• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strengthening mechanisms of indirect-extruded Mg-Sn based alloys at room temperature

    2014-04-21 02:45:13**
    Journal of Magnesium and Alloys 2014年4期

    **

    aKey Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China

    bSchool of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    cKorea Institute of Materials Science,Changwon 642-831,Republic of Korea

    Strengthening mechanisms of indirect-extruded Mg-Sn based alloys at room temperature

    Wei Li Chenga,b,*,Quan Wei Tianb,Hui Yuc,Hua Zhanga,b,*,Bong Sun Youc

    aKey Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China

    bSchool of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    cKorea Institute of Materials Science,Changwon 642-831,Republic of Korea

    The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated.These dislocations create stress f i elds within the material depending on their intrinsic character.Generally,the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature:f i ne-grain strengthening,precipitate strengthening and solid solution strengthening as well as texture strengthening.The indirect-extruded Mg-8Sn(T8)and Mg-8Sn-1Al-1Zn(TAZ811)alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition.The contributions to the strengthen of Mg-Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics,physical characteristics,thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

    Mg alloys;Microstructure;Mechanical properties;Strengthening mechanism

    1.Introduction

    Mg-Sn system is known as a precipitation system,which has a relatively high solubility limit(3.35 at%)at 834 K and low solubility at ambient temperature.This is an age hardenable system with the potential to form 10 vol.%of Mg2Sn.The Mg2Sn precipitate(FCC,a=0.676 nm,point group m 3m)has a high melting temperature(770°C)and alloys based on this system are thought to show some promise for use in applications requiring elevated temperature creep resistance[1-3].In recent years,there is an increasing interest in the development of high strength wrought Mg-Sn based alloys.The results indicated that the Mg-Sn based alloys show higher tensile strength and similar elongations compared to a commercial AZ31 alloy[4-6].

    The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated.These dislocations create stress f i elds within the material depending on their intrinsic character.Generally,the following strengthening mechanisms such as grain boundary strengthening(GBS), precipitates strengthening(PS),texture strengthening(TS)and solid solution strengthening(SS)are relevant in extruded and rolled magnesium materials tested at room temperature [7-10].The contributions to the strengthen of the alloy made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics,physical characteristics,thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark and compared with those of the experimental results.

    2.Experimental

    Analyzed compositions of the T8,TAZ811 and AZ31 were Mg-8.0 wt.%Sn,Mg-7.95 wt.%Sn-0.95Al-0.95Zn and Mg-2.90 wt.%Al-0.69 wt.%Zn-0.32 wt.%Mn,respectively. Alloys were prepared from high purity(99.99%)Mg,Sn,Zn and Al by induction melting in a cemented graphite crucible at approximately 720°C under a CO2+SF6atmosphere and casting into a steel mold pre-heated to 200°C.After casting, T8 and TAZ811 alloys were homogenized at 500°C for 3 h and then water-quenched to induce a supersaturated solid solution.In the case of AZ31,the billet was homogenized at 400°C for 24 h and cooled by air.Afterward,the billets were extruded at 250°C with a ram speed of 1.3 mm/s(corresponding to extrusion speeds of 2 m/min)and extrusion ratio of 25.

    Microstructural and textural examinations were conducted in the longitudinal section parallel to the extrusion direction (ED).For microstructure observations,specimens were etched after polishing in a solution of picric and acetic acid for 10 s. The average grain size was analyzed from several micrographs using a liner intercept measurement.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM) were used to study the morphology,characterization and volume faction of second-phases particles.Texture measurements were taken via X-ray diffraction in the back ref l ection mode with monochromatic Cu Kα radiation.

    Tensile test was conducted using an Instron 4206 universal testing machine equipped with 10 mm gauge extensometer. The extruded rods were machined into tensile samples with a gage length of 25 mm and a gage diameter of 5 mm.All tensile tests were carried out with an initial strain rate of 1 × 10-3s-1at ambient temperature,where the tensile direction was the same as the extrusion direction.

    3.Results and discussion

    3.1.Tensile properties of the indirect-extruded alloys

    Typical stress-strain curves of the three alloys are shown in Fig.1.Related tensile properties are summarized in Table 1. There is a signif i cant difference in the mechanical behavior of the three alloys.TAZ811 showed the highest tensile strength and medium ductility compared to the other two alloys,having a failure strain of 17.5%.T8 showed a similar ultimate tensile strength(UTS)to AZ31(261 MPa vs 263 MPa);however,T8 showed a higher yield point compared to AZ31,having yield stress of 180 MPa.AZ31 showed a much lower yield point compared to the other two alloys,being about 73%of the value in the cases of TAZ811 alloy,while AZ31 shows a signif i cantly increased ductility of 23.5%,being almost 1.3 times as ductile as TAZ811.Generally speaking,grain ref i nement of materials can lead to the improvement in strength and ductility simultaneously.However,the Mg-Sn based alloys(d=3.2 and 4.7 μm)accompanying with the deteriorated ductility exhibited higher strength than AZ31 alloy(d=9.6 μm).This is due to the following aspects:

    Fig.1.Stress-strain curves of the three alloys at room temperature tensile deformation.

    (i)The easily occurred double twinning related to stronger if ber texture(see Section 3.2)accelerates cracking, which is induced by dislocation pile-ups at the twinmatrix interface[5].

    (ii)The value of friction stress and the stress concentration factor in Hall-Petch(H-P)relationship are texture dependence.Stronger fi ber texture(see Section 3.2) results in grains in “hard orientation”(dif fi cult activation for basal slip,namely poor ductility),which leads to better strengthening,i.e.,higher friction stress and H-P slope[6].

    3.2.Microstructure characteristics of the indirectextruded alloys

    The main differences among the three alloys lied in the grain size,texture and second-phase particles,as shown in Figs.2 and 3.As shown in Fig.2,AZ31 shows the average grain size of 9.6 μm,while the grain size is similar in T8 and TAZ811,but appear to be less in TAZ811 with average grain size being 3.2 μm.In addition,second-phase particles below 1 μm were observed along the grain boundaries and within the Mg matrix in Mg-Sn based alloys.These second-phase particles are visible in Fig.2(b)as white regions and dark regions in Fig.2(d)and(f).It is also noticeable that the volume fraction of the second-phase particles in the three alloys is quite different.In the case of AZ31 alloy,few particles are visible,indicating that dynamic precipitate ability is weak for AZ31 during extrusion processing.While,Mg-Sn based alloys show a signif i cant amount of Mg2Sn particles inside thegrain and at grain boundary,but this is more extensive as in TAZ811.It has been reported that intermetallic phase particles can have a retardation effect on moving grain boundaries during grain growth[2].So it is believed the differences of grain size between TAZ811 and AZ31 are attributed to the different amount of second-phase particles.

    Table 1Tensile properties and grain sizes of the three extruded alloys.

    Fig.2.Optical,SEM and TEM micrographs of the three alloys,where ED is parallel to the scale bar.(a,b)AZ31,(c,d)T8(inset:[-112]Mg2Sn diffraction pattern) and(e,f)TAZ811.

    The inverse pole f i gures(IPFs)referring to the ED are provided in Fig.3.They all reveal a type of f i ber texture in which basal poles are preferentially perpendicular to the ED and the maximum intensity is centered at[10-10],which is typical of extruded Mg alloys[2,6,10].As indicated,TAZ811 alloy shows the strongest f i ber texture with the maximal texture intensity of 4.4,T8 shows the moderate texture with the maximal texture intensity of 3.9 and AZ31 shows the weakest texture with the maximal texture intensity of 2.8.The relatively strong texture of Mg-8Sn based alloys was mainly due to the presence of deformed grains elongated in the ED based on the previous results[2,6].In general,the texture of HCP materials is determined by theirc/aratio as well as by the active slip systems or twinning during deformation.It is wellknown that a development of strong basal texture during plane strain compression is mainly caused by the activation of basal slip and tension twinning,and,in particular,that the occurrence of extension twins induces a large reorientation of gains [12].Subsequent recrystallization would lead to the formation or strengthening of a basal texture[3].

    3.3.Strengthening mechanisms in the indirect-extruded alloys

    3.3.1.Grain boundary strengthening

    Grain boundary strengthening presented by the well-known Hall-Petch relation[6],is an established method of increasing the yield stress and is the main contributor to the improved mechanical properties.Calculation by the Hall-Petch relation was applied to extruded Mg alloys,

    where σ0andkis experimental constants anddis the grain size in μm.The value ofkis determined by Ref.[11]:

    Fig.3.Inverse pole f i gures of the three alloys in the ED(a)TAZ811,(b)T8 and(c)AZ31 alloys.

    wheremis the Taylor factor, τcis the empirical stress for slip to break through grain boundaries, υ=0.29,andbis the magnitude of the Burgers vector(3.21 × 10-10m)for Mg [12].

    When τcis the constant at the condition ofd> 1 μm,kis the constantfor Mg.The calculated results indicate that the increment in yield strength due to grain ref i nement from 9.6 to 4.7 and 3.2 μm is about 38.8-44.3 MPa and 66-75 MPa,respectively.It suggests that strengthening of the Mg-Sn based alloys compared to AZ31 isnotjustcoming from the grain boundary strengthening.

    3.3.2.Precipitates strengthening

    Precipitates of metastable transition or equilibrium phases are often key strengthening constituents in many magnesium alloys[13,14].The precipitation strengthening involves the following four processes with the corresponding contributions [15]:

    1)The dislocation-particle interaction associated with the Orowan process,Δσ0;

    2)The load transfers from the matrix to particles, ΔσT;

    3)The generation of dislocations due to the difference between the thermal expansions of the matrix and particles, Δσg;

    4)The generation of dislocations due to the geometric requirements during deformation, Δσf.

    The strength of the extruded solid material can be represented in the form:

    The version of the Orowan equation currently applied for the stress required to bow slip dislocations across spherical particles is[16,17]:

    whereGis the shear modulus(=1.66 × 104MPa for magnesium),bis the magnitude of the Burgers vector (3.21 × 10-10m),ν is the Poisson ratio(0.29 for magnesium),λ is the interparticle spacing,dpis the effective particle diameter ontheslipplaneandr0isthedislocationcoreradius(commonly, the approximationr0≈bis used).The contributions from Orowan equation for TAZ811,T8 and AZ31 are 3.2 MPa, 1.70 MPa and 0.7 MPa,respectively.So the relative values for TAZ811 and T8 are 2.5 MPa and 1.0 MPa,respectively.

    The contribution of the load transferring from the matrix to particles can be def i ned by the relationship:

    where σs(100-150 MPa for Mg alloys[15])is the yield strength of the matrix(determined by the supersaturated magnesium solid solution)and the volume fraction(fv)of dispersed particles in TAZ811,T8 and AZ31 are 14.7%,8.7% and 3.2%,respectively(see Fig.2).The contributions of this process are approximately equal to 7.4-11 MPa,4.4-6.5 MPa and 1.2-2.3 MPa for TAZ811,T8 and AZ31,respectively.So the relative values for TAZ811 and T8 are 6.2-8.7 MPa and 3.2-4.2 MPa,respectively.

    For the globular precipitate in present alloys,dpcan be calculated by Eq.(3-6)[16]:

    The strengthening due to the difference between the thermal expansions of the matrix and particles is given by Refs. [15,18,19]:

    where α is a constant, ΔTis the temperature increment, ΔC(CMg-CMg2Sn)is the difference between the thermal expansion coeff i cients of the matrix and particles under investigation,anddpis the mean planar diameter of the obstacles. When α = 1.25 andfv= 12.6%,CMg=2.61 × 10-5K,andCMg2Snis about 4.5 × 10-6K,dp= 0.32 μm for Mg2Sn precipitate in TAZ811 anddp=0.68 μm for Mg2Sn precipitate in T8.In the present study,all the tests were carried at room temperature and then this part of the contributions can be neglected.

    The contribution associated with the generation of dislocations due to the geometric requirements during deformation can be written as[15,19]:

    where γ is the shear strain calculated using the Taylor factor. Then the contribution is estimated to be 17,10.8 MPa and 6.3 MPa for TAZ811,T8 and AZ31,respectively.

    In summary,the relative contributions from precipitate strengthening are about 19.4-22.3 MPa for TAZ811 and 8.7-9.7 MPa for T8,respectively.

    3.3.3.Texture strengthening

    The texture inf l uences the strength of hexagonal close packed (HCP)polycrystalsthrough itseffecton the Hall-Petch constants[20].The nature and intensity of texture decides the magnitude of the orientation factormin Eq.(3-9).

    In Eq.(3-9),the value of the Taylor orientation factormis related to the basal texture in the material.When the texture is unfavorable for the occurrence of basal slip,the value ofmincreases and the material is strengthened.In randomly oriented HCP polycrystal(without texture),mhas a value of~6.5.The extruded texture in magnesium materials(basal planes parallel to the extrusion direction)is unfavorable for the occurrence of basal slip and hence themvalues are larger than 6.5.If texture strengthening is the only factor contributing to σ0,the value ofmcan be calculated by knowing the texture intensity.For AZ31 alloy,mis 18.2,6.5 times the texture intensity.Similarly,m=25.35 for T8,m=28.6 for TAZ811 alloy.On the basis of Eq.(3-9)the σ0values for Mg-Sn based alloys may be calculated knowing the relevant single-crystal resolved stress(τ0)and using the abovemvalues.Based on the previous reports[12],CRSSs of basal slip,prismatic slip,pyramidal slip and tension twinning of Mg at elevated temperatures are ranged from 0.6 to 4 MPa. Due to the lack of data at room temperature,a mean value of 2.3 was adopted in this study.Therefore,the relative contributions from texture strengthening are about 2.77 and 3.61 MPa for T8 and TAZ811,respectively.

    3.3.4.Solid solution strengthening

    It has been reported[21-23]that solutes such as Al,Zn and Sn increase the critical resolved shear stress for basal slip by an amount that is proportional toc2/3,wherecis the atomic concentration.If we assume here that Sn,Al and Zn atoms are present together without interacting with each other,the strengthening effect due to multiple alloying additions in Mg-Sn-Al-Zn ternary alloys might be determined using the method of Gypen and Deruyttere[24-26]:

    wherenis a constant,Ciis the concentration of solutei,andkiis the strengthening constant for solutei.Theoretical treatments indicatencould equal 2/3,1 or 1/2[23,24].Thenvalue was determined as 2/3 in this study.For solid solution strengthening calculation,the parameters for Zn,Sn and Al atom in Mg are determined and shown in Table 2.

    The amount of Sn atoms dissolved into matrix can be determined by Eq.(3-11).

    where ρMg-Sn=1.92 g/cm3(densities of Mg-Sn based alloys), ρMg2Sn=3.59 g/cm3(densities of Mg2Sn phase).

    Therefore,the solid solution strength ening caused by Sn in T8 and TAZ811 are bout 34 MPaand 19 MParespectively.It should be noted that the higher strengths of TAZ811 compared with those of T8 is mainly attributed to the grain boundary strengthening and solid solubility strengthening as well as texture strengthening mechanisms resulting from the smaller grain size and higher solid solubility of Al and Zn in Mg matrix as well as stronger f i ber intensities leading to grains with “hard orientation”in Mg matrix.

    3.3.5.Strengthening effect due to multiple alloying additions of Al and Zn

    Based on the previous literature and phase diagrams [1,5,6,27],it is assumed that all the Al and Zn atoms were dissolved into matrix,so theCAlandCZnin AZ31 is 2.6 at% and 0.37 at%,CAlandCZnin TAZ811 is 0.96 at%and 0.39 at%,respectively.So the compensation strength caused by Al and Zn between AZ31 and TAZ811 alloys is about7.4 MPa.While the compensation strength caused by Al and Zn between AZ31 and T8 alloys is about 41.2 MPa.

    Table 2Solid solution strengthening parameters for Zn,Sn and Al atoms in Mg.

    Table 3The respective contributions of the four strengthening mechanisms to Mg-Sn based alloys using AZ31 alloy as benchmark.

    The respective contributions of the four strengthening mechanisms are summarized in Table 3.As indicated,there is some deviation between calculated and experimental values due to the deviations of the variates and parameters used in the equations and the possible defects which come from the preparation process of the alloy.Further work is required to determine the accurate values of the parameters in the above mentioned equations.Anyway,the variation tendency in the contribution of the four strengthen mechanisms can be referred as a basis in design and development of high strength wrought Mg alloys.

    4.Summaries

    1)Grain size, recrystallization fraction, precipitate morphology and texture of the indirect-extruded alloys were greatly affected by the compositions,resulting in the Mg-Sn based alloys showing higher tensile strengths than AZ31 alloy.

    2)Mg-Sn based alloys were mainly strengthened by grain boundary strengthening,solid solution strengthening, second-phase precipitates strengthening as well as texture strengthening mechanisms.

    3)When the alloyswere strengthened fully by four strengthening mechanism using AZ31 as benchmark,the calculated total contribution should reach to 43.27-112.5 MPa which is considerably larger than the experimental values.The difference between the calculated values and experimental values comes from the error of the parameters chosen in calculation and the possible defects which come from the preparation process of the alloy.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Grant nos.51404166 and 51201112), Shanxi Province Science Foundation for Youths(2013021013-4),Research Project Supported by Shanxi Scholarship Council of China(2014-023),Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant nos.2014120), and the Advanced Programs of Department of Human Resources and Social Security of Shanxi Province for Returned Scholars(2013068).

    [1]S.S.Park,W.N.Tang,B.S.You,Mater.Lett.64(2010)31-34.

    [2]W.L.Cheng,S.S.Park,B.S.You,B.H.Koo,Mater.Sci.Eng.A 527 (2010)4650-4653.

    [3]Mingbo Yang,Hongliang Li,Chengyu Duan,Jia Zhang,J.Alloys Compd.579(2013)92-99.

    [4]T.T.Sasaki,J.D.Ju,K.Hono,K.S.Shin,Scr.Mater.61(2009)80-83.

    [5]W.L.Cheng,H.S.Kim,B.S.You,B.H.Koo,S.S.Park,Mater.Lett.65 (2011)1525-1527.

    [6]W.Yuan,S.K.Panigrahi,J.-Q.Su,R.S.Mishra,Scr.Mater.65(2011) 994-997.

    [7]T.Laser,C.Hartig,M.R.Nurnberg,D.Letzig,R.Bormann,Acta Mater. 56(2008)2791-2798.

    [8]Y.N.Wang,J.C.Huang,Acta Mater.55(2007)897-905.

    [9]C.L.Mendis,K.Ohishi,Y.Kawamura,T.Honma,S.Kamado,K.Hono, Acta Mater.57(2009)749-760.

    [10]L.B.Tong,X.Li,D.P.Zhang,L.R.Cheng,J.Meng,H.J.Zhang,Mater. Charact.92(2014)77-83.

    [11]Z.Yang,J.P.Li,Y.C.Guo,T.Liu,F.Xia,Z.W.Zeng,M.X.Liang,Mater. Sci.Eng.A 454-455(2007)274-280.

    [12]H.J.Frost,M.F.Ashbv,Deformation-mechanism Maps,Pergamon Press, Oxford,1982,p.44.

    [13]J.F.Nie,B.C.Muddle,Acta Mater.48(2000)1691-1703.

    [14]A.Singh,A.P.Tsai,M.Nakamura,Philos.Mag.Lett.83(2003) 543-551.

    [15]M.Mabuchi,K.Higashi,Acta Mater.44(1996)4611-4618.

    [16]J.F.Nie,Scr.Mater.48(2003)1009-1015.

    [17]R.M.Aikin Jr.,L.Christodoulou,Scr.Metall.Mater.25(1991)9-14.

    [18]W.S.Miller,F.J.Humphreys,Scr.Metall.Mater.25(1991)33-38.

    [19]J.W.Luster,M.Thumann,R.Baumann,Mater.Sci.Technol.9(1993) 853-862.

    [20]G.S.Rao,Y.V.R.K.Prasad,Metall.Trans.A13(1982)2219-2226.

    [21]C.H.Caceres,A.Blake,Phys.Status Solidi A 194(2002)147-158.

    [22]L.Gao,R.S.Chen,E.H.Han,J.Alloys Compd.481(2009)379-384.

    [23]S.M.He,X.Q.Zeng,L.M.Peng,X.Gao,J.F.Nie,W.J.Ding,J.Alloys Compd.427(2007)316-323.

    [24]L.A.Gypen,A.Deruyttere,J.Mater.Sci.12(1977)1028-1033.

    [25]H.A.Roth,Metall.Mater.Trans.A 28(1997)1329-1335.

    [26]B.Q.Shi,R.S.Chen,W.Ke,J.Alloys Compd.509(2011)3357-3362.

    [27]W.L.Cheng,S.S.Park,W.N.Tang,B.S.You,B.H.Koo,Trans. Nonferrous Met.Soc.China 20(2010)2246-2252.

    Received 24 September 2014;revised 14 November 2014;accepted 18 November 2014 Available online 9 December 2014

    *Corresponding authors.Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China.

    E-mail addresses:chengweili7@126.com(W.L.Cheng),zhanghua2009@ 126.com(H.Zhang).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2014.11.003.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    黑人巨大精品欧美一区二区mp4| 天堂网av新在线| 久久中文字幕人妻熟女| 草草在线视频免费看| 国产精品一区二区三区四区免费观看 | 每晚都被弄得嗷嗷叫到高潮| 可以在线观看的亚洲视频| 久久精品国产清高在天天线| ponron亚洲| 国产毛片a区久久久久| 日韩大尺度精品在线看网址| 18禁黄网站禁片午夜丰满| 亚洲国产欧美人成| 老熟妇乱子伦视频在线观看| www.精华液| 国产精品女同一区二区软件 | 最近在线观看免费完整版| 岛国视频午夜一区免费看| 91字幕亚洲| 美女被艹到高潮喷水动态| 床上黄色一级片| 精品久久久久久久毛片微露脸| 欧美三级亚洲精品| 午夜日韩欧美国产| 人妻久久中文字幕网| 美女午夜性视频免费| 国内少妇人妻偷人精品xxx网站 | 久久久成人免费电影| 两人在一起打扑克的视频| 国产精品日韩av在线免费观看| 国产亚洲av高清不卡| 国产69精品久久久久777片 | 最近最新中文字幕大全免费视频| 村上凉子中文字幕在线| 特大巨黑吊av在线直播| 极品教师在线免费播放| 亚洲国产精品sss在线观看| 成年女人看的毛片在线观看| 欧美丝袜亚洲另类 | 中文亚洲av片在线观看爽| 深夜精品福利| 色综合欧美亚洲国产小说| 精品国产美女av久久久久小说| 国产精品 国内视频| 日韩 欧美 亚洲 中文字幕| 久久国产乱子伦精品免费另类| 夜夜看夜夜爽夜夜摸| 亚洲无线观看免费| 亚洲 欧美一区二区三区| 日本在线视频免费播放| 午夜亚洲福利在线播放| 99久久成人亚洲精品观看| 99久国产av精品| 久久久水蜜桃国产精品网| 一二三四社区在线视频社区8| 香蕉av资源在线| 欧美又色又爽又黄视频| 一a级毛片在线观看| 亚洲av免费在线观看| 色综合站精品国产| 亚洲精品粉嫩美女一区| or卡值多少钱| 99国产精品一区二区蜜桃av| 亚洲色图 男人天堂 中文字幕| www.精华液| 久久精品国产综合久久久| 成人特级黄色片久久久久久久| 日韩欧美国产一区二区入口| 男女做爰动态图高潮gif福利片| 丰满人妻一区二区三区视频av | 白带黄色成豆腐渣| 一级毛片精品| 日韩欧美在线二视频| 国产久久久一区二区三区| 久久午夜综合久久蜜桃| 亚洲第一欧美日韩一区二区三区| 日韩欧美国产在线观看| 老熟妇乱子伦视频在线观看| 日本五十路高清| 美女午夜性视频免费| 岛国视频午夜一区免费看| 亚洲精品中文字幕一二三四区| 久久久色成人| 欧美中文综合在线视频| 窝窝影院91人妻| 在线观看免费视频日本深夜| 此物有八面人人有两片| 亚洲国产精品sss在线观看| 成人三级黄色视频| 少妇丰满av| 久久香蕉国产精品| АⅤ资源中文在线天堂| 久久精品影院6| 久久久久久国产a免费观看| 99国产综合亚洲精品| 欧美日韩乱码在线| 免费人成视频x8x8入口观看| 久久中文字幕人妻熟女| 日韩高清综合在线| 狂野欧美白嫩少妇大欣赏| 日本黄色片子视频| 亚洲五月婷婷丁香| 久久久色成人| 国产高清有码在线观看视频| 制服丝袜大香蕉在线| 国产成人精品无人区| 少妇裸体淫交视频免费看高清| 18美女黄网站色大片免费观看| 久久久久性生活片| 97碰自拍视频| 黄片小视频在线播放| 欧美日韩乱码在线| 国产精品久久久久久人妻精品电影| av天堂在线播放| 亚洲 国产 在线| 亚洲 国产 在线| 精品人妻1区二区| 人妻夜夜爽99麻豆av| 变态另类成人亚洲欧美熟女| 老熟妇乱子伦视频在线观看| 免费无遮挡裸体视频| 国产一级毛片七仙女欲春2| 日韩欧美国产一区二区入口| 亚洲精品一区av在线观看| 在线观看免费视频日本深夜| 国产亚洲精品久久久久久毛片| av天堂中文字幕网| 亚洲成人免费电影在线观看| 亚洲成人免费电影在线观看| 99热精品在线国产| 一本综合久久免费| 欧美日韩黄片免| 久久国产乱子伦精品免费另类| 久久亚洲精品不卡| 久久精品aⅴ一区二区三区四区| 国产免费av片在线观看野外av| 国产成人福利小说| 亚洲精品国产精品久久久不卡| 男女下面进入的视频免费午夜| 我的老师免费观看完整版| 99国产极品粉嫩在线观看| 97碰自拍视频| 久久亚洲精品不卡| 欧美性猛交黑人性爽| 我要搜黄色片| 一本久久中文字幕| 18禁黄网站禁片午夜丰满| 亚洲一区高清亚洲精品| 91麻豆av在线| 亚洲男人的天堂狠狠| 久久久久性生活片| 精品欧美国产一区二区三| 夜夜爽天天搞| 18美女黄网站色大片免费观看| 亚洲国产欧美一区二区综合| 国产成人精品无人区| 啪啪无遮挡十八禁网站| 久久天躁狠狠躁夜夜2o2o| 日本一二三区视频观看| 亚洲av第一区精品v没综合| 欧美黑人欧美精品刺激| 国产一区二区激情短视频| 成人特级黄色片久久久久久久| 免费一级毛片在线播放高清视频| 欧美乱码精品一区二区三区| 国产亚洲精品综合一区在线观看| 国产精品99久久久久久久久| 一区二区三区激情视频| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 国产 一区 欧美 日韩| 国产综合懂色| 免费观看人在逋| 成人av一区二区三区在线看| 亚洲精品一卡2卡三卡4卡5卡| 一二三四在线观看免费中文在| 国产精品1区2区在线观看.| 国产精品一区二区三区四区免费观看 | 亚洲熟女毛片儿| 亚洲色图av天堂| 两个人视频免费观看高清| 天天躁日日操中文字幕| 1024手机看黄色片| 亚洲精品乱码久久久v下载方式 | 亚洲欧美日韩高清在线视频| 亚洲男人的天堂狠狠| 日日摸夜夜添夜夜添小说| 亚洲精品456在线播放app | 亚洲精品456在线播放app | 日韩大尺度精品在线看网址| 搡老熟女国产l中国老女人| av福利片在线观看| 国产精品影院久久| 久久这里只有精品中国| 国产真人三级小视频在线观看| 成人高潮视频无遮挡免费网站| 精品午夜福利视频在线观看一区| 欧美日韩一级在线毛片| 国产亚洲精品av在线| 午夜免费激情av| 久久久久久九九精品二区国产| 淫妇啪啪啪对白视频| 性色avwww在线观看| 一二三四社区在线视频社区8| 国产精品久久久久久亚洲av鲁大| 欧美黄色淫秽网站| 亚洲人成电影免费在线| 日韩精品青青久久久久久| 亚洲 欧美一区二区三区| 亚洲精品久久国产高清桃花| 色吧在线观看| 久久久久国内视频| 黑人欧美特级aaaaaa片| 亚洲人成电影免费在线| 亚洲精品美女久久av网站| 巨乳人妻的诱惑在线观看| 久久久久久九九精品二区国产| 亚洲欧美精品综合一区二区三区| 国内久久婷婷六月综合欲色啪| 欧美黑人巨大hd| 叶爱在线成人免费视频播放| 亚洲中文av在线| 少妇丰满av| 精品国产超薄肉色丝袜足j| 成人精品一区二区免费| 欧美成人一区二区免费高清观看 | 噜噜噜噜噜久久久久久91| 久久精品亚洲精品国产色婷小说| 国产精华一区二区三区| 天天添夜夜摸| 久久精品aⅴ一区二区三区四区| 亚洲乱码一区二区免费版| 国产高清三级在线| 99热6这里只有精品| 极品教师在线免费播放| 五月玫瑰六月丁香| 亚洲 欧美 日韩 在线 免费| 很黄的视频免费| 国产男靠女视频免费网站| 在线播放国产精品三级| 欧美一区二区精品小视频在线| 99视频精品全部免费 在线 | 99热6这里只有精品| 欧美性猛交黑人性爽| 亚洲美女视频黄频| 国产精品九九99| 99久久久亚洲精品蜜臀av| 两个人的视频大全免费| 日韩精品青青久久久久久| 97人妻精品一区二区三区麻豆| 午夜a级毛片| 在线永久观看黄色视频| 偷拍熟女少妇极品色| 一本一本综合久久| 欧美丝袜亚洲另类 | 国产欧美日韩一区二区三| 欧美av亚洲av综合av国产av| 国产主播在线观看一区二区| 好男人电影高清在线观看| 日本熟妇午夜| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩东京热| 婷婷亚洲欧美| 动漫黄色视频在线观看| 精品国产亚洲在线| 中文字幕人成人乱码亚洲影| 男女做爰动态图高潮gif福利片| 最新中文字幕久久久久 | 黄色女人牲交| 91麻豆精品激情在线观看国产| 一级a爱片免费观看的视频| 国产欧美日韩一区二区三| 色综合站精品国产| 欧美日韩中文字幕国产精品一区二区三区| 综合色av麻豆| 成人特级av手机在线观看| 亚洲av免费在线观看| 18禁黄网站禁片免费观看直播| 久久欧美精品欧美久久欧美| 久久久久久九九精品二区国产| 变态另类成人亚洲欧美熟女| 国内精品美女久久久久久| h日本视频在线播放| 久久精品91蜜桃| av天堂在线播放| 国产精品av视频在线免费观看| АⅤ资源中文在线天堂| 岛国在线免费视频观看| 欧美日韩一级在线毛片| 国产av一区在线观看免费| 免费在线观看日本一区| 亚洲无线观看免费| 白带黄色成豆腐渣| 18禁观看日本| 亚洲av免费在线观看| 欧美性猛交黑人性爽| 亚洲五月婷婷丁香| 日本a在线网址| 可以在线观看的亚洲视频| 真实男女啪啪啪动态图| 亚洲va日本ⅴa欧美va伊人久久| 男女下面进入的视频免费午夜| 精品久久久久久久末码| 怎么达到女性高潮| 午夜福利在线观看免费完整高清在 | 亚洲天堂国产精品一区在线| 亚洲在线观看片| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 久久亚洲真实| 一边摸一边抽搐一进一小说| 啦啦啦韩国在线观看视频| 国产99白浆流出| 波多野结衣高清作品| 无人区码免费观看不卡| 亚洲欧美日韩高清在线视频| 小说图片视频综合网站| 午夜福利欧美成人| 一本久久中文字幕| 欧美最黄视频在线播放免费| 国产爱豆传媒在线观看| av国产免费在线观看| 免费观看人在逋| 无人区码免费观看不卡| 免费在线观看日本一区| av中文乱码字幕在线| 色综合站精品国产| e午夜精品久久久久久久| 国产精品电影一区二区三区| 精品国产超薄肉色丝袜足j| 精品乱码久久久久久99久播| 亚洲国产色片| 亚洲av成人精品一区久久| 中文亚洲av片在线观看爽| 中文字幕人妻丝袜一区二区| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看| 亚洲精品久久国产高清桃花| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 午夜免费成人在线视频| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 国产精品久久电影中文字幕| ponron亚洲| 亚洲无线在线观看| 亚洲精品久久国产高清桃花| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 老汉色∧v一级毛片| 视频区欧美日本亚洲| 日韩高清综合在线| 丁香六月欧美| 熟女电影av网| 亚洲av成人av| av女优亚洲男人天堂 | 成年女人看的毛片在线观看| 日韩中文字幕欧美一区二区| 亚洲自拍偷在线| 五月玫瑰六月丁香| 无人区码免费观看不卡| 国产av麻豆久久久久久久| 97人妻精品一区二区三区麻豆| 国产精品久久久久久人妻精品电影| 最新在线观看一区二区三区| 成人国产综合亚洲| 日本 av在线| 国产亚洲精品久久久com| 久久人妻av系列| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 一级作爱视频免费观看| 一级毛片精品| 村上凉子中文字幕在线| 国内毛片毛片毛片毛片毛片| 婷婷丁香在线五月| 欧美日韩综合久久久久久 | 婷婷精品国产亚洲av| 久久久水蜜桃国产精品网| 精品99又大又爽又粗少妇毛片 | 亚洲国产欧洲综合997久久,| 99久国产av精品| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 国产成人av激情在线播放| 色在线成人网| 精品久久久久久久末码| 在线观看舔阴道视频| 88av欧美| 老司机福利观看| 亚洲专区中文字幕在线| 国模一区二区三区四区视频 | 国产爱豆传媒在线观看| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久com| 中文亚洲av片在线观看爽| 中亚洲国语对白在线视频| 岛国在线观看网站| 久久亚洲真实| 亚洲成人免费电影在线观看| 后天国语完整版免费观看| 亚洲精品在线美女| 最近在线观看免费完整版| 亚洲成人久久性| 在线观看免费午夜福利视频| 亚洲 国产 在线| 非洲黑人性xxxx精品又粗又长| 欧美又色又爽又黄视频| 国产亚洲欧美98| 日韩成人在线观看一区二区三区| 成年女人毛片免费观看观看9| 久久久国产欧美日韩av| 欧美日韩亚洲国产一区二区在线观看| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 久久天堂一区二区三区四区| xxx96com| 亚洲中文av在线| 丁香六月欧美| 亚洲精品色激情综合| 老司机福利观看| 亚洲天堂国产精品一区在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产精品久久久不卡| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲| 老司机福利观看| av国产免费在线观看| 日本黄色片子视频| 不卡一级毛片| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 91av网一区二区| 亚洲国产色片| 九九在线视频观看精品| 18禁美女被吸乳视频| 精品国产乱子伦一区二区三区| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 午夜免费观看网址| 日本在线视频免费播放| 久久精品aⅴ一区二区三区四区| 精品日产1卡2卡| 亚洲成人精品中文字幕电影| 久久这里只有精品19| 亚洲国产高清在线一区二区三| 国产精品自产拍在线观看55亚洲| 国产人伦9x9x在线观看| 少妇人妻一区二区三区视频| 无人区码免费观看不卡| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 欧美色欧美亚洲另类二区| 好男人在线观看高清免费视频| 又黄又爽又免费观看的视频| 久久中文字幕一级| 成人欧美大片| 男女床上黄色一级片免费看| 亚洲欧洲精品一区二区精品久久久| 一a级毛片在线观看| 国产日本99.免费观看| 国产高清视频在线播放一区| 久久九九热精品免费| 又紧又爽又黄一区二区| 欧美在线一区亚洲| 欧美精品啪啪一区二区三区| 在线观看美女被高潮喷水网站 | www日本黄色视频网| 久久久国产成人精品二区| 国产三级在线视频| 精品午夜福利视频在线观看一区| 99热只有精品国产| 麻豆一二三区av精品| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 真人一进一出gif抽搐免费| 又粗又爽又猛毛片免费看| 99久国产av精品| 国产91精品成人一区二区三区| 国产精品野战在线观看| 午夜亚洲福利在线播放| 国产精品久久久久久久电影 | 欧美最黄视频在线播放免费| 天堂√8在线中文| 亚洲无线观看免费| 亚洲精品久久国产高清桃花| 嫩草影视91久久| 老司机午夜福利在线观看视频| 1024香蕉在线观看| 亚洲国产欧美网| 久久亚洲真实| 日韩免费av在线播放| 亚洲成a人片在线一区二区| 草草在线视频免费看| 天堂网av新在线| 国内毛片毛片毛片毛片毛片| 九九在线视频观看精品| 老司机午夜十八禁免费视频| 美女免费视频网站| 男女那种视频在线观看| 久久中文字幕一级| 熟女电影av网| 两人在一起打扑克的视频| 国产精品久久久人人做人人爽| 丁香六月欧美| 国产精品久久久久久人妻精品电影| 色哟哟哟哟哟哟| 性欧美人与动物交配| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 成人无遮挡网站| 黄色 视频免费看| 亚洲人成伊人成综合网2020| 国产精品久久久人人做人人爽| 精品久久久久久久人妻蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 亚洲电影在线观看av| 中文字幕精品亚洲无线码一区| 久久亚洲精品不卡| 99国产精品99久久久久| 91久久精品国产一区二区成人 | 男女午夜视频在线观看| 制服人妻中文乱码| 偷拍熟女少妇极品色| 久久香蕉精品热| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久精品电影| 久久久久久久久中文| 精品久久久久久久末码| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 露出奶头的视频| h日本视频在线播放| 国产亚洲精品久久久com| 午夜福利18| 国产在线精品亚洲第一网站| 性色av乱码一区二区三区2| 国产极品精品免费视频能看的| 桃色一区二区三区在线观看| 欧美午夜高清在线| 午夜日韩欧美国产| 18禁裸乳无遮挡免费网站照片| 日韩欧美 国产精品| 成年女人毛片免费观看观看9| 中文字幕人妻丝袜一区二区| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线 | 成人午夜高清在线视频| 1000部很黄的大片| 熟女少妇亚洲综合色aaa.| 亚洲熟妇熟女久久| h日本视频在线播放| 黄色片一级片一级黄色片| 美女大奶头视频| 免费在线观看日本一区| 俄罗斯特黄特色一大片| 全区人妻精品视频| www国产在线视频色| 亚洲熟妇熟女久久| 国产精品一区二区精品视频观看| 女警被强在线播放| 香蕉av资源在线| 久久精品亚洲精品国产色婷小说| 久久午夜亚洲精品久久| 此物有八面人人有两片| 成人18禁在线播放| 偷拍熟女少妇极品色| 欧美日韩黄片免| 校园春色视频在线观看| 综合色av麻豆| 亚洲国产高清在线一区二区三| 露出奶头的视频| 在线观看免费视频日本深夜| 性欧美人与动物交配| 变态另类丝袜制服| 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 国产免费av片在线观看野外av| 久久精品国产综合久久久| 国产亚洲av嫩草精品影院| 18禁黄网站禁片免费观看直播| 国产av麻豆久久久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲成人精品中文字幕电影| 欧美最黄视频在线播放免费| 男女之事视频高清在线观看| 国产爱豆传媒在线观看| 亚洲欧洲精品一区二区精品久久久| 在线观看美女被高潮喷水网站 | 看片在线看免费视频| 这个男人来自地球电影免费观看| 欧美av亚洲av综合av国产av| 美女被艹到高潮喷水动态| 母亲3免费完整高清在线观看| 又粗又爽又猛毛片免费看| 制服人妻中文乱码| av视频在线观看入口| 亚洲av成人不卡在线观看播放网| 中文字幕最新亚洲高清| 亚洲七黄色美女视频| 国产爱豆传媒在线观看| 日韩欧美国产在线观看| 亚洲七黄色美女视频| 波多野结衣高清无吗| 亚洲av成人精品一区久久| 男女视频在线观看网站免费| 国产精品久久久久久亚洲av鲁大| 国产高清三级在线| 色播亚洲综合网| 国产野战对白在线观看| 日韩大尺度精品在线看网址| 岛国在线免费视频观看| 嫩草影视91久久| 天堂网av新在线|