• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Fucans from Four Species of Sea Cucumber by High Temperature1H NMR

    2014-04-20 09:24:23WUNianCHENShiguoYEXingqianLIGuoyunYINLiangandXUEChanghu
    Journal of Ocean University of China 2014年5期

    WU Nian, CHEN Shiguo,, YE Xingqian, LI Guoyun, YIN Li’ang, and XUE Changhu

    1) College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China

    2) College of Food Science and Engineering, Ocean University of China, Qingdao 266061, P. R. China

    Identification of Fucans from Four Species of Sea Cucumber by High Temperature1H NMR

    WU Nian1), CHEN Shiguo1),*, YE Xingqian1), LI Guoyun2), YIN Li’ang2), and XUE Changhu2)

    1) College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China

    2) College of Food Science and Engineering, Ocean University of China, Qingdao 266061, P. R. China

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei (Pg) from Indo-Pacific, Holothuria vagabunda (Hv) from Norwegian Coast, Stichopus tremulu (St) from Western Indian Ocean, and Isostichopus badionotu (Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature13C NMR. The results indicated that Fuc-Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc-Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc-St from the frigid zone and Fuc-Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature1H NMR than via room temperature1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

    sea cucumber; sulfated fucan; composition analysis;1H NMR; identification

    1 Introduction

    Sea cucumbers in class Holothuroidea are marine invertebrates, which are habitually found in benthic areas and deep seas across the world (Bordbar et al., 2011). Sea cucumbers have been recognized as a traditional tonic food in China and other Asian countries for thousands of years, mainly due to their effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation (Fu et al., 2005; Wen et al., 2010). It has been proven that chemical compounds extracted from different sea cucumber species exhibit several unique biological and pharmacological activities, such as antiangiogenic (Tian et al., 2005), anticancer (Roginsky et al., 2004), anticoagulant (Chen et al., 2011), anti-hypertension (Hamaguchi et al., 2010), anti-inflammatory (Collin, 1999), antimicrobial (Hing et al., 2007), antioxidant (Althunibat et al., 2009), antithrombotic (Pacheco et al., 2000), antitumor (Tong et al., 2005) and wound healing (San Miguel-Ruiz and García-Arrarás, 2007). There are hundreds of varieties of sea cucumbers in ocean. Their commercial value varies geographically between a few and thousands of US dollars per kilogram. However, no detailed distinction of sea cucumber species has been documented in terms of chemical components and nutritional value.

    The major edible part of sea cucumbers is their body wall, which contains mainly collagen, acidic polysaccharides (Mour?o et al., 1996; Trotter et al., 1995; Vieira et al., 1988) and some minor components such as triterpene glycosides, gangliosides and various lipids (Avilov et al., 2000; Kitagawa et al., 1982; Matsuno and Tsushima, 1995). Of these, acidic polysaccharide has various biological activities and is believed to be the most important component of sea cucumbers. It has been reported that polysaccharide isolated from sea cucumbers has anticoagulant and antithrombotic activity (Fonseca and Mour?o, 2006), can modulate angiogenesis (Tapon-Bretaudiere et al., 2002) and inhibit tumor metastasis (Borsig et al., 2007). Two types of polysaccharide isolated from the body wall of sea cucumbers mainly include sea cucumber fucosylated chondroitin sulfate (SC-fCS), an acidic polysaccharide composed of D-N-acetyl galactosamine, D-glucuronic acid and L-fucose (Vieira et al., 1988), and sea cucumber fucan (SC-Fuc), a linear polysaccharide ofL-fucose (Mour?o et al., 1996). There have been several studies on the structure of SC-fCSs isolated from sea cucumbers, such as Stichopus japonicus (Casu et al., 1996) and Ludwigothurea grisea (Mour?o et al., 1996), via mild acid hydrolysis, methylation analysis and1H and13C nuclear magnetic resonance (NMR) spectroscopy. SC-fCSs from these sea cucumbers have a sulfated fucose branch linked to the 3-O position of the glucuronic acid (GlcA) residue, with different sulfation patterns of the fucose branches. However, characteristics of sea cucumber polysaccharide, such as the sulfation inconsistency, the inhomogeneity of microstructure and molecular weight, and the polytrope of residue quantity, cause the complexity of their purification and structural analysis. So far, the majority of studies on SC-Fuc have been focused on the analysis of sugar chain structure and influence of substitutional positions and quantities of sulfate on its activity (Mour?o et al., 1996; Vieira et al., 1988).

    Recently, the development of modern spectroscopic techniques, for example, the NMR spectroscopy, makes the structural characterization of complex carbohydrates possible. Both1H and13C NMR spectroscopy have been used for the sequence analysis of heparin oligosaccharides and the characterization of subtle structural differences among different preparations of heparin (Casu et al., 1996). It is possible to identify sulfated sugar contaminants associated with adverse clinical events via direct analysis of heparin polysaccharide materials (Guerrini et al., 2008).

    In the present study, we isolated SC-Fucs from four species of sea cucumbers with different commercial value from three geographical zones, Pearsonothuria graeffei from Indo-Pacific, Holothuria vagabunda from Western Indian Ocean, Stichopus tremulus from Norwegian Coast and Isostichopus badionotus from Western Atlantic. The composition and structure of SC-Fucs obtained from these four species of sea cucumbers were determined for the first time in this study. Comparative analysis was carried out on anomer proton signals by high temperature1H NMR, and the sulfation pattern of fucose branches was determined. The index of anomer hydrogen signals in SC-Fucs was thus established for identifying species of sea cucumbers from different sea regions. The results will provide reference data for further studies on the structure activity relationship of SC-Fucs.

    2 Materials and Methods

    2.1 Sea Cucumber

    Four species of sea cucumbers (50 g each), Pearsonothuria graeffei (from Indo-Pacific), Holothuria vagabunda (from Norwegian Coast), Stichopus tremulus (from Western Indian Ocean), and Isostichopus badionotus (from Western Atlantic) were purchased from a local market in Qingdao, Shandong, China.

    2.2 Isolation of Crude Polysaccharide

    Crude sea cucumber polysaccharide was prepared following the method reported previously (Matsuno and Tsushima, 1995). Briefly, sea cucumber body wall (about 1 g) was dried, minced and homogenized. The homogenate was treated with CH3Cl3/MeOH (4:1) to remove lipids before autoclaving at 50℃ for 4 h. The resulting residue was digested with 100 mg papain in 30 mL of 0.1 mol L-1sodium acetate buffer solution (pH 6.0) (5 mmol L-1EDTA and 5 mmol L-1cysteine) at 60℃ for 10 h. The digested mixture was centrifuged (2000 r min-1, 15 min, 10℃) and the polysaccharide in the clear supernatant was precipitated with 1.6 mL of 10% aqueous cetylpyridinium chloride solution. After standing at room temperature for 24 h, the mixture was centrifuged (2000 r min-1, 15 min) and the precipitated polysaccharide was collected and redissolved in 1000 mL of 2 mol L-1NaCl:ethanol (100:15) before further precipitation with 2000 mL of 95% ethanol. After standing at 4℃ for 24 h, the precipitate formed was collected by centrifugation (2000 r min-1, 15 min). The precipitate was dissolved in water and dialyzed against distilled water (with two exchanges). The polysaccharide solution was lyophilized before analysis.

    2.3 Isolation of SC-Fucs by Anion Separation Column

    The obtained sea cucumber crude polysaccharides (400 mg each) were dissolved in 10 mL of 25 mmol L-1NaH2PO4-NaOH (pH 6.3). The crude polysaccharide solution was fractionated by anion-exchange chromatography on a DEAE-cellulose column (1.6 cm × 17 cm, Whatman, Brentford, England) with elution by a linear gradient of 0–1.4 mol L-1NaCl in 1000 min at a flow rate of 0.5 mL min-1. Carbohydrate fractions were collected every 10 min with a test tube. Protein content was then determined at 280 nm with an ultraviolet detector (Agilient, California, USA). Polysaccharide content was determined by improved phenol/sulfuric assay (Chen et al., 2011). The single components in test tubes were further determined by HPLC (high performance liquid chromatography) with a TSK gel PWXL-4000 column (Tosoh Bioscience, Tokyo, Japan). The polysaccharide solution collected and dialyzed against distilled water was lyophilized.

    2.4 Molecular Weight Measurement

    GPC measurement was performed by Aglient 1100 HPLC equipped with a refractive index detector. For polysaccharide measurement, a TSK gel PWXL-4000 column (Tosoh Bioscience, Tokyo, Japan) was used. A 0.2 mol L-1NaNO3solution was used as solvent at a flow rate 0.5 mL min-1.

    2.5 Chemical Composition Analysis

    Monosaccharide composition was determined by HPLC as described elsewhere (Strydom, 1994). In brief, sea cucumber polysaccharide (2 mg each) was hydrolyzed with 1 mL of 2 mol L-1TFA at 110℃ for 8 h. The hydrolysate was vacuum dried and conjugated to PMP (Sangon Biotech, Shanghai, China). The derivatization was carried out with 450 μL of PMP solution (0.5 mol L-1, in methanol)and 450 μL of 0.3 mol L-1NaOH at 70℃ for 30 min. The reaction was stopped by neutralization with 450 μL of 0.3 mol L-1HCl and extraction three times with chloroform (1mL).

    HPLC analysis was performed on an Agilent ZORBAX Eclipse XDB-C18 column (5 μm, 4.6 mm×150 mm, Agilient, California, USA) at 25℃ with UV detection at 250 nm. The mobile phase was aqueous 0.05 mol L-1KH2PO4 (pH 6.9) with 15% (solvent A) and 40% acetonitrile (solvent B), respectively. A gradient of B from 8% to 20% in 30 min was used.

    Sulfate content was determined by ion chromatography as described previously (Ohira and Toda, 2006). Briefly, sea cucumber polysaccharide (about 2 mg each) was hydrolyzed with 1 mL of 2 mol L-1TFA at 110℃ under nitrogen for 8 h. The hydrolysate was dried under vacuum and then dissolved in water prior to ion chromatography.

    2.6 NMR Assay

    For NMR (JEOL, Japan) analysis, polysaccharide (50 mg each) was evaporated with 500 μL of D2O (99.8%, Sigma-Aldrich, Missouri, USA) twice by lyophilization before final dissolution in 500 μL of high quality D2O (99.96%) containing 0.1 μL of acetone.1H NMR experiment was carried out at 600 MHz and13C NMR at 150 MHz. Spectrum was recorded at 25℃ for13C NMR and 60℃ for1H NMR. The observed1H and13C chemical shift were reported relative to an internal acetone standard (2.03 and 33.1 ppm, respectively).

    2.7 IR Spectroscopy

    IR spectrum of the polysaccharide (KBr pellets, 0.5 mg sample with 150 mg KBr) was taken on a Perkin-Elmer instrument (Bruke, Genman) .

    2.8 Statistical Analysis

    All the data were statistically evaluated with SPSS/ 13.00 software. P < 0.05 and P < 0.01 were considered to indicate statistical significance. All the results were expressed as mean ± SE.

    3 Results and Discussions

    3.1 SC-Fucs Isolation and Purification

    The yield of polysaccharide isolated from four species of sea cucumbers, Pearsonothuria graeffei (Pg), Holothuria vagabunda (Hv), Stichopus tremulus (St), and Isostichopus badionotus (Ib), was 11.0%, 6.3%, 7.0% and 9.9% by weight, respectively. Ion exchange chromatography of the extracted polysaccharides on the DEAE-cellulose column showed two peaks each sea cucumber (Fig.1), which were respectively identified as SC-fCSs (fractions I) and SC-Fucs (fractions II) based on their chemical composition (Table 1, see 3.2 for discussion on Chemical Compositions). The relative content of two polysaccharide fractions was different in each species of sea cucumbers, as SC-fCSs were abundant in St, Pg and Hv (about 63%, 65%, 64%, respectively) (Figs.1a–c), whereas SC-Fucs was abundant in Ib (65%) (Fig.1d). According to the tube quantity and the eluent concentration in the region of rising peaks, the salinity of the two peaks ranged from 0.63 to 0.99 mol L-1and from 0.88 to 1.28 mol L-1, respectively. The polysaccharide had different salinity of elution peaks, varying in sulfate content. SC-Fucs from these four species of sea cucumbers were called Fuc-Pg, Fuc-Hv, Fuc-St and Fuc-Ib. Fuc-Ib had relatively higher (41.1%) sulfate content than others (29.1%–34.8%) (Fig.1).

    Fig.1 Isolation of sea cucumber fucosylated chondroitin sulfates (SC-fCSs) and sea cucumber fucans (SC-Fucs) from crude polysaccharides extracted from sea cucumbers by anion-exchange chromatography. (a) Pearsonothuria graeffei, (b) Holothuria vagabunda, (c) Stichopus tremulus, and (d) Isostichopus badionotus.

    Table 1 Molecular weight (MW) and the molar ratio of monosaccharide SC-Fuc

    3.2 Chemical Composition

    Three monosaccharides, glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), and fucose constituted the polysaccharide fraction I (Fig.1). The fraction I was then assigned to be chondroitin sulfate, as GlcA and GalNAc were in an approximately 1:1 ratio, consistent with the polysaccharide backbone structure, -4GlcAβ1-3GalNAcβ1-. On the contrary, only one monosaccharide, fucose, was found to be the major component of polysaccharide fraction II (Fig.1). The fucose and sulfate content in SC-fCSs obtained from different sea cucumber species varied as well. The molecular weight of Fuc-Ib was lager than that of other three SC-Fucs and its sulfate content was the highest (Table 1), consistent with the results regarding the salinity of elution peaks.

    3.3 IR

    In the IR spectrum of SC-Fucs, characteristic signals were assigned to sulfate groups, including S=O asymmetric stretching vibration at 1261–1220 cm-1and symmetric C-O-S stretching vibration at 860–820 cm-1(Matsuhiro, 1996; Matsuhiro et al., 2012) (Fig.2). The absorption at 848 cm-1, 837 cm-1, and 820 cm-1indicated the presence of 4-O-sulfated, 2,4-O-sulfated and 2-O-sulfated Fucs, respectively. Fuc-Pg and Fuc-Hv showed strong absorption at 820 cm-1(Figs.2a, b), indicating the presence of 2-O-sulfated Fuc according to previous reports on sea weed fucoidans (Bernardi and Springer, 1962). Conversely, Fuc-St and Fuc-Ib respectively exhibited strong absorption at 837 cm-1and 848 cm-1, indicating the presence of 2,4-O-sulfated and 4-O-sulfated Fucs (Bernardi and Springer, 1962).

    Fig.2 IR spectra of fucans isolated from sea cucumbers. (A) sea cucumber Pearsonothuria graeffei fucan (FUC-Pg), (B) sea cucumber Holothuria vagabunda fucan (FUC-Hv), (C) sea cucumber Stichopus tremulus fucan (FUC-St), and (D) sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    3.41H NMR

    At first,1H NMR spectrum of Fuc-Ib was obtained at room temperature (Fig.3). In the spectrum, the methyl protons of fucose (CH3) showed a clear signal around 1.2 ppm, but it was difficult to differentiate signals of anomeric protons of sulfated fucose residues between 5.1 and 5.4 ppm. Conversely, high temperature1H NMR spectrum of Fuc-Ib (60℃) provided clearly identifiable signals that were undetectable at room temperature (Fig.4d).

    Fig.3 Room temperature1H NMR spectra of sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    Fig.4 High temperature1H NMR spectra of four sea cucumber fucans (SC-Fucs). (a) sea cucumber Pearsonothuria graeffei fucan (FUC-Pg), (b) sea cucumber Holothuria vagabunda fucan (FUC-Hv), (c) sea cucumber Stichopus tremulus fucan (FUC-St), and (d) sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    Therefore, high temperature1H NMR spectrum (Fig.4 and Table 2) of the four SC-Fucs was acquired and used for comparing their structures. Compared to the spectrum of SC-fCS (Chen et al., 2011), the signals between 1.1 and 1.3 ppm were the methyl protons of fucose (CH3) but without the methyl protons of GalNAc (CH3CO). The results further indicated that the monosaccharide composition of SC-Fucs was only fucose. The protons signals of C-2 to C-6 were between 3.2 and 4.8 ppm. The signals between 5.1 and 5.4 ppm were anomeric protons of sulfated fucose residues (Mour?o et al., 1996; Wu et al., 2012) and apparent difference was observed in this region.

    Table 21H chemical shift of the fucose residue in the SC-Fucs

    Fuc-Pg showed major signals at 5.06 and 5.32 ppm, which were from the non-sulfated fucose and 2,4-O-disulfated fucose, respectively. These two signals were similar to those of Fuc isolated from the sea cucumber L. Grisea (Mour?o et al., 1996). Fuc-Ib exhibited signals at 5.06, 5.22, 5.25 and 5.32 ppm (Fig.4d), indicating the presence of non-sulfated, 2-O-sulfated, 2-O-sulfated, and 2,4-O-disulfated residues, respectively. However, anomeric signals of Fuc-St and Fuc-Hv were more complex and difficult to be assigned, while their anomeric protons were found to be mainly non-sulfated fucose.

    3.513C NMR

    13C NMR spectra of SC-Fucs (Fig.5) did not show any apparent difference in the sulfation patterns. However, the major signals exhibited were useful to assign the fucose backbone sequence, as these carbon signals were similar to those present in the spectrum of a standard fucose.

    In Fig.5, the signals at 16–18 ppm could be readily assigned to the methyl carbon. Differences between anomeric protons in the overlapping signal region of 60–82 ppm were slightly evident. Although the anomeric signals between 90 ppm and 100 ppm in the other three species of sea cucumbers were unclear, Fuc-Ib (Fig.5d) showed clear signals at 99.8, 98.5, 95.2 and 93.8 ppm, assigned to non-sulfated, 2-O-sulfated, 2-O-sulfated, 2,4-O-disulfated residues, respectively. Therefore,13C NMR was as efficient as1H NMR for distinguishing SC-Fucs.

    Fig.513C NMR spectra of four sea cucumber fucans (SC-Fucs). (a) sea cucumber Pearsonothuria graeffei fucan (FUC-Pg), (b) sea cucumber Holothuria vagabunda fucan (FUC-Hv), (c) sea cucumber Stichopus tremulus fucan (FUC-St), and (d) sea cucumber Isostichopus badionotus fucan (FUC-Ib).

    4 Conclusions

    Instead of conventional analysis via acid preparation that was easy to cause desulfation and may affect structure determination, high temperature1H NMR and room temperature13C NMR were used for the first time to identify the four SC-Fucs by comparing their structures, especially the substitution positions of sulfate. Fuc-Pg from the torrid zone (the tropics) mostly contained 2,4-O-disulfated and non-sulfated fucose residues; Fuc-Ib from the temperate zone mainly contained non-sulfated, 2-O-sulfated, and 2,4-O-disulfated fucose residues; Fuc-St from the frigid zone and Fuc-Hv from the torrid zone (the tropics) had mainly non-sulfated fucose residues. In comparison with room temperature1H NMR, high temperature1H NMR can better resolve the protons of SCFucs, thus is useful for identifying different species of sea cucumbers.

    Acknowledgements

    This work was supported by the Public Service Project of Zhejiang Province (2011C22026), the Special Award Funding for Postdoc in China (16000-X91009 and 316000 -X91005), the National Natural Science Foundation of China (30972282), the National Natural Science Foundation of China (31301417), and the Zhejiang Province Public Service Project (2011C11016).

    Althunibat, O. Y., Ridzwan, B. H., Taher, M., Jamaludin, M. D., Ikeda, M. A., and Zali, B. I., 2009. In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. European Journal of Scientific Research, 37: 376-387.

    Avilov, S., Antonov, A., Drozdova, O., Kalinin, V., Kalinovsky, A., Riguera, R., Lenis, L., and Jimenez, C., 2000. Triterpene glycosides from the far eastern sea cucumber Pentamera calcigera II: disulfated glycosides. Journal of Natural Products,63: 1349-1355.

    Bernardi, G., and Springer, G., 1962. Properties of highly purified fucan. Journal of Biological Chemistry,237: 75-80.

    Bordbar, S., Anwar, F., and Saari, N., 2011. High-value components and bioactives from sea cucumbers for functional foods: A review. Marine Drugs,9: 1761-1805, DOI: 10.3390/md9101761.

    Borsig, L., Wang, L., Cavalcante, M. C., Cardilo-Reis, L., Ferreira, P. L., Mour?o, P. A., Esko, J. D., and Pavao, M. S., 2007. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. Journal of Biological Chemistry, 282 (20): 14984-14991.

    Casu, B., Guerrini, M., Naggi, A., Torri, G., De-Ambrosi, L., Boveri, G., Gonella, S., Cedro, A., Ferro, L., and Lanzarotti, E., 1996. Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy. Arzneimittel-Forschung, 46: 472.

    Chen, S., Xue, C., Yin, L., Tang, Q., Yu, G., and Chai, W., 2011. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydrate Polymers, 83: 688-696.

    Colliec, S., Fischer, A., Tapon-Bretaudiere, J., Boisson, C., Durand, P., and Jozefonvicz, J., 1991. Anticoagulant properties of a fucoidan fraction. Thrombosis Research, 64 (2): 143-154. Collin, P. D., 1999. Process for obtaining medically active fractions from sea cucumber. United State Patent 5,876,762, March 2.

    Fonseca, R. J., and Mour?o, P. A., 2006. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thrombosis and haemostasis, 96: 822-829.

    Fu, X. Y., Xue, C. H., Miao, B. C., Li, Z. J., Gao, X., and Yang, W. G., 2005. Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): High alkaline protease activity. Aquaculture, 246 (1-4): 321-329, DOI: 10. 1016/j.aquaculture.2005.01.012.

    Guerrini, M., Beccati, D., Shriver, Z., Naggi, A., Viswanathan, K., Bisio, A., Capila, I., Lansing, J. C., Guglieri, S., Fraser, B., Al-Hakim, A., Gunay, N. S., Zhang, Z., Robinson, L., Buhse, L., Nasr, M., Woodcock, J., Langer, R., Venkataraman, G., Linhardt, R. J., Casu, B., Torri, G., and Sasisekharan, R., 2008. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nature Biotechnology, 26: 669-675, DOI: 10.1038/nbt1407.

    Hamaguchi, P., Geirsdottir, M., Vrac, A., Kristinsson, H. G., Sveinsdottir, H., Fridjonsson, O. H., and Hreggvidsson, G. O., 2010. In vitro antioxidant and antihypertensive properties of Icelandic sea cucumber (Cucumaria frondosa). Presented at IFT 10 Annual Meeting & Food Expo, Chicago, IL, USA, July 17–20, 2010; presentation no. 282-04.

    Hing, H. L., Kaswandi, M. A., Azraul-Mumt azah, R., Hamidah, S. A., Sahalan, A. Z., Normalawati, S., Samsudin, M. W., and Ridzwan, B. H., 2007. Effect of methanol extracts from sea cucumbers Holothuria edulis and Stichopus chloronotus on Candida albicans. Microscopy and Microanalysis, 13: 270-271, DOI: http://dx.doi.org/10.1017/S1431927607071553.

    Kitagawa, I., Kobayashi, M., and Kyogoku, Y., 1982. Marine natural products IX structural elucidation of triterpenoidal oligoglycosides from the bahamean sea cucumber Actinopyga agassizi Selenka. Chemical and Pharmaceutical Bulletin, 30: 2045-2050.

    Matsuhiro, B., 1996. Vibrational spectroscopy of seaweed galactans. Hydrobiologia, 326/327: 481-489.

    Matsuhiro, B., Osorio-Román, I. O., and Torres, R., 2012. Vibrational spectroscopy characterization and anticoagulant activity of a sulfated polysaccharide from sea cucumber Athyonidium chilensis. Carbohydrate Polymers, 88: 959-965.

    Matsuno, T., and Tsushima, M., 1995. Comparative biochemical studies of carotenoids in sea cucumbers. Comparative Biochemistry and Physiology–PartB: Biochemistry and Molecular Biology, 111: 597-605, DOI: 10.1016/0305-0491(95)00028-7.

    Mour?o, P. A., Pereira, M. S., Pavao, M. S., Mulloy, B., Tollefsen, D. M., Mowinckel, M. C., and Abildgaard, U., 1996. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. Journal of Biological Chemistry, 271: 23973-23984.

    Ohira, S., and Toda, K., 2006. Ion chromatographic measurement of sulfide, methanethiolate, sulfite and sulfate in aqueous and air samples. Journal of Chromatography A, 1121: 280-284.

    Pacheco, R. G., Vicente, C. P., Zancan, P., and Mour?o, P. A., 2000. Different antithrombotic mechanisms among glycosaminoglycans revealed with a new fucosylated chondroitin sulfate from an echinoderm. Blood Coagul Fibrinolysi, 11: 563-573.

    Roginsky, A., Singh, B., Ding, X. Z., Collin, P., Woodward, C., Talamonti, M. S., Bell, R. H., and Adrian, T. E., 2004. Frondanol(R)-A5p from the sea cucumber Cucumaria frondosa induces cell cycle arrest and apoptosis in pancreatic cancer cells. Pancreas, 29: 335.

    San Miguel-Ruiz, J. E., and García-Arrarás, J. E., 2007. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Developmental Biology, 7: 1-19, DOI: 10.1186/1471-213X-7-115.

    Strydom, D., 1994. Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. Journal of Chromatography A, 678: 17-23, DOI: 10. 1016/0021-9673(94)87069-1.

    Tapon-Bretaudiere, J., Chabut, D., Zierer, M., Matou, S., Helley, D., Bros, A., Mour?o, P. A., and Fischer, A. M., 2002. A fucosylated chondroitin sulfate from echinoderm modulates in vitro fibroblast growth factor 2-dependent angiogenesis. Molecular Cancer Research, 1: 96-102.

    Tian, F., Zhang, X., Tong, Y., Yi, Y., Zhang, S., Li, L., Sun, P., Lin, L., and Ding, J., 2005. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biology and Therapy, 4: 874-882.

    Tong, Y., Zhang, X., Tian, F., Yi, Y., Xu, Q., Li, L., Tong, L., Lin, L., and Ding, J., 2005. Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. International Journal of Cancer, 114: 843-853.

    Trotter, J. A., Lyons-Levy, G., Thurmond, F. A., and Koob, T. J., 1995. Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties. Comparative Biochemistry and Physiology–Part A: Physiology, 112: 463-478, DOI: 10.1016/0300-9629(95)02015-2.

    Vieira, R., and Mour?o, P., 1988. Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. Journal of Biological Chemistry, 263: 18176-18183.

    Wen, J., Hu, C., and Fan, S., 2010. Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 90: 2469-2474, DOI: 10.1002/jsfa. 4108.

    Wu, M., Huang, R., Wen, D., Gao, N., He, J., Li, Z., and Zhao, J., 2012. Structure and effect of sulfated Fuc on anticoagulant activity of the fucosylated chondroitin sulfate from sea cucumber Thelenata ananas. Carbohydrate Polymers, 87: 862-868.

    (Edited by Qiu Yantao)

    (Received March 3, 2013; revised April 18, 2013; accepted April 24, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-571-88982151

    E-mail: chenshiguo210@163.com

    国产精品无大码| 久久热精品热| 女人久久www免费人成看片| 国产伦在线观看视频一区| 夜夜爽夜夜爽视频| 观看免费一级毛片| 国产乱来视频区| 久久久久九九精品影院| 久久综合国产亚洲精品| av在线天堂中文字幕| av国产精品久久久久影院| 18禁裸乳无遮挡免费网站照片| 18禁裸乳无遮挡免费网站照片| 18禁裸乳无遮挡免费网站照片| 欧美另类一区| 日韩制服骚丝袜av| 精品人妻偷拍中文字幕| 九九在线视频观看精品| 成人亚洲精品一区在线观看 | 国产成人午夜福利电影在线观看| 日韩成人伦理影院| a级一级毛片免费在线观看| 中文字幕亚洲精品专区| 久久久久精品性色| 性色avwww在线观看| 卡戴珊不雅视频在线播放| 综合色丁香网| 欧美一区二区亚洲| 如何舔出高潮| 看免费成人av毛片| 少妇被粗大猛烈的视频| 日韩大片免费观看网站| 97人妻精品一区二区三区麻豆| 国产成人精品福利久久| 青春草视频在线免费观看| 老女人水多毛片| 高清毛片免费看| 成人鲁丝片一二三区免费| 人妻 亚洲 视频| 日本黄大片高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产日韩欧美在线精品| 欧美精品人与动牲交sv欧美| 日日撸夜夜添| 亚洲自偷自拍三级| 亚洲熟女精品中文字幕| 国产女主播在线喷水免费视频网站| 免费看光身美女| 免费看光身美女| 五月开心婷婷网| 国产白丝娇喘喷水9色精品| 免费观看在线日韩| 一级a做视频免费观看| 成年人午夜在线观看视频| 精品一区二区三卡| 午夜福利高清视频| 久久99热这里只有精品18| 久久ye,这里只有精品| 一区二区三区四区激情视频| videossex国产| 99久久精品国产国产毛片| 成年人午夜在线观看视频| 国模一区二区三区四区视频| 亚洲精品国产成人久久av| 免费观看的影片在线观看| 2021少妇久久久久久久久久久| 一区二区三区乱码不卡18| 久久久久网色| 日韩一区二区三区影片| 日本黄色片子视频| 麻豆乱淫一区二区| 亚洲av不卡在线观看| 男人添女人高潮全过程视频| 久久久久久久久久成人| 亚洲国产高清在线一区二区三| av播播在线观看一区| 99热网站在线观看| 国产成人精品婷婷| 亚洲图色成人| 国产成人a区在线观看| 久久亚洲国产成人精品v| 亚洲国产日韩一区二区| 欧美区成人在线视频| 精品国产露脸久久av麻豆| 欧美精品一区二区大全| 午夜福利在线观看免费完整高清在| 夜夜看夜夜爽夜夜摸| 男的添女的下面高潮视频| 欧美bdsm另类| 国产伦精品一区二区三区视频9| 国产男人的电影天堂91| 久久99热这里只频精品6学生| 最近2019中文字幕mv第一页| 内地一区二区视频在线| 国产综合懂色| 中文资源天堂在线| 国产精品一区二区在线观看99| 美女脱内裤让男人舔精品视频| 国产成人精品久久久久久| 少妇的逼好多水| 少妇人妻精品综合一区二区| 国产成人a区在线观看| 国产精品国产av在线观看| 80岁老熟妇乱子伦牲交| 欧美老熟妇乱子伦牲交| 免费看不卡的av| 秋霞伦理黄片| 看黄色毛片网站| 色5月婷婷丁香| 午夜福利网站1000一区二区三区| 成人特级av手机在线观看| 熟女人妻精品中文字幕| 国产色爽女视频免费观看| 日韩欧美一区视频在线观看 | 亚洲成人av在线免费| 尾随美女入室| 岛国毛片在线播放| 免费观看在线日韩| 中文欧美无线码| 国产成年人精品一区二区| 久久久久精品性色| 国产精品一区二区三区四区免费观看| 国产一区亚洲一区在线观看| 午夜福利视频精品| 在现免费观看毛片| 欧美成人a在线观看| 91久久精品国产一区二区成人| 午夜免费鲁丝| 国产免费视频播放在线视频| 中文乱码字字幕精品一区二区三区| 国产91av在线免费观看| 欧美三级亚洲精品| 九九久久精品国产亚洲av麻豆| 五月玫瑰六月丁香| 一级片'在线观看视频| 一级片'在线观看视频| 日本猛色少妇xxxxx猛交久久| 国产一区二区亚洲精品在线观看| 国产精品女同一区二区软件| 男人狂女人下面高潮的视频| 女人久久www免费人成看片| 亚洲av国产av综合av卡| 免费观看a级毛片全部| 久久99蜜桃精品久久| 日韩制服骚丝袜av| 又大又黄又爽视频免费| 国产av不卡久久| 激情 狠狠 欧美| 亚洲精品国产av成人精品| 亚洲国产成人一精品久久久| 久热这里只有精品99| 国产成人一区二区在线| 久久精品国产亚洲av涩爱| 国产探花极品一区二区| 熟女电影av网| 男的添女的下面高潮视频| 草草在线视频免费看| 97在线视频观看| 美女xxoo啪啪120秒动态图| 日日啪夜夜撸| 国产精品熟女久久久久浪| 国产乱人视频| 国产一区二区在线观看日韩| 高清日韩中文字幕在线| 国产精品国产三级国产av玫瑰| 久久久成人免费电影| 日韩制服骚丝袜av| 久久综合国产亚洲精品| 欧美成人一区二区免费高清观看| 少妇 在线观看| 五月天丁香电影| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 国产 精品1| 又爽又黄a免费视频| 国产成人freesex在线| av免费在线看不卡| 一本一本综合久久| 久久久久国产精品人妻一区二区| 国产亚洲最大av| 午夜福利视频1000在线观看| 干丝袜人妻中文字幕| 国产久久久一区二区三区| 久久久精品欧美日韩精品| 亚洲最大成人av| 欧美日韩国产mv在线观看视频 | 亚洲精品国产色婷婷电影| 有码 亚洲区| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 青春草国产在线视频| 久久久久久久亚洲中文字幕| 成人免费观看视频高清| av一本久久久久| 99热这里只有精品一区| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 99热网站在线观看| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区三区| 久久影院123| 免费观看无遮挡的男女| 欧美成人一区二区免费高清观看| 简卡轻食公司| 人人妻人人爽人人添夜夜欢视频 | 欧美变态另类bdsm刘玥| 日本黄大片高清| 亚洲精品日韩在线中文字幕| 久久99热这里只有精品18| 欧美性猛交╳xxx乱大交人| 亚洲高清免费不卡视频| 国产精品伦人一区二区| 欧美97在线视频| www.av在线官网国产| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产成人久久av| 国产在视频线精品| 国产69精品久久久久777片| videos熟女内射| 亚洲av中文字字幕乱码综合| 亚洲成色77777| 国产极品天堂在线| 国产成人福利小说| 高清在线视频一区二区三区| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| av在线app专区| 国产精品一区二区三区四区免费观看| 亚洲欧美精品自产自拍| 中文欧美无线码| 精品久久久久久久久亚洲| 又粗又硬又长又爽又黄的视频| 欧美zozozo另类| 乱系列少妇在线播放| 国产午夜精品一二区理论片| 中国三级夫妇交换| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 日本一本二区三区精品| 国产成人午夜福利电影在线观看| 欧美激情久久久久久爽电影| 国内精品美女久久久久久| 国产精品偷伦视频观看了| 少妇的逼好多水| 国产精品伦人一区二区| 欧美精品人与动牲交sv欧美| 色哟哟·www| 最后的刺客免费高清国语| 在线亚洲精品国产二区图片欧美 | 久久精品国产亚洲网站| 一级av片app| 日韩电影二区| 免费大片黄手机在线观看| 久久久久久九九精品二区国产| 精品国产三级普通话版| 久久精品久久精品一区二区三区| 乱码一卡2卡4卡精品| 久久久久久久久久成人| 汤姆久久久久久久影院中文字幕| 久久久久久伊人网av| 久久精品综合一区二区三区| 久久影院123| 丰满少妇做爰视频| 欧美丝袜亚洲另类| 一级爰片在线观看| 日韩中字成人| 欧美3d第一页| 日韩av不卡免费在线播放| av卡一久久| a级一级毛片免费在线观看| freevideosex欧美| 成人漫画全彩无遮挡| 18禁裸乳无遮挡免费网站照片| 日本黄色片子视频| 国产伦在线观看视频一区| 亚洲av日韩在线播放| 我的女老师完整版在线观看| 美女内射精品一级片tv| 美女视频免费永久观看网站| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 国产爽快片一区二区三区| 自拍偷自拍亚洲精品老妇| 麻豆成人午夜福利视频| 人人妻人人爽人人添夜夜欢视频 | 日日撸夜夜添| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区国产| 日韩视频在线欧美| 天天躁夜夜躁狠狠久久av| 777米奇影视久久| 热99国产精品久久久久久7| 国产午夜精品一二区理论片| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 中文字幕av成人在线电影| 久久人人爽av亚洲精品天堂 | 人妻一区二区av| 国产综合懂色| 久久女婷五月综合色啪小说 | 国产成人91sexporn| 一区二区三区免费毛片| av在线老鸭窝| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影| 91精品伊人久久大香线蕉| 国产精品精品国产色婷婷| 欧美xxxx黑人xx丫x性爽| 欧美国产精品一级二级三级 | 成人高潮视频无遮挡免费网站| 国产女主播在线喷水免费视频网站| 2021天堂中文幕一二区在线观| 亚洲国产欧美人成| 99久久精品国产国产毛片| 99热这里只有是精品50| 国产有黄有色有爽视频| 一级片'在线观看视频| 最新中文字幕久久久久| 春色校园在线视频观看| 人妻一区二区av| 欧美精品国产亚洲| 免费看av在线观看网站| 精品熟女少妇av免费看| 欧美性猛交╳xxx乱大交人| 观看免费一级毛片| av在线蜜桃| 69人妻影院| 黄色欧美视频在线观看| 国产精品国产三级专区第一集| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产| 精品酒店卫生间| 国产精品国产三级国产av玫瑰| 简卡轻食公司| 五月开心婷婷网| 国产欧美另类精品又又久久亚洲欧美| 一级av片app| 边亲边吃奶的免费视频| 丰满乱子伦码专区| 国产69精品久久久久777片| 国产色婷婷99| 欧美成人午夜免费资源| 搞女人的毛片| 国产精品偷伦视频观看了| 亚洲av一区综合| 亚洲久久久久久中文字幕| 国产男女超爽视频在线观看| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 真实男女啪啪啪动态图| 国产成人精品久久久久久| 男女国产视频网站| 亚洲欧美日韩另类电影网站 | av在线app专区| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 久久女婷五月综合色啪小说 | 亚洲国产欧美人成| 亚洲综合精品二区| 国产一区有黄有色的免费视频| 99久久九九国产精品国产免费| 成人国产av品久久久| 最近中文字幕2019免费版| 欧美日韩精品成人综合77777| 免费观看无遮挡的男女| 建设人人有责人人尽责人人享有的 | 午夜日本视频在线| 夫妻午夜视频| 久久人人爽人人片av| 人妻 亚洲 视频| 91久久精品电影网| 久久久久久伊人网av| 水蜜桃什么品种好| 国产成人freesex在线| 久久精品久久久久久噜噜老黄| 亚洲精品国产av成人精品| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 成人综合一区亚洲| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 91aial.com中文字幕在线观看| 久久韩国三级中文字幕| 天堂网av新在线| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 毛片女人毛片| 精品一区二区三卡| 在线观看av片永久免费下载| av在线播放精品| 久久这里有精品视频免费| 大片电影免费在线观看免费| 人妻 亚洲 视频| 一级a做视频免费观看| 成年av动漫网址| 国内少妇人妻偷人精品xxx网站| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| 人人妻人人爽人人添夜夜欢视频 | 六月丁香七月| 特级一级黄色大片| 免费av毛片视频| 国内精品宾馆在线| 国产伦理片在线播放av一区| 国产精品av视频在线免费观看| 简卡轻食公司| 午夜日本视频在线| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 亚洲av男天堂| 亚洲欧美一区二区三区国产| 久久女婷五月综合色啪小说 | 国产精品精品国产色婷婷| 狠狠精品人妻久久久久久综合| 精品国产露脸久久av麻豆| 亚洲av免费在线观看| 成人二区视频| 激情 狠狠 欧美| 亚洲天堂国产精品一区在线| 亚洲精品日韩在线中文字幕| av卡一久久| 91精品一卡2卡3卡4卡| 亚洲自偷自拍三级| 真实男女啪啪啪动态图| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| av在线观看视频网站免费| 大香蕉97超碰在线| 国产毛片a区久久久久| 亚洲精品色激情综合| 秋霞在线观看毛片| 成人免费观看视频高清| 精品久久久久久久久av| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| av卡一久久| 免费看不卡的av| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| 国产精品久久久久久精品电影| 国产91av在线免费观看| 自拍偷自拍亚洲精品老妇| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影| 少妇熟女欧美另类| 大陆偷拍与自拍| 欧美精品国产亚洲| 超碰97精品在线观看| 国产免费福利视频在线观看| 色播亚洲综合网| 国产伦在线观看视频一区| 免费大片18禁| 久久99热这里只频精品6学生| 别揉我奶头 嗯啊视频| 日日啪夜夜撸| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品999| 搡女人真爽免费视频火全软件| 在线观看人妻少妇| 黄色欧美视频在线观看| 日韩精品有码人妻一区| 亚洲成人一二三区av| 国产极品天堂在线| 亚洲综合精品二区| 久久久久久久久久久免费av| 中国国产av一级| 欧美一级a爱片免费观看看| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站 | 热re99久久精品国产66热6| 1000部很黄的大片| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 国产亚洲最大av| 国产淫语在线视频| 精品久久久久久电影网| 麻豆乱淫一区二区| av天堂中文字幕网| 视频中文字幕在线观看| kizo精华| 久久久精品欧美日韩精品| 亚洲三级黄色毛片| 亚洲av男天堂| 国产爽快片一区二区三区| 又大又黄又爽视频免费| 青春草视频在线免费观看| 欧美性猛交╳xxx乱大交人| 网址你懂的国产日韩在线| 精品一区二区三区视频在线| 久久国产乱子免费精品| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 亚洲最大成人中文| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 久久久久精品性色| 欧美精品人与动牲交sv欧美| 禁无遮挡网站| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区| 国产精品一区二区在线观看99| 国产高清有码在线观看视频| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 老女人水多毛片| 亚洲一级一片aⅴ在线观看| a级一级毛片免费在线观看| 国精品久久久久久国模美| 在线天堂最新版资源| 国产 精品1| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 欧美精品一区二区大全| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| 1000部很黄的大片| 毛片女人毛片| 国产黄片美女视频| 欧美性猛交╳xxx乱大交人| 日韩视频在线欧美| 色吧在线观看| 伊人久久国产一区二区| 久久国产乱子免费精品| 韩国av在线不卡| 亚洲精品日韩在线中文字幕| 日韩免费高清中文字幕av| 最近中文字幕2019免费版| videossex国产| 美女脱内裤让男人舔精品视频| 成人无遮挡网站| 欧美人与善性xxx| 免费观看性生交大片5| 人人妻人人爽人人添夜夜欢视频 | 六月丁香七月| 国产精品一区二区在线观看99| av在线播放精品| 久久精品国产亚洲av涩爱| 黄色怎么调成土黄色| 人妻制服诱惑在线中文字幕| 美女内射精品一级片tv| 国产黄色免费在线视频| 高清在线视频一区二区三区| 听说在线观看完整版免费高清| 国产av码专区亚洲av| 免费黄色在线免费观看| 一级毛片 在线播放| 欧美老熟妇乱子伦牲交| 免费观看的影片在线观看| 成人黄色视频免费在线看| 青春草视频在线免费观看| 一二三四中文在线观看免费高清| 中文字幕av成人在线电影| 国产在线一区二区三区精| 久久影院123| 亚洲电影在线观看av| 色视频www国产| 18禁裸乳无遮挡动漫免费视频 | a级毛片免费高清观看在线播放| 欧美老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 18禁在线播放成人免费| 少妇的逼水好多| 一级毛片电影观看| 国产精品人妻久久久久久| 亚洲国产欧美人成| 国产欧美日韩精品一区二区| 噜噜噜噜噜久久久久久91| 波多野结衣巨乳人妻| 成人特级av手机在线观看| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 国产在线男女| 听说在线观看完整版免费高清| 精品午夜福利在线看| 日韩一区二区视频免费看| 精品一区在线观看国产| 国产伦在线观看视频一区| 国产成人免费无遮挡视频| 国产精品久久久久久久电影| 下体分泌物呈黄色| 免费看a级黄色片| 国产一级毛片在线| 日本wwww免费看| 尤物成人国产欧美一区二区三区| 亚洲av免费在线观看| 亚洲丝袜综合中文字幕| 欧美另类一区| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 中文资源天堂在线| 色视频在线一区二区三区| 国产欧美亚洲国产| 久久影院123| 白带黄色成豆腐渣| 国产在视频线精品| 亚洲精品自拍成人| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 欧美日韩一区二区视频在线观看视频在线 | 极品少妇高潮喷水抽搐| 综合色丁香网| 永久网站在线| 成年免费大片在线观看| 亚洲伊人久久精品综合| 男女无遮挡免费网站观看| 欧美国产精品一级二级三级 |