• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of pre-induced twinning on microstructure and tensile ductility in GW92K magnesium alloy during multi-direction forging at decreasing temperature

    2014-04-21 02:45:12**
    Journal of Magnesium and Alloys 2014年4期

    **

    The Group of Magnesium Alloys and Their Applications,Institute of Metal Research Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    Effect of pre-induced twinning on microstructure and tensile ductility in GW92K magnesium alloy during multi-direction forging at decreasing temperature

    S.Q.Li,W.N.Tang*,R.S.Chen*,W.Ke

    The Group of Magnesium Alloys and Their Applications,Institute of Metal Research Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    Effect of pre-induced twinning on the microstructure evolution and mechanical properties of extruded Mg-9.26Gd-2.08Y-0.36Zr(GW92K) alloy have been investigated during multi-direction forging with large strains at decreasing temperature from 400°C to 300°C.The results showed that,whether there pre-induced twinning existing in the initial microstructure by pre-deformation or not,a mixed microstructure of residual coarse grains and notably ref i ned grains formed under both conditions,combing with some residual coarse grains with less deformation inside grains and lots of dispersed nano-precipitates distributed along ref i ned grain boundaries.However,a signif i cant improvement with the tensile ductility was obtained by the pre-induced twinning in the former alloy.It was suggested that,the pre-induced twinning largely contributed to the grain ref i nement and lead to an increase in the ratio of f i ne grain structure which would be responsible for the better properties. Furthermore,during subsequent forging deformation in the pre-deformed sample,the grain ref i nement mechanism by gradual grain orientation rotation around the surface section in residual coarse-grains was a little different from that by the macro-shear deformation in the as-extruded condition.

    Magnesium alloy;Pre-induced twinning;Multi-directional forging;Ref i ned-grain microstructure;Tensile ductility

    1.Introduction

    Mg alloys are promising light-weight engineering materials for application in areas such as automobiles and aeronautics due to their combination of low density,good specif i c strength. Compared with other conventional structural alloys,its relatively poor ductility and deformation anisotropy due to its hcp lattice structure weaken its ability of being subjected to the same wrought processes,such as,aluminum or steel[1].

    Grain ref i nement is the best way to improve the ductility and strength simultaneously.Fabrication of micron or nanobulk materials through severe plastic deformation(SPD)has attracted broad interests.Actually Multi-direction forging technology(MDF)is an effective way to obtain f i ne or even ultra-f i ne grains,leading to an effective enhancement in ductility[2].Recently,this method used for wrought magnesium alloys processing has been a concern for researchers,and also won a series of encouraging results[3-6].

    Owing to MDF process mentioned above,the grain size can be ref i ned to 1-2 μm in AZ80 magnesium alloy as well as outstanding mechanical properties were observed,i.e.the ultimate tensile strength(UTS)and elongation(ε)are up to 345 MPa and 8%,which both are twice than those before being forged[3].Xing et al.[4]reported that the grain isfurther ref i ned to 300 nm in AZ31 alloy by MDF at the decreased temperature,combined with the UTS and ε of 530 MPa and 15%,respectively.Furthermore,Miura et al.[5] obtained a 0.8 μm f i ne grained microstructure in AZ61 alloy, with the UTS of 530 MPa,and the ε of about 10%,and even got the superplastic ductility up to 300%at 150°C.Therefore, this process may provide a feasible way to achieve high performance.

    Fig.1.Schematic of MDF when a pass strain Δε1and Δε2is employed, respectively.

    The Mg-Gd-Y system alloys with higher specif i c strength both at room and elevated temperatures have received intensive research.A GW94 alloy with fully recrystallized microstructure and equiaxed ultraf i ne grains of submicron size was produced by multi-axial forging(MDF)plus ageing,which is easier than conventional extrusion to improve plasticity[6].In order to optimize the deformation process in the alloys,it is so necessary to further understand the deformation mechanism and strengthening theory.

    The initial microstructures(such as the grain size,texture, second phase morphology,etc.)have a signif i cant effect on thermo-deformation[7-10].With decreasing the initial grain size in the stainless steel,grain ref i nement through MDF is accelerated,as a result of the continuous increase in the misorientations between the sub-grains during deformation [11].Therefore,it is also necessary to investigate the effect of initial microstructures on the evolution of the microstructures and mechanical properties during subsequent MDF process.

    2.Experimental procedure

    The initial material used in this study was a kind of asextruded GW92K rod(Mg-9.26Gd-2.08Y-0.36Zr,wt.%) prepared at 400°C by an extrusion ratio of 5.Cubic samples with length of 12.5 mm were machined from the extruded rods with one side parallel to the extrusion direction(ED).Then the samples were MDFed at room temperature on a press machine at an initial strain rate of 1 × 10-2s-1.The forging axis during the f i rst press was parallel to ED of the extrusion rods. Graphite was applied to the faces between the ends of test pieces and grips for lubrication.A part of cubic samples were MDFed by 24 passes with a minor strain of 5%(Δε1=0.05) per pass and the axis rotating by 90°in the next pass as shown in Fig.1 by f i gured with z → x → y → z → x i.e.,leading to a cumulative strain of around ΣΔε =1.2,which were designated as “pre-deformed”samples.Then the pre-deformed samples were forged by MDF experiments with a reduction per pass of about 40%(Δε2=0.34),under the decreasing temperature from 400°C to 300°C by a drop of 25°C every three successive forging passes.MDF process was repeated by changing the press direction with 90°at a speed of 1 × 102s-1after the sample hold under the set temperature for 5 min. Water quenching was used to keep the instantaneous microstructure between passes.

    Microstructures were observed on the plane along the last compression direction by optical microscope(OM),Philip XL30 scanning electronic microscope(SEM)with electron backscattering diffraction(EBSD),and transmission electron microscope(TEM)equipped with JEOL 2100F.The specimens for tensile tests were cut along the plane perpendicular to the f i nal forging axis,with a gauge of 10 mm in length, 2.5 mm in thickness and 3.5 mm in width,and tensile tests were carried out under room-temperature at a speed of 1 × 10-3s-1.

    3.Results and discussion

    3.1.Initial microstructure

    Optical microstructure of the as-extruded GW92K alloy showing an average grain size about 50 μm,and the microstructure of the pre-deformed samples after being MDFed at room temperature were shown in Fig.2.Second phase particles with a size of several microns were randomly distributed in the matrix of both states,as shown in the embedded pictures in Fig.2.After being performed by MDF for 24 passes with atotal strain of 1.2,high-density twinning intersected with each other(as shown by arrows in Fig.2b),which was consisted of {10-11}contraction twinning and{10-12}extension twinning[12],were detected virtually in most of original grains,as the initial microstructure to subsequent MDF experiments.

    Fig.2.Microstructures of the GW92K alloy:(a)as-extruded,(b)the pre-deformed at room temperature.

    Fig.3.Microstructures of the GW92K alloys MDFed 1 pass at 400°C in different initial states of specimens:(a)as-extruded,(b)the pre-deformed at room temperature.

    Fig.4.Microstructures of the different-stated GW92K alloys MDFed under decreasing temperature with different passes.(a-d)as-extruded,(e-h)the predeformed;and(a,b,e,f)11-pass,(c,d,g,h)15-pass.

    Fig.5.EBSD analysis for the microstructures of two GW92K alloys subjected to15-pass MDF(40%per pass):(a)as-extruded,and(b)the pre-deformed, respectively.

    3.2.Microstructures after MDF

    In the as-extruded samples,deformation features were more obvious at grain boundaries after MDF followed 1-pass at 400°C as shown in Fig.3,and dynamic recrystallization in local areas of initial grains even had occurred(as shown by white arrows).However,the ratio of obvious recrystallization signif i cantly increased at the twinning in the pre-deformed specimen.

    Fig.4 indicated the microstructures of the GW92K alloys after being MDFed by accumulated 11-pass at the decreasing temperature from 400°C to 325°C,with ΣΔε=4.4 in the asextruded samples and ΣΔε=5.6 in the pre-deformed ones.It was found that both alloys had been ref i ned remarkably.A large amount of residual coarse grains were remained in the as-extruded(as shown in Fig.4a)and characterized by smaller ones dividing via shear deformation,however few existed in the pre-deformed samples(as shown in Fig.4e).SEM results showed that,minor coarse second-phase particles(noted by white arrows),appeared in the initial as-extruded alloy,still remained distributing in the matrix,while merely fewer randomly distributed in the pre-deformed ones.When MDF for 15-pass(ΣΔε=7.7)at 300°C,the shear zones remained in the as-extruded(as shown in Fig.4c),few such areas could be detected in the pre-deformed(as shown in Fig.4g),but ref i ned grains.Besides,in both different initial states,a large number of dispersed phases dynamically precipitated during deformation.

    Fig.6.TEM images of f i ne-grained regions in both states of alloys being subjected to MDF with 15 passes:(a)as-extruded,and(b)the pre-deformed,respectively.

    Fig.7.Tensile properties of GW92K alloys in different states:(a)as-extruded, (b)MDFed in as-extruded and(c)MDFed in pre-deformed samples, respectively.

    The EBSD analysis in Fig.5 showed that,the microstructures of both initial states were composed of ref i ned grains and residual coarse grains.The microstructure in as-extruded alloy was ref i ned dominantly by shear deformation,as say,banded coarse-grains were mainly distributed their basal planes with shear stress at about 45°(Fig.5a).During MDF,shear deformation occurred in partial coarse crystals,resulting in these grains gradually divided or crushed,and then distorted their crystals by geometrical rotation in shear regions,which led to grain size gradually decreased.The basal poles in most of the crystals were concentrated 45°with the compressive direction,which may be result from the rotation of the original basal plane by 45°from the compression direction through shear deformation.

    In the pre-deformed alloy,a smaller amount of residual coarse grains were also found,and their basal planes mostly oriented approximately parallel to the compressive direction (as shown in Fig.5b).In such condition,lower part of residual coarse grains had been subdivided by high-angle boundaries. Also minor grains occurred prior nucleation in deformation belts,which may be caused by the mechanism of rotation dynamic re-crystallization(RDRX)[13].(0001)pole f i gure also suggested that,the pre-deformed sample had a weaker texture with an increase in ref i ned grains,as compared to the as-extruded samples.

    After 15 passes a large strain of 40%per pass at decreasing forging temperature from 400°C to 300°C,TEM observations in both states of alloys indicated that,some grains have been ref i ned to hundreds of nanometer(black arrows)and minor second phases with a size of hundreds to tens of nanometer dispersed at grain boundaries(white arrows),as shown in Fig.6.

    Moreover,in the pre-deformed samples,there was a slight increase both in “grain size”and “precipitate size”,also the microstructure appeared few dislocations(Fig.6b),which meant more fully recrystallization has happened in the predeformed alloy.

    3.3.Mechanical properties after MDF

    Tensile properties of the as-extruded alloy,and the MDFed alloys with two different initial deformation situations were shown in Fig.7.Compared with the as-extruded specimen, large improvements of ultimate tensile strength(σb),tensile yield strength(σ0.2)were observed in both as-MDFed samples, especially elongation(ε)rises so sharply.The pre-deformed alloy specimen showed a better combination of strength and ε,its σb, σ0.2and ε were 350 MPa,320 MPa,and 18.6%, respectively.

    Fig.8.Tensile fractures of the MDFed GW92K alloys in different states:(a,c,e)as-extruded,and(b,d,f)pre-deformed samples,respectively.

    The fractography of the MDFed alloy specimens of asextruded and pre-deformed was shown in Fig.8,respectively.Compared Fig.8a and b,more ductile dimples and fewer cleavage fracture surface exhibited in the pre-deformedsamples,together with a large number of f i ne precipitates(in Fig.8d);while cleavage fracture surface and steps are even prominent in as-extruded ones,as enlarged regions shown in Fig.8c.In Fig.8e and f,the coarsing second phases of both states were found broken,which may be due to the second phases more brittle than matrix itself.

    In this study,plenty of twinning were induced through predeformation at room temperature,as similar to increasing the grain boundary density,which could lead to accelerate the process of grain ref i nement in subsequent MDF[11,12],and be benef i cial for forging by the induced softening[14]. Furthermore,MDF under decreasing temperature at below 0.5Tmcould prevent the ref i ned grains excessive growing [5,15],which can ascribe to reducing the dynamic recrystallization temperature by the accumulation of great plastic strains[16].Accumulated strain by multi-passes contributed to induce more dislocations and other crystal defects around grain boundaries,which could also result in precipitation occurred within deformed regions by storing larger energy [17]and grain ref i nement[18]by a large of grain nucleation induced through particle stimulated nucleation(PSN)mechanism[10].It is also suggested that,more precipitates appeared in the microstructure may be responsible for the more stable f i ne-grained structure and the weaker texture.In addition, precipitates were effective in impeding dislocation slip,which could further strengthen tensile properties.As for the ductility, the pre-induced twinning could further weaken texture with alternate the forging direction[14],and even the crystal orientation was slightly changed in remaining grains interior, as EBSD analysis in Fig.5,therefore a larger elongation achieved in the pre-deformed alloy.

    4.Conclusions

    1)The pre-induced twinning by pre-deformation is benef i cial for obtaining a f i ner microstructure and weaker texture during subsequent multi-directional forging(MDF).

    2)A better ductility can be achieved in as-extruded GW92K alloy especially after being pre-deformed followed by MDF than those through directly forging,in spite of strength slightly improved.

    3)Pre-deformed samples exhibit ductile fracture features of dimples,which could be chief l y attributed to the ref i ned gain size,and the weaker texture,together with f i ne dispersed precipitates.

    Acknowledgments

    The authors gratefully acknowledge f i nancial support from the National Basic Research Program of China(973 Program) through project no.2013CB632202,and National Natural Science Foundation of China(NSFC)through project no. 51105350.

    [1]F.S.Pan,E.H.Han,Wrought Magnesium Alloy and High-Performance Processing Technology,Science Press,Beijing,2007.

    [2]R.M.Imayev,V.M.Imayev,G.A.Salishchiv,J.Mater.Sci.27(1992) 4465.

    [3]Q.Guo,H.G.Yan,Z.H.Chen,H.Zhang,Acta Metall.Sin.42(2006) 739-744.

    [4]J.Xing,H.Soda,X.Y.Yang,H.Miura,T.Sakai,Mater.Trans.46(2005) 1646-1650.

    [5]H.Miura,G.Yu,X.Yang,Mater.Sci.Eng.A 528(2011)6981-6992.

    [6]L.Gao,R.S.Chen,E.H.Han,Trans.Nonferrous Met.Soc.China 21 (2011)863-868.

    [7]M.R.Barnett,A.G.Beer,D.Atwell,A.Oudin,Scr.Mater.51(2004) 19-24.

    [8]W.N.Tang,R.S.Chen,J.Zhou,E.H.Han,Mater.Sci.Eng.A 499(2009) 404-410.

    [9]S.W.Xu,N.Matsumoto,S.Kamado,T.Honma,Y.Kojima,Mater.Sci. Eng.A 523(2009)47-52.

    [10]T.Li,K.Zhang,X.G.Li,Z.W.Du,Y.J.Li,M.L.Ma,G.L.Shi,J. Magnesium Alloys 1(2013)47-53.

    [11]A.Belyakov,K.Tsuzaki,H.Miura,T.Sakai,Acta Mater.51(2003) 847-861.

    [12]H.Miura,T.Maruoka,X.Yang,J.J.Jonas,Scr.Mater.66(2012)49-51.

    [13]Y.Qiao,X.Wang,Z.Liu,et al.,Mater.Sci.Eng.A 568(2013)202-205.

    [14]M.R.Barnett,Mater.Sci.Eng.A 464(2007)8-16.

    [15]W.W.Jian,Z.X.Kang,Y.Y.Li,Chin.J.Nonferrous Met.18(2008) 1005-1011.

    [16]X.Zhao,J.W.Gao,Y.Nan,T.F.Jing,Mater.Rev.17(2003)5.

    [17]D.Lin,L.Wang,Y.Liu,J.Z.Cui,Q.C.Le,Trans.Nonferrous Met.Soc. China 21(2011)2160-2167.

    [18]O.Sitdikov,T.Sakai,A.Goloborodko,R.Kaibyshev,Mater.Trans.45 (2004)2232-2238.

    Received 24 September 2014;accepted 13 October 2014 Available online 29 December 2014

    *Corresponding authors.

    E-mail addresses:lishuqin@imr.ac.cn(S.Q.Li),weineng.tang@gmail.com (W.N.Tang),rschen@imr.ac.cn(R.S.Chen).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2014.10.006.

    2213-9567/Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2014,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    日日爽夜夜爽网站| 欧美国产精品va在线观看不卡| 日韩 亚洲 欧美在线| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 日本与韩国留学比较| 爱豆传媒免费全集在线观看| 久久午夜福利片| 三级国产精品片| 男女无遮挡免费网站观看| 看十八女毛片水多多多| 久久精品久久久久久噜噜老黄| 国产日韩一区二区三区精品不卡| 亚洲国产精品成人久久小说| 国产成人精品一,二区| 90打野战视频偷拍视频| 亚洲欧美成人综合另类久久久| 人人澡人人妻人| 国内精品宾馆在线| 欧美日韩av久久| 欧美日韩国产mv在线观看视频| 咕卡用的链子| 欧美国产精品va在线观看不卡| 天美传媒精品一区二区| 午夜福利视频精品| 好男人视频免费观看在线| 高清欧美精品videossex| 王馨瑶露胸无遮挡在线观看| 中文乱码字字幕精品一区二区三区| 免费黄色在线免费观看| 2022亚洲国产成人精品| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 国产av国产精品国产| av国产久精品久网站免费入址| 水蜜桃什么品种好| 99热这里只有是精品在线观看| 高清欧美精品videossex| 国产欧美日韩综合在线一区二区| 久久久精品94久久精品| 在线观看国产h片| videossex国产| 曰老女人黄片| 狂野欧美激情性bbbbbb| 久久青草综合色| 久久精品久久精品一区二区三区| 午夜老司机福利剧场| 久久久久精品性色| 在线观看www视频免费| 久久精品国产鲁丝片午夜精品| 成年女人在线观看亚洲视频| 伦精品一区二区三区| 插逼视频在线观看| 亚洲av中文av极速乱| 26uuu在线亚洲综合色| 亚洲国产欧美在线一区| 校园人妻丝袜中文字幕| 一本大道久久a久久精品| 国产精品一二三区在线看| 秋霞伦理黄片| 亚洲精品日韩在线中文字幕| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 日韩一区二区视频免费看| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 美女国产高潮福利片在线看| 日本欧美视频一区| 久久久久久久久久久久大奶| 色婷婷av一区二区三区视频| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| 成年人午夜在线观看视频| 亚洲精品国产av成人精品| 人体艺术视频欧美日本| 赤兔流量卡办理| 国产探花极品一区二区| 免费av不卡在线播放| 亚洲一码二码三码区别大吗| 18在线观看网站| 26uuu在线亚洲综合色| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品av麻豆av| 午夜福利视频精品| 色婷婷久久久亚洲欧美| 婷婷色av中文字幕| 国产成人精品一,二区| 色5月婷婷丁香| a级毛片在线看网站| 午夜久久久在线观看| 2021少妇久久久久久久久久久| 精品亚洲成国产av| 午夜福利网站1000一区二区三区| av天堂久久9| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 国产一区二区三区av在线| 两个人看的免费小视频| 老熟女久久久| 国产福利在线免费观看视频| 91久久精品国产一区二区三区| 亚洲欧美日韩另类电影网站| 宅男免费午夜| 最黄视频免费看| 久久 成人 亚洲| 自线自在国产av| 少妇高潮的动态图| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 国产在线一区二区三区精| 久久国产精品大桥未久av| 极品人妻少妇av视频| 最后的刺客免费高清国语| 老女人水多毛片| 免费女性裸体啪啪无遮挡网站| 黑人高潮一二区| 日本欧美国产在线视频| 赤兔流量卡办理| 街头女战士在线观看网站| 综合色丁香网| 亚洲国产精品国产精品| 国产成人精品无人区| 一边亲一边摸免费视频| 建设人人有责人人尽责人人享有的| 99久久人妻综合| 亚洲性久久影院| 伊人亚洲综合成人网| 最黄视频免费看| 好男人视频免费观看在线| 一个人免费看片子| 这个男人来自地球电影免费观看 | 成人无遮挡网站| 高清不卡的av网站| 久久 成人 亚洲| 久久97久久精品| 91精品国产国语对白视频| av在线播放精品| 亚洲婷婷狠狠爱综合网| 国产1区2区3区精品| www日本在线高清视频| 国产日韩欧美视频二区| 一个人免费看片子| 精品酒店卫生间| 18在线观看网站| av又黄又爽大尺度在线免费看| 亚洲欧美日韩卡通动漫| 一边摸一边做爽爽视频免费| 一个人免费看片子| 性高湖久久久久久久久免费观看| 亚洲精品日韩在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 美女内射精品一级片tv| 欧美精品一区二区大全| 日韩av不卡免费在线播放| 久久热在线av| 乱人伦中国视频| 亚洲第一区二区三区不卡| 啦啦啦在线观看免费高清www| a 毛片基地| 尾随美女入室| 成人国产av品久久久| 建设人人有责人人尽责人人享有的| 亚洲图色成人| 秋霞伦理黄片| av.在线天堂| 久久精品国产自在天天线| 夫妻午夜视频| 最后的刺客免费高清国语| 建设人人有责人人尽责人人享有的| 亚洲第一av免费看| 精品酒店卫生间| 成人手机av| 色哟哟·www| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影| 捣出白浆h1v1| 亚洲av欧美aⅴ国产| 在线观看三级黄色| 91在线精品国自产拍蜜月| 亚洲五月色婷婷综合| 亚洲精品久久成人aⅴ小说| 国产熟女欧美一区二区| 视频区图区小说| 国产1区2区3区精品| 国产69精品久久久久777片| 日本av手机在线免费观看| 国精品久久久久久国模美| 国产一级毛片在线| 亚洲精华国产精华液的使用体验| 人成视频在线观看免费观看| 精品一区二区免费观看| 亚洲欧美日韩卡通动漫| 丝袜在线中文字幕| 欧美激情国产日韩精品一区| 街头女战士在线观看网站| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 免费在线观看完整版高清| 只有这里有精品99| 成人18禁高潮啪啪吃奶动态图| 女性被躁到高潮视频| 三上悠亚av全集在线观看| 亚洲国产日韩一区二区| 婷婷色综合大香蕉| 午夜免费鲁丝| 国产日韩欧美视频二区| 高清在线视频一区二区三区| 午夜福利乱码中文字幕| 中文乱码字字幕精品一区二区三区| 欧美日韩亚洲高清精品| 寂寞人妻少妇视频99o| 99精国产麻豆久久婷婷| 亚洲av日韩在线播放| 婷婷色麻豆天堂久久| 久久精品熟女亚洲av麻豆精品| 一个人免费看片子| 久久av网站| 国产精品久久久av美女十八| 另类亚洲欧美激情| 欧美激情国产日韩精品一区| 在线天堂最新版资源| 亚洲精品自拍成人| 婷婷色综合大香蕉| 少妇的丰满在线观看| 免费久久久久久久精品成人欧美视频 | 日韩av在线免费看完整版不卡| 亚洲激情五月婷婷啪啪| 国产免费福利视频在线观看| 一级片免费观看大全| 国产精品 国内视频| 亚洲av国产av综合av卡| 七月丁香在线播放| 国产欧美另类精品又又久久亚洲欧美| xxx大片免费视频| 男女国产视频网站| 99久国产av精品国产电影| 久久99热6这里只有精品| 亚洲图色成人| 少妇被粗大的猛进出69影院 | 亚洲国产精品999| 欧美精品高潮呻吟av久久| 亚洲国产看品久久| 国产成人精品在线电影| 精品熟女少妇av免费看| 久久国产精品大桥未久av| 性高湖久久久久久久久免费观看| 免费观看在线日韩| 满18在线观看网站| 日韩中字成人| 日韩一本色道免费dvd| 1024视频免费在线观看| 高清av免费在线| 午夜久久久在线观看| 91精品伊人久久大香线蕉| 午夜老司机福利剧场| a级毛片黄视频| 麻豆精品久久久久久蜜桃| 99热这里只有是精品在线观看| 热re99久久精品国产66热6| 18禁动态无遮挡网站| 一二三四在线观看免费中文在 | 十分钟在线观看高清视频www| 国产一区二区在线观看日韩| 久久久国产一区二区| 亚洲综合色惰| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕最新亚洲高清| 看免费av毛片| 一级毛片电影观看| 亚洲婷婷狠狠爱综合网| 午夜激情av网站| 国产欧美日韩一区二区三区在线| 高清毛片免费看| 天天影视国产精品| 欧美+日韩+精品| 精品酒店卫生间| 人妻一区二区av| 欧美xxⅹ黑人| 国产精品一国产av| 男女高潮啪啪啪动态图| 国产精品秋霞免费鲁丝片| 免费观看av网站的网址| 狠狠婷婷综合久久久久久88av| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图| 黑人高潮一二区| 国产激情久久老熟女| 亚洲精品乱久久久久久| 五月玫瑰六月丁香| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| 黄片播放在线免费| 欧美另类一区| 国产一区亚洲一区在线观看| 国产片内射在线| 久久精品久久精品一区二区三区| 国产片特级美女逼逼视频| 午夜免费观看性视频| 在线天堂最新版资源| 日本午夜av视频| 国产精品免费大片| 免费黄色在线免费观看| 乱人伦中国视频| 黄色配什么色好看| 日本与韩国留学比较| 国产成人精品婷婷| 在线观看免费高清a一片| 国产精品熟女久久久久浪| 日韩在线高清观看一区二区三区| 在线看a的网站| 亚洲美女视频黄频| 搡老乐熟女国产| 久久精品久久精品一区二区三区| 建设人人有责人人尽责人人享有的| 国产色婷婷99| www.av在线官网国产| 汤姆久久久久久久影院中文字幕| 777米奇影视久久| 9191精品国产免费久久| 蜜桃国产av成人99| 免费高清在线观看日韩| 波多野结衣一区麻豆| 国产片内射在线| 成年人午夜在线观看视频| 国产色爽女视频免费观看| 久久精品国产亚洲av涩爱| 免费在线观看黄色视频的| 色视频在线一区二区三区| av女优亚洲男人天堂| 高清在线视频一区二区三区| 久久久久国产网址| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡动漫免费视频| 中文乱码字字幕精品一区二区三区| 黄色 视频免费看| 国产精品人妻久久久久久| 大陆偷拍与自拍| 日韩一本色道免费dvd| 国产男人的电影天堂91| 热re99久久国产66热| 韩国高清视频一区二区三区| 精品少妇黑人巨大在线播放| 黄片无遮挡物在线观看| 日本猛色少妇xxxxx猛交久久| 色婷婷av一区二区三区视频| 亚洲精品乱久久久久久| 精品一区二区三区视频在线| 久久久久精品性色| 老司机亚洲免费影院| 免费黄色在线免费观看| 久久精品国产亚洲av天美| 久久人妻熟女aⅴ| 91国产中文字幕| 午夜福利视频精品| 久热久热在线精品观看| 久久亚洲国产成人精品v| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 少妇人妻精品综合一区二区| 亚洲欧美成人精品一区二区| 国产白丝娇喘喷水9色精品| 草草在线视频免费看| 王馨瑶露胸无遮挡在线观看| 精品亚洲乱码少妇综合久久| 亚洲精品美女久久av网站| 亚洲精品乱久久久久久| 亚洲av.av天堂| 日本爱情动作片www.在线观看| 咕卡用的链子| 亚洲人成网站在线观看播放| 国产精品 国内视频| 午夜激情久久久久久久| 一边摸一边做爽爽视频免费| 久久精品国产a三级三级三级| 母亲3免费完整高清在线观看 | 伦理电影免费视频| 超碰97精品在线观看| 国产精品人妻久久久久久| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 色婷婷久久久亚洲欧美| tube8黄色片| 黄片无遮挡物在线观看| 最近中文字幕高清免费大全6| 久久久国产欧美日韩av| 精品酒店卫生间| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影小说| 精品视频人人做人人爽| 日韩熟女老妇一区二区性免费视频| 色哟哟·www| 97人妻天天添夜夜摸| 巨乳人妻的诱惑在线观看| 最新的欧美精品一区二区| √禁漫天堂资源中文www| 男人爽女人下面视频在线观看| 少妇精品久久久久久久| 亚洲色图 男人天堂 中文字幕 | 亚洲av福利一区| 性色avwww在线观看| 欧美老熟妇乱子伦牲交| 男的添女的下面高潮视频| 最近的中文字幕免费完整| tube8黄色片| 在线天堂最新版资源| 亚洲国产av新网站| 大片免费播放器 马上看| 欧美日韩亚洲高清精品| 日韩成人伦理影院| 欧美精品国产亚洲| 欧美日韩国产mv在线观看视频| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| av有码第一页| 国产麻豆69| 成人无遮挡网站| 国产高清三级在线| 国产白丝娇喘喷水9色精品| 街头女战士在线观看网站| 成年人午夜在线观看视频| 亚洲国产看品久久| 91国产中文字幕| av不卡在线播放| 免费黄频网站在线观看国产| 男女免费视频国产| av又黄又爽大尺度在线免费看| 亚洲国产成人一精品久久久| 亚洲久久久国产精品| 波多野结衣一区麻豆| 国产精品久久久久久av不卡| 亚洲少妇的诱惑av| 看十八女毛片水多多多| 欧美日韩精品成人综合77777| 久久午夜综合久久蜜桃| 五月天丁香电影| tube8黄色片| 国产高清不卡午夜福利| 黑人欧美特级aaaaaa片| 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| 国产精品欧美亚洲77777| 蜜桃国产av成人99| 成人毛片60女人毛片免费| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 在线观看www视频免费| a级片在线免费高清观看视频| 街头女战士在线观看网站| 视频中文字幕在线观看| 欧美丝袜亚洲另类| 精品人妻熟女毛片av久久网站| 久久99精品国语久久久| 日韩成人av中文字幕在线观看| 日本午夜av视频| 国产精品久久久久久av不卡| 高清毛片免费看| 中文天堂在线官网| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 国产福利在线免费观看视频| 观看av在线不卡| 一边摸一边做爽爽视频免费| 捣出白浆h1v1| 国产精品一国产av| 少妇猛男粗大的猛烈进出视频| 欧美成人午夜免费资源| 亚洲精品视频女| www.熟女人妻精品国产 | 麻豆乱淫一区二区| 满18在线观看网站| 男女国产视频网站| 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| 欧美日韩视频精品一区| 侵犯人妻中文字幕一二三四区| 性高湖久久久久久久久免费观看| 日本色播在线视频| 美女内射精品一级片tv| 亚洲在久久综合| 成人国语在线视频| 丰满饥渴人妻一区二区三| 久久这里有精品视频免费| 国产一区二区三区av在线| 日本av手机在线免费观看| 国产一区有黄有色的免费视频| 久久久久精品久久久久真实原创| 高清不卡的av网站| 免费黄频网站在线观看国产| 22中文网久久字幕| 国产亚洲最大av| 少妇被粗大的猛进出69影院 | 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 97在线人人人人妻| 69精品国产乱码久久久| 一区二区三区乱码不卡18| 日韩欧美一区视频在线观看| 国产精品成人在线| av卡一久久| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 亚洲四区av| 国产伦理片在线播放av一区| 亚洲av男天堂| 我要看黄色一级片免费的| tube8黄色片| 最新的欧美精品一区二区| av卡一久久| 亚洲精品久久成人aⅴ小说| 国产精品偷伦视频观看了| 国产成人精品婷婷| 性色av一级| 99国产综合亚洲精品| 精品一区在线观看国产| 亚洲国产成人一精品久久久| 亚洲精品aⅴ在线观看| 欧美性感艳星| 九九爱精品视频在线观看| 精品福利永久在线观看| 亚洲,一卡二卡三卡| 国产高清三级在线| 精品少妇久久久久久888优播| 超碰97精品在线观看| 国产黄色免费在线视频| 成人无遮挡网站| 久久国产精品大桥未久av| av又黄又爽大尺度在线免费看| 久久久精品区二区三区| 精品熟女少妇av免费看| videossex国产| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 少妇被粗大猛烈的视频| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看 | 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 永久网站在线| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 久久精品aⅴ一区二区三区四区 | 999精品在线视频| 色5月婷婷丁香| 男女国产视频网站| av在线app专区| 国产精品偷伦视频观看了| 美女内射精品一级片tv| 蜜桃在线观看..| 中文字幕人妻熟女乱码| 久久韩国三级中文字幕| 岛国毛片在线播放| 精品久久国产蜜桃| 国产无遮挡羞羞视频在线观看| 久久久久久久久久人人人人人人| 美女内射精品一级片tv| 久久久欧美国产精品| 成人国产av品久久久| 日韩一区二区视频免费看| 国产精品国产三级专区第一集| 91精品国产国语对白视频| 国产av一区二区精品久久| 搡女人真爽免费视频火全软件| 国产成人aa在线观看| 久久久久久久久久人人人人人人| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 免费观看在线日韩| 中文字幕av电影在线播放| 精品国产一区二区三区四区第35| 一区二区av电影网| 韩国高清视频一区二区三区| 三级国产精品片| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 久久狼人影院| 美女主播在线视频| 国产成人aa在线观看| 一级毛片黄色毛片免费观看视频| 人人澡人人妻人| 巨乳人妻的诱惑在线观看| 国产欧美日韩综合在线一区二区| 99热6这里只有精品| 天堂中文最新版在线下载| 综合色丁香网| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| 国产乱人偷精品视频| 如日韩欧美国产精品一区二区三区| 熟女人妻精品中文字幕| 插逼视频在线观看| 久久精品久久精品一区二区三区| 国产av一区二区精品久久| 99久久中文字幕三级久久日本| 亚洲国产欧美日韩在线播放| 伊人亚洲综合成人网| 一本久久精品| 日本黄色日本黄色录像| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 岛国毛片在线播放| av片东京热男人的天堂| 香蕉精品网在线| 亚洲av国产av综合av卡| 免费黄色在线免费观看| 插逼视频在线观看| 午夜免费鲁丝| 日韩一区二区视频免费看| 成人国语在线视频|