美一区二区国产精品久久精品| 最后的刺客免费高清国语| 久久草成人影院| 国产激情偷乱视频一区二区| 国产老妇女一区| 精华霜和精华液先用哪个| 成人漫画全彩无遮挡| 日本欧美国产在线视频| 久久精品国产亚洲av天美| 小蜜桃在线观看免费完整版高清| 男的添女的下面高潮视频| 床上黄色一级片| 51国产日韩欧美| 日韩成人伦理影院| 亚洲精品aⅴ在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品一区www在线观看| 日本一本二区三区精品| 欧美区成人在线视频| 丰满人妻一区二区三区视频av| 日日干狠狠操夜夜爽| 成人亚洲精品av一区二区| 欧美区成人在线视频| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 欧美97在线视频| 你懂的网址亚洲精品在线观看 | 尤物成人国产欧美一区二区三区| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av不卡在线观看| 成人高潮视频无遮挡免费网站| 国产一区二区三区av在线| 日本猛色少妇xxxxx猛交久久| 亚洲人与动物交配视频| 波多野结衣巨乳人妻| 2021天堂中文幕一二区在线观| 18禁在线播放成人免费| 亚洲四区av| 乱码一卡2卡4卡精品| 国产老妇女一区| 日韩欧美三级三区| 成人无遮挡网站| 亚洲天堂国产精品一区在线| av.在线天堂| 亚州av有码| 男插女下体视频免费在线播放| 免费黄网站久久成人精品| 国产毛片a区久久久久| 少妇丰满av| 亚洲av熟女| 欧美极品一区二区三区四区| 国产探花极品一区二区| 午夜福利在线在线| 男女国产视频网站| 99热全是精品| .国产精品久久| 国产私拍福利视频在线观看| 亚洲婷婷狠狠爱综合网| 久久精品国产鲁丝片午夜精品| 中文天堂在线官网| 精品久久国产蜜桃| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 91av网一区二区| 日本免费a在线| 狂野欧美白嫩少妇大欣赏| 2021少妇久久久久久久久久久| 国产精品麻豆人妻色哟哟久久 | 欧美成人午夜免费资源| www.av在线官网国产| 久久精品国产自在天天线| 亚洲av熟女| 色视频www国产| 精品少妇黑人巨大在线播放 | 1024手机看黄色片| av线在线观看网站| 午夜视频国产福利| 91久久精品电影网| 久久久久久九九精品二区国产| 中文字幕熟女人妻在线| 亚洲国产精品国产精品| 国产精品久久久久久久电影| 国产欧美另类精品又又久久亚洲欧美| 春色校园在线视频观看| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| or卡值多少钱| 狂野欧美白嫩少妇大欣赏| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 日韩亚洲欧美综合| 少妇的逼水好多| 亚洲精品日韩在线中文字幕| 我要搜黄色片| 日本三级黄在线观看| 黄色配什么色好看| 2022亚洲国产成人精品| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 国产精品久久视频播放| 国产精品人妻久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 欧美激情久久久久久爽电影| 在线天堂最新版资源| 亚洲精品色激情综合| 成人二区视频| 日本-黄色视频高清免费观看| 淫秽高清视频在线观看| 久久久久久久国产电影| 国产精品.久久久| 美女黄网站色视频| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 国产精品国产高清国产av| 中文精品一卡2卡3卡4更新| 亚洲国产色片| 国产精品不卡视频一区二区| av免费观看日本| 美女内射精品一级片tv| 级片在线观看| 国产免费一级a男人的天堂| 国产视频首页在线观看| 亚洲一区高清亚洲精品| 人人妻人人澡人人爽人人夜夜 | 亚洲在线观看片| 国产一区二区在线观看日韩| 国产美女午夜福利| 精品国产露脸久久av麻豆 | 亚洲精品自拍成人| 午夜亚洲福利在线播放| 直男gayav资源| 日韩欧美 国产精品| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片| 国产一级毛片七仙女欲春2| 久久久久久大精品| 国产91av在线免费观看| 三级国产精品欧美在线观看| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 国产午夜福利久久久久久| 青春草亚洲视频在线观看| 亚洲不卡免费看| 国产爱豆传媒在线观看| 成人午夜高清在线视频| av在线老鸭窝| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久 | av天堂中文字幕网| 亚洲欧洲日产国产| 内地一区二区视频在线| 国产爱豆传媒在线观看| a级一级毛片免费在线观看| 汤姆久久久久久久影院中文字幕 | www日本黄色视频网| 午夜精品在线福利| 国产探花极品一区二区| 日韩三级伦理在线观看| 啦啦啦啦在线视频资源| 在线天堂最新版资源| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 午夜免费激情av| 久久精品国产亚洲av涩爱| 麻豆国产97在线/欧美| 成年av动漫网址| 2021天堂中文幕一二区在线观| 大香蕉97超碰在线| 国产精品.久久久| 超碰av人人做人人爽久久| 精品国内亚洲2022精品成人| 亚洲av.av天堂| 干丝袜人妻中文字幕| 日韩欧美 国产精品| 日本一二三区视频观看| 国语自产精品视频在线第100页| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜 | 亚洲精品亚洲一区二区| 国产精华一区二区三区| 国产探花极品一区二区| 亚洲欧洲日产国产| 老师上课跳d突然被开到最大视频| 久久99蜜桃精品久久| 国产真实乱freesex| 小说图片视频综合网站| 天美传媒精品一区二区| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站 | 国产成人午夜福利电影在线观看| 日韩制服骚丝袜av| 嘟嘟电影网在线观看| 亚洲精品乱码久久久久久按摩| 最后的刺客免费高清国语| 麻豆一二三区av精品| 美女黄网站色视频| 如何舔出高潮| 成人毛片a级毛片在线播放| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| 精品久久国产蜜桃| 国产亚洲av片在线观看秒播厂 | 国产伦在线观看视频一区| 中文精品一卡2卡3卡4更新| 直男gayav资源| 欧美又色又爽又黄视频| 亚洲四区av| 网址你懂的国产日韩在线| 欧美一区二区亚洲| 可以在线观看毛片的网站| 亚洲伊人久久精品综合 | 国产日韩欧美在线精品| 国产成人91sexporn| 欧美3d第一页| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| h日本视频在线播放| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| 亚洲国产精品专区欧美| 久久草成人影院| 国产极品天堂在线| 1024手机看黄色片| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 日日摸夜夜添夜夜爱| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 国产大屁股一区二区在线视频| 国产 一区精品| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 亚洲av免费高清在线观看| 日本免费在线观看一区| 亚洲婷婷狠狠爱综合网| 黄色一级大片看看| 日韩成人av中文字幕在线观看| 波多野结衣巨乳人妻| 国产精品人妻久久久影院| 色尼玛亚洲综合影院| 国产不卡一卡二| 久久草成人影院| 村上凉子中文字幕在线| 国产人妻一区二区三区在| 国产熟女欧美一区二区| 嫩草影院入口| 国内精品一区二区在线观看| av在线天堂中文字幕| 美女被艹到高潮喷水动态| 最近最新中文字幕免费大全7| 久久精品国产99精品国产亚洲性色| 两个人的视频大全免费| 亚洲国产最新在线播放| 看十八女毛片水多多多| 嫩草影院新地址| 大香蕉久久网| av视频在线观看入口| kizo精华| 亚洲最大成人av| 美女被艹到高潮喷水动态| 久久久久久久久大av| 久久精品国产亚洲av天美| www.色视频.com| 老女人水多毛片| 一边亲一边摸免费视频| 美女被艹到高潮喷水动态| 色哟哟·www| 免费av观看视频| 中文字幕熟女人妻在线| 尾随美女入室| 国产高清国产精品国产三级 | 日本三级黄在线观看| 欧美日韩精品成人综合77777| 三级国产精品片| 日韩一本色道免费dvd| 老司机影院成人| 精品熟女少妇av免费看| 丰满少妇做爰视频| 老司机影院毛片| 亚洲国产精品成人综合色| 亚洲欧美日韩东京热| 日本av手机在线免费观看| 少妇熟女aⅴ在线视频| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 日韩国内少妇激情av| 国产亚洲最大av| 少妇的逼水好多| 丰满乱子伦码专区| 久久这里有精品视频免费| 九色成人免费人妻av| 可以在线观看毛片的网站| 亚洲内射少妇av| 免费人成在线观看视频色| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 97超视频在线观看视频| 又黄又爽又刺激的免费视频.| 国产av不卡久久| 欧美潮喷喷水| 99九九线精品视频在线观看视频| 久久久久免费精品人妻一区二区| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 成人综合一区亚洲| 欧美一区二区国产精品久久精品| 久久久久免费精品人妻一区二区| 一级二级三级毛片免费看| 在线播放无遮挡| 亚洲av一区综合| 国产探花极品一区二区| 色播亚洲综合网| 在线观看66精品国产| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区www在线观看| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 国产av在哪里看| 日韩一区二区三区影片| 只有这里有精品99| 99久国产av精品| 在线观看一区二区三区| 国产v大片淫在线免费观看| 成人国产麻豆网| 九九爱精品视频在线观看|