• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis

    2014-04-20 09:24:16LVYingchunZHENGRongZUOTaoWANGYumingLIZhaojieXUEYongXUEChanghuandTANGQingjuan
    Journal of Ocean University of China 2014年5期

    LV Yingchun, ZHENG Rong, ZUO Tao, WANG Yuming, LI Zhaojie, XUE Yong, XUE Changhu, and TANG Qingjuan

    College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis

    LV Yingchun#, ZHENG Rong#, ZUO Tao, WANG Yuming, LI Zhaojie, XUE Yong, XUE Changhu, and TANG Qingjuan*

    College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene (COI) was used to identifing five sea cucumber species (Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

    sea cucumber; mtDNA; COI gene; species identification; PCR-RFLP

    1 Introduction

    Sea cucumber (Echinodermata: Holothuroidea), a traditional seafood in Asia, has recently become an expensive tonic food. Because of its various biological activities including anti-tumor, immunoregulatory, anti-atherosclerotic and anti-aging property, sea cucumber are believed to have high nutritional and medicinal value (Hirata et al., 2005). In the past two decades, sea cucumber have become one of the most valuable seafoods in Asian countries (FAO, 2008). Currently, there are several deepprocessing products, such as dried and canned sea cucumber and sea cucumber capsules. With the rapid expansion and intensification of sea cucumber market, a series of commercial frauds appeared, which included mislabeling and substitution of high-value species with low-value ones. The rapid identification of sea cucumber species is important for maintaining sea cucumber quality and protecting the right of the consumers.

    About 1400 species of sea cucumber around the world belong to 25 families, 6 orders (Smiley, 1994). More than 140 species of sea cucumber have been described in China Sea, of them approximately 20 are believed to have high commercial value as food (Chen, 2003). The traditional methods of identifying sea cucumber to family or order generally based on their morphological characteristics, such as tentacles, tentacular retractor muscles, internal respiratory trees, trunk podia, tube feet, esophageal calcareous rings and dermal ossicles. However, to species, the difference in morphological characteristics is usually too subtle to be used (Arndt et al., 1996). As the ossicles of body walls, the main characteristics of a species, are highly variable, and the composition of body wall spicules are not applicable to the identification of sea cucumber species (Levin and Gudimova, 1997; Gudimova, 1991; Toral-Granda, 2005). In addition, visual authentication of sea cucumbers is often difficult as most of morphological characteristics will disappear during processing, particularly when sea cucumber are pulverized or cut into pieces. An alternative of sea cucumber identification is species-specific chemical constitution. Kalinin et al. (1994) have successfully applied the distribution of different triterpene glycosides to the taxonomy of sea cucumber in order Aspidochirotida. With glycoside distribution and morphological characteristics, Levin et al. (1985, 1986) described the taxonomic relationship between the North Pacific representatives of family Stichopodidae and order Aspidochirotida. However, this chemical approach is not effective for deeply processed sea cucumber, because it requires the purification of species-specificchemical components, which is complicate and difficult when sea cucumber is processed.

    In order to avoid the difficulty of species identification on morphological characteristics and species-specific chemical constitution, diverse methods of identifying marine species through DNA analysis have been reported. These methods included PCR and sequencing, forensically informative nucleotide sequencing (FINS), rapid analysis of polymorphic DNA (RAPD), single-stranded conformation polymorphism and restriction fragment length polymorphism (RFLP) (Lockley and Bardsley, 2000; Comi et al., 2005; Gil, 2007; Aranceta et al., 2011; Espi?eira et al., 2009; Botti and Giuffra, 2010). Of these methods, direct sequencing of PCR products and FINs require expensive equipments and agents. RAPD is complex in bands profile and poor in reproducibility (Mochizuki et al., 1997; Kac, 2000). RFLP is rapid and simple, which has been extensively used to identifying diverse fish species (Di Finizio et al., 2007; Hsieh et al., 2007; Rea et al., 2009; Chuang et al., 2012). The sequence divergence of mitochondrial cytochrome oxidase I gene (COI) can be used to identifing closely related species of most animals (Hebert et al., 2003). Actualy, it has been used to identifying sea cucumber species (Arndt et al., 1996; Zuo et al., 2012). Therefore, the aim of this study was to identify and distinguish sea cucumber species through PCR-RFLP analysis of COI.

    2 Materials and Methods

    2.1 Materials

    Fresh sea cucumber individuals of Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora were purchased from a retail market in Qingdao, China. Species identification was initially performed according to their taxonomic characteristics of dermal ossicles (Liao, 1997; Massin, 1999), and subsequently confirmed by DNA sequence analysis of COI by referring to the deposited in GenBank. After identification, the muscle tissue of these sea cucumber species each was sampled and preserved in ethanol. These sea cucumber species are commonly consumed and easily available in market. Dried and frozen sea cucumber samples were collected from local supermarket and retail market located in the same area, and treated as were done for the fresh sea cucumber individuals.

    2.2 DNA Isolation

    The genomic DNA was isolated from 100 mg of muscle with modified CTAB method (Grewe et al., 1993). The DNA concentration was measured on a UV-2550 spectrophotometer (Shimadzu, Japan). DNA was stored at -20℃.

    2.3 COI Gene Amplification

    To amplify the 692 bp fragment of COI, a pair of primers, COIef, 5’-ATA ATG ATA GGA GGR TTT GG-3’ and COIer, 5’-GCT CGT GTR TCT ACR TCC AT-3’ (Arndt et al., 1996) was used. On a MJ Mini Personal Thermal Cycler (BIO-RAD, USA), PCR was performed in a volume of 50 μL containing 100 ng DNA, 5 μL of 10× PCR buffer, 1 μL of dNTP (10 mmol L-1), 3 μL of MgCl2(25 mmol L-1), 1 μL of each primer (10 μmol L-1), and 1 μL of 5 U μL-1of Taq DNA polymerase (TaKaRa, Japan). The reaction was thermocycled by denaturing at 94℃ 5 min, followed by 30 cycles at denaturing at 94℃ for 50 s, annealing at 46℃ for 1 min, and extending at 72℃ for 1 min, and a extra extension at 72℃ for 10 min. The PCR product was analyzed through electrophoresis in 1% agarose gel, and purified with an AxyGenTMDNA gel extraction kit (Beijing, China). The purified DNA was cloned into a pUCm-T vector (BBI, Sangon, China) following manufacturer’s procedure, and sequenced by Sangon Biotech Co., Ltd. (Shanghai, China).

    2.4 RFLP Analysis

    The 692 bp fragment of five sea cucumbers was analyzed using DNAStar (version 6.1; DNASTAR Inc., Madison, WI) and DNAMAN (version 6.0; Lynnon Biosoft, Quebec, Canada) software to detect the restriction sites suitable for the characterization of these species.

    Five restriction endonucleases, BamHI, KpnI, PstI, XbaI and Eco31I (Fermentas, MBI, USA), were chosen for RFLP analysis. A 30 μL reaction mixture containing 10 μL of PCR product, 1 FDU of each enzyme and 2 μL of 10× Fast Digest Universal Buffer (Fermentas, MBI, USA) was incubated at 37℃ for 15 min. The restriction fragments were separated in 10% native-polyacrylamide gel electrophoresis (PAGE) at 100 V for 2 h with BIO-RAD PowerPac Universal (USA). The length of fragments was determined by referring to a DL2000 marker (TaKaRa, Japan). The gel was visualized under UV light and photographed using Tanon GIS-2008 (Shanghai, China). The analysis was performed at least 3 times for each species.

    To validate species-specific PCR-RFLP assay, two species were discretionarily chosen from the five reference sea cucumber species to prepare ten mixtures of the same amount of DNA. Then, PCR-RFLP was analyzed in order to distinguish each of them.

    3 Results and Discussion

    The mitochondrial DNA (mtDNA) inherits maternally, which acts independently of nuclear DNA (nDNA) (Taanman, 1999). Compared with nDNA, mtDNA is devoid of introns, pseudogenes, repetitive sequences, and recombination sites that are generally associated with sexual processes (Avise et al., 1987; Linacre and Tobe, 2011). The sequence of mtDNA is more conservative than that of nDNA (Rokas et al., 2003). The base substitution rate in mtDNA is higher than that in nDNA; thus, mutations can arise in a population more rapidly (Brown et al., 1979; Cawthorn et al., 2012). Accordingly, several mtDNA genes have been commonly used as genetic markers for species identification, which included COI,16S rRNA, 18S rRNA, and Cytb (Joshi et al., 2004; Chen et al., 2005; Naderi et al., 2007). With BamHI, KpnI, PstI, XbaI and Eco31I, the 692 bp fragment of mitochondrial COI was digested, yielding RFLP among sea cucumber species. Five sea cucumber species, A. japonicus, C. frondosa, T. ananas, P. californicus, and A. lecanora, were easily identifiable with the RFLP yielded.

    3.1 Use of Mitochondrial COI for Species Identification of Sea Cucumbers

    In this study, COI of five sea cucumber species was amplified, yielding a 690 bp fragment as expected (Fig.1). The 690 bp COI from five sea cucumber species fully matched that deposited in GenBank with high similarities ranging from 98% to 100%.

    Fig.1 PCR product of COI of five sea cucumber species. 1% agarose gel; M, DL2000 Marker (Takala); N, negative control; 1, Apostichopus japonicas; 2, Cucumaria frondosa; 3, Thelenota ananas; 4, Parastichopus californicus; 5, Actinopyga lecanora.

    3.2 Species Identification by PCR-RFLP of COI

    PCR-RFLP analysis is a well-established technique for rapid identification of species in food science (Lin and Hwang, 2007). After amplification and sequencing, the sequences were analyzed using DNAMAN 6.0 software. According to the restriction map of the sequences, BamHI, KpnI, PstI, XbaI and Eco31I were selected to differentiate each sea cucumber species. The restriction sites and the sizes of the fragments cleaved by each restriction enzyme were listed in Table 1.

    Table 1 Positions of digestion sites of selected endonucleases on the amplified 692 bp fragment of cytochrome oxidase subunit I gene and restriction fragment length in tested sea cucumbers

    The length of these restriction fragments was different from each other and the minimum length difference between them was more than 30 bp which can be easily resolved in PAGE. However, DNA fragments less than 50 bp were not applicable to the identification because these short fragments might be primer dimmers and is difficult to visualize. Thus, to avoid the generation of ambiguous fragments, an endonuclease was selected if its restriction fragments were all more than 100 bp in length.

    RFLP analysis revealed that five sea cucumber species examined in this study could be distinguished using the restriction enzymes selected (Fig.2). Digesting with BamHI generated two specific restriction fragments for P. californicus (205 and 487 bp). Digesting with KpnI generated two specific fragments for C. frondosa (98 and 594 bp). Digesting with PstI and Eco31I generated three specific fragments for A. japonicus (132, 236, and 324 bp). Digesting with Eco31I generated two specific fragments for T. ananas (236 and 456 bp). A common restriction pattern (184, 236, and 272 bp) was observed in A. lecanora when its DNA was digested with XbaI and Eco31I.

    Fig.2 Restriction fragments generated through BamHI, KpnI, PstI, XbaI and Eco31I digestion and 10% native-PAGE. M, DL2000 Marker (Takala); 1, Parastichopus californicus; 2, Cucumaria frondosa; 3, Apostichopus japonicas; 4, Thelenota ananas; 5, Actinopyga lecanora.

    Table 2 Species identification of the artificial mixtures prepared with reference sea cucumbers through PCR-RFLP assay

    PCR-RFLP analysis has the advantage of clearly de-tecting and identifying the target species in mixed products. To assess the capability of the PCR-RFLP assay in simultaneously detecting various species in one sample, artificially generated mixtures containing the same amounts of COI gene from two sea cucumber species discretionarily chosen from the five reference sea cucumbers were analyzed. Our results showed that the two sea cucumber species were simultaneously detected in the ten mixtures (Fig.3 and Table 2), indicating that PCRRFLP analysis can effectively identify at least two sea cucumber species in one sample.

    Fig.3 Species identification through PCR-RFLP analysis. M, DL2000 Marker (Takala); 1, P. cali & C. fron; 2, P. cali & A. japo; 3, P. cali & T. anan; 4, C. fron & A. japo; 5, C. fron & T. anan; 6, A. japo & T. anan; 7, P. cali & A. leca; 8, C. fron & A. leca; 9, A. japo & A. leca; 10, T. anan & A. leca. P. cali, Parastichopus californicus; C. fron, Cucumaria frondosa; A. japo, Apostichopus japonicus; T. anan, Thelenota ananas; A. leca, Actinopyga lecanora.

    In conclusion, PCR-RFLP analysis developed in this study is a reliable, simple and rapid method for the unambiguous identification of sea cucumber species. With appropriate restriction enzymes, this method is applicable to identifying a wider range of sea cucumber species. It will serve as a useful tool for quality control and tracking sea cucumber products, preventing commercial fraud.

    Acknowledgements

    This research was supported by National Natural Science Foundation of China (Nos. 31101281 and 31071525) and National Marine Public Welfare Scientific Research Project of China (No. 201105029).

    Aranceta-G, F., Perez-E, R., and Cruz, P., 2011. PCR-SSCP method for genetic differentiation of canned abalone and commercial gastropods in the Mexican retail market. Food Control, 22: 1015-1020.

    Arndt, A., Marquez, C., Lambert, P., and Smith, M. J., 1996. Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 6 (3): 425-437.

    Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C., 1987. The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18: 489-522.

    Botti, S., and Giuffra, E., 2010. Oligonucleotide indexing of DNA barcode: Identification of tuna and other scombrid species in food products. BMC Biotechnology, 10: 60.

    Brown, M. W., Georage, M., and Wilson, A. C., 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 79: 3246-3250.

    Cawthorn, D., Steinman, H., and Witthuhn, R., 2012. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene, 491 (1): 40-48.

    Chen, J. X., 2003. Overview of sea cucumber farming and sea ranching practices in China. Beche-de-mer Information Bulletin, 18: 18-23.

    Chen, S. Y., Su, Y. H., Wu, S. F., Sha, T., and Zhang, Y. P., 2005. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Molecular Phylogenetics and Evolution, 37 (3): 804-814.

    Chuang, P., Chen M., and Shiao, J., 2012. Identification of tuna species by a real-time polymerase chain reaction technique. Food Chemistry, 133: 1055-1061.

    Comi, G., Iacumin, L., Rantsiou, K., Cantoni, C., and Cocolin, L., 2005. Molecular methods for the differentiation of species used in production of codfish can detect commercial frauds. Food Control, 16 (1): 37-42.

    Di Finizio, A., Guerriero, G., Russo, G. L., and Ciarcia, G., 2007. Identification of gadoid species (Pisces, Gadidae) by sequencing and PCR-RFLP analysis of mitochondrial 12S and 16S rRNA gene fragments. European Food Research and Technology, 225: 337-344.

    Espi?eira, M., González-Lavín, N., Vieites, J. M., and Santaclara, F. J., 2009. Development of a method for the genetic identification of commercial bivalve species based on mitochondrial 18S rRNA sequences. Journal of Agricultural and Food Chemistry, 57: 495-502.

    FAO, 2008. Sea cucumbers: A global review of fisheries and trade. In: Fisheries and Aquaculture Technical Paper, 516. FAO, Rome, 317pp.

    Gil, L. A., 2007. PCR-based methods for fish and fishery products authentication. Trends in Food Science and Technology, 18 (11): 558-566.

    Grewe, P. M., Krueger, C. C., Aquadro, C. F., Bermingham, E., Kincaid, H. L., and May, B., 1993. Mitochondrial DNA variation among lake trout (Salvenilus namaycush) strains stocked into Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 50: 2397-2403.

    Gudimova, E. N., 1991. Methods of quantitative analysis of the sclerite shapes of the sea cucumbers belonging to the genus Cucumaria. Biologia Morya, 6: 80-87.

    Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R., 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences, 270: 96-99.

    Hirata, T., Zaima, N., Yamashita, K., Ryoko, N., Xue, C. H., and Sugawara, T., 2005. Recent advances in researches on physiologically active substances in holothurians. Journal of Ocean University of China, 4 (3): 193-197.

    Hsieh, H. S., Chai, T., and Hwang, D. F., 2007. Using the PCR-RFLP method to identify the species of different processed products of billfish meats. Food Control, 18 (4): 369-374.

    Joshi, M. B., Rout, P. K., Mandal, A. K., Tyler-Smith, C., Singh, L., and Thangaraj, K., 2004. Phylogeography and origin ofIndian domestic goats. Molecular Biology and Evolution, 21 (3): 454-462.

    Kac, G., 2000. Molecular approaches to the study of dermatophytes. Medical Mycology, 38 (5): 329-336.

    Kalinin, V. I., Levin, V. S., and Stonik, V. A., 1994. The Chemical Morphology: Triterpene Glycosides of Sea Cucumbers (Holothurioidea, Echinodermata). Dalnauka, Vladivostok, 284pp (in Russian).

    Levin, V. S., Kalinin, V. I., Maltsev, I. I., and Stonik, V. A., 1985. Structure of triterpene glycosides and taxonomy of aspidochirotian sea cucumbers. Biologiya Morya, 2: 3-11.

    Levin, V. S., Kalinin, V. I., Fedorov, S. N., and Smiley, S., 1986. Structure of triterpene glycosides and taxonomical position of two species of the family Stichopodidae. Biologiya Morya, 4: 72-77.

    Levin, V. S., and Gudimova, E. N., 1997. On taxonomical relationships of the sea cucumbers Cucumaria frondosa and C. japonica (Dendrochirotida, Cucumariidae). Zoologichesky Zhurnal, 76: 575-584.

    Liao, Y. L., 1997. Fauna Sincia: Phylum Echinodermata, Class Holothuroidea. Science Press, Beijing, 334pp.

    Lin, W. F., and Hwang, D. F., 2007. Application of PCR-RFLP analysis on species identification of canned tuna. Food Control, 18 (9): 1050-1057.

    Linacre, A., and Tobe, S., 2011. An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2 (1): 2.

    Lockley, A. K., and Bardsley, R. G., 2000. DNA based-methods for food authentication. Trends in Food Science and Technology, 11: 67-77.

    Massin, C., 1999. Reef-dwelling Holothuroidea (Echinodermata) of the Spermonde Archipelago (Southwest Sulawesi, Indonesia). Zoologische Verhandelingen, 329: 3-144.

    Mochizuki, T., Sugie, N., and Uehara, M., 1997. Random amplification of polymorphic DNA is useful for the identification of several anthropophilic dermaophytes. Mycoses, 40: 405-409.

    Naderi, S., Rezaei, H. R., Taberlet, P., Zundel, S., Rafat, S. A., Naghash, H. R., el-Barody, M. A., Ertugrul, O., and Pompanon, F., 2007. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One, 2 (10), e1012.

    Rea, S., Storani, G., Mascaro, N., Stocchi, R., and Loschi, A. R., 2009. Species identification in anchovy pastes from the market by PCR-RFLP technique. Food Control, 20 (5): 515-520.

    Rokas, A., Ladoukakis, E., and Zouros, E., 2003. Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution, 18: 411-417.

    Smiley, S., 1994. Holothuroidea. In: Microscopic Anatomy of Invertebrates, Echinodermata, 14. Harrison, F. W., and Chia, F. S., eds., Wiley-Liss, New York, 401-471.

    Taanman, J. W., 1999. The mitochondrial genome: Structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1410: 103-123.

    Toral-Granda, M., 2005. The use of calcareous spicules for the identification of the Galápagos sea cucumber Isostichopus fuscus on the international market. SPC Beche-de-mer Information Bulletin, 22: 3-5.

    Zuo, T., Li, Z., Lv, Y., Duan, G., Wang, C., Tang, Q., Xue, Y., and Xue, C., 2012. Rapid identification of sea cucumber species with multiplex-PCR. Food Control, 26 (1): 58-62.

    (Edited by Qiu Yantao)

    (Received July 7, 2013; revised November 4, 2013; accepted May 28, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82032597

    E-mail: tangqingjuan@ouc.edu.cn

    # These two authors contributed equally to the present work.

    亚洲成人手机| 午夜福利在线观看免费完整高清在| 国产精品偷伦视频观看了| 99久久中文字幕三级久久日本| 欧美性感艳星| a级毛色黄片| 中文字幕久久专区| 欧美精品一区二区大全| 自拍欧美九色日韩亚洲蝌蚪91 | 久久女婷五月综合色啪小说| 国产午夜精品久久久久久一区二区三区| 精品久久久久久久久av| 熟女人妻精品中文字幕| 在线观看人妻少妇| 国产精品人妻久久久久久| 亚州av有码| a级毛片在线看网站| 日产精品乱码卡一卡2卡三| 一区在线观看完整版| 色吧在线观看| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美亚洲二区| 免费观看av网站的网址| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| 乱人伦中国视频| 伦理电影大哥的女人| 亚洲欧美精品专区久久| 综合色丁香网| 中文字幕亚洲精品专区| 人妻制服诱惑在线中文字幕| 亚洲怡红院男人天堂| 99九九线精品视频在线观看视频| 日韩 亚洲 欧美在线| 日韩精品免费视频一区二区三区 | 99热6这里只有精品| 一个人免费看片子| 精品熟女少妇av免费看| 色吧在线观看| 国产 精品1| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 亚洲av男天堂| 成年人午夜在线观看视频| 又爽又黄a免费视频| 国产精品一区二区在线观看99| 最新中文字幕久久久久| 少妇猛男粗大的猛烈进出视频| 如何舔出高潮| 久久久久久久久久人人人人人人| 一级毛片 在线播放| 精品卡一卡二卡四卡免费| 熟妇人妻不卡中文字幕| 成人免费观看视频高清| 一本色道久久久久久精品综合| 午夜老司机福利剧场| 国产乱人偷精品视频| 免费看不卡的av| 久久久午夜欧美精品| 成人影院久久| 三上悠亚av全集在线观看 | 春色校园在线视频观看| av专区在线播放| 成人毛片a级毛片在线播放| 一级片'在线观看视频| 高清欧美精品videossex| 国产一区有黄有色的免费视频| 你懂的网址亚洲精品在线观看| 一级毛片 在线播放| 中文字幕精品免费在线观看视频 | 成年av动漫网址| 成人免费观看视频高清| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 久久人妻熟女aⅴ| 99久久中文字幕三级久久日本| 美女cb高潮喷水在线观看| 国产精品麻豆人妻色哟哟久久| 欧美区成人在线视频| 国产成人91sexporn| 久久午夜福利片| 亚洲国产精品国产精品| 日本黄大片高清| 大码成人一级视频| 亚洲四区av| 欧美97在线视频| 欧美精品一区二区大全| 在线观看国产h片| 三级国产精品片| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 91精品伊人久久大香线蕉| 久久精品国产鲁丝片午夜精品| 99视频精品全部免费 在线| 中国三级夫妇交换| 亚洲欧美日韩另类电影网站| 黄色配什么色好看| 亚洲国产精品专区欧美| 乱系列少妇在线播放| 久久久欧美国产精品| 自拍偷自拍亚洲精品老妇| 色视频在线一区二区三区| 久久久久久久大尺度免费视频| 大香蕉久久网| 精品午夜福利在线看| 精品人妻熟女av久视频| 亚洲国产日韩一区二区| 黑人高潮一二区| 免费大片黄手机在线观看| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| h日本视频在线播放| 十分钟在线观看高清视频www | 99re6热这里在线精品视频| 看非洲黑人一级黄片| 大片免费播放器 马上看| 一个人免费看片子| 久久99蜜桃精品久久| 一区二区三区四区激情视频| 日韩视频在线欧美| 一区在线观看完整版| 嫩草影院入口| 80岁老熟妇乱子伦牲交| av福利片在线| 一区二区三区乱码不卡18| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 久久午夜综合久久蜜桃| 又爽又黄a免费视频| 纵有疾风起免费观看全集完整版| 最近中文字幕高清免费大全6| 久久精品国产亚洲av天美| 国产av码专区亚洲av| 大片电影免费在线观看免费| 久久精品国产亚洲网站| 欧美最新免费一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲人与动物交配视频| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 日本午夜av视频| 精品国产国语对白av| 乱码一卡2卡4卡精品| av天堂中文字幕网| 成人国产麻豆网| 一区二区三区乱码不卡18| 国产精品久久久久久久久免| 人人妻人人爽人人添夜夜欢视频 | 国产精品蜜桃在线观看| 人妻夜夜爽99麻豆av| av天堂久久9| 亚洲国产成人一精品久久久| 边亲边吃奶的免费视频| 美女福利国产在线| 久热这里只有精品99| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| av在线老鸭窝| 国产 一区精品| av在线播放精品| 久热久热在线精品观看| 91久久精品电影网| 卡戴珊不雅视频在线播放| 亚洲不卡免费看| 黑丝袜美女国产一区| √禁漫天堂资源中文www| 妹子高潮喷水视频| 午夜福利网站1000一区二区三区| 国精品久久久久久国模美| 一级爰片在线观看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 久久狼人影院| 色婷婷av一区二区三区视频| 亚洲成人一二三区av| 美女脱内裤让男人舔精品视频| 一级毛片电影观看| 国产欧美日韩一区二区三区在线 | 久久久国产一区二区| 婷婷色av中文字幕| 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| 成人美女网站在线观看视频| 日韩精品有码人妻一区| 亚洲国产精品成人久久小说| 黄色一级大片看看| 91久久精品国产一区二区三区| 纯流量卡能插随身wifi吗| 久久99一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 男女啪啪激烈高潮av片| 久久韩国三级中文字幕| 人妻 亚洲 视频| av网站免费在线观看视频| 国产精品欧美亚洲77777| 麻豆精品久久久久久蜜桃| 内射极品少妇av片p| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 国产精品偷伦视频观看了| 在线观看国产h片| 黄色视频在线播放观看不卡| 国产亚洲av片在线观看秒播厂| 日韩,欧美,国产一区二区三区| 22中文网久久字幕| 九色成人免费人妻av| 国精品久久久久久国模美| 18禁动态无遮挡网站| 精品亚洲成国产av| 伊人久久精品亚洲午夜| av网站免费在线观看视频| 日韩av不卡免费在线播放| 欧美日韩视频精品一区| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 麻豆成人午夜福利视频| 新久久久久国产一级毛片| 三级经典国产精品| 人人妻人人澡人人看| 高清不卡的av网站| 亚洲精品乱码久久久v下载方式| 女性生殖器流出的白浆| 最近最新中文字幕免费大全7| 亚洲精品日本国产第一区| 人人妻人人看人人澡| 免费观看a级毛片全部| 黄色怎么调成土黄色| 国产日韩欧美亚洲二区| 国产欧美日韩综合在线一区二区 | 国产毛片在线视频| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 国产精品.久久久| 丰满乱子伦码专区| 高清在线视频一区二区三区| 日韩中字成人| 国产精品一二三区在线看| 亚洲在久久综合| 午夜久久久在线观看| 亚洲av在线观看美女高潮| 一区二区三区精品91| 久久国内精品自在自线图片| 成人免费观看视频高清| 午夜福利视频精品| 一个人看视频在线观看www免费| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线播| 日韩av在线免费看完整版不卡| 免费观看性生交大片5| a级一级毛片免费在线观看| 女人精品久久久久毛片| 精品99又大又爽又粗少妇毛片| 日韩人妻高清精品专区| 亚洲国产色片| 免费大片黄手机在线观看| 91久久精品国产一区二区三区| 在线观看人妻少妇| www.色视频.com| 韩国高清视频一区二区三区| 一级,二级,三级黄色视频| 一本大道久久a久久精品| 看免费成人av毛片| 狂野欧美激情性xxxx在线观看| 久久久国产欧美日韩av| 极品人妻少妇av视频| 久久99热6这里只有精品| 午夜福利在线观看免费完整高清在| 啦啦啦视频在线资源免费观看| 午夜免费男女啪啪视频观看| 多毛熟女@视频| videos熟女内射| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 22中文网久久字幕| 欧美日韩av久久| 亚洲电影在线观看av| 国精品久久久久久国模美| 91精品一卡2卡3卡4卡| 久久人人爽人人爽人人片va| 国产高清三级在线| 欧美bdsm另类| 久久99热6这里只有精品| 欧美精品人与动牲交sv欧美| 久久久久精品性色| 欧美xxⅹ黑人| 国产精品熟女久久久久浪| 五月开心婷婷网| 综合色丁香网| 伦精品一区二区三区| a级毛片免费高清观看在线播放| 少妇精品久久久久久久| 日日撸夜夜添| 在线观看人妻少妇| 亚洲一级一片aⅴ在线观看| 熟妇人妻不卡中文字幕| 视频区图区小说| 欧美日韩视频高清一区二区三区二| 赤兔流量卡办理| 最新中文字幕久久久久| 中文字幕免费在线视频6| 在线观看av片永久免费下载| 久久午夜福利片| 九草在线视频观看| 一二三四中文在线观看免费高清| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 热99国产精品久久久久久7| 成人免费观看视频高清| 午夜福利视频精品| 波野结衣二区三区在线| 嫩草影院入口| 99精国产麻豆久久婷婷| 毛片一级片免费看久久久久| 成人免费观看视频高清| 大片免费播放器 马上看| 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美在线精品| 亚洲av福利一区| 老女人水多毛片| 免费播放大片免费观看视频在线观看| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 青春草国产在线视频| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 我要看日韩黄色一级片| 人人妻人人爽人人添夜夜欢视频 | 久久精品熟女亚洲av麻豆精品| 18禁裸乳无遮挡动漫免费视频| 久久精品国产鲁丝片午夜精品| 视频区图区小说| 亚洲精品国产av蜜桃| 看非洲黑人一级黄片| 香蕉精品网在线| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 深夜a级毛片| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 日本黄色片子视频| 如日韩欧美国产精品一区二区三区 | 精品少妇内射三级| 波野结衣二区三区在线| 最近手机中文字幕大全| 人妻夜夜爽99麻豆av| 女性被躁到高潮视频| 欧美xxⅹ黑人| 乱系列少妇在线播放| 亚洲av欧美aⅴ国产| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 人妻系列 视频| 伊人亚洲综合成人网| 欧美精品亚洲一区二区| freevideosex欧美| 一级av片app| 少妇人妻一区二区三区视频| 亚洲精品456在线播放app| 欧美精品一区二区免费开放| 亚洲国产成人一精品久久久| 极品人妻少妇av视频| 高清在线视频一区二区三区| 亚洲自偷自拍三级| 久久婷婷青草| 亚洲精品国产成人久久av| 赤兔流量卡办理| 国产高清国产精品国产三级| 欧美+日韩+精品| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| 亚洲情色 制服丝袜| 欧美+日韩+精品| 最近中文字幕高清免费大全6| 国产欧美亚洲国产| 日韩欧美精品免费久久| 亚洲国产精品一区二区三区在线| 黄色视频在线播放观看不卡| 免费人妻精品一区二区三区视频| 欧美日韩亚洲高清精品| 色婷婷av一区二区三区视频| 日本欧美视频一区| 免费久久久久久久精品成人欧美视频 | 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 视频中文字幕在线观看| 国产成人精品福利久久| videossex国产| 日本免费在线观看一区| 五月天丁香电影| 国内少妇人妻偷人精品xxx网站| 免费黄色在线免费观看| 91aial.com中文字幕在线观看| 特大巨黑吊av在线直播| 国产成人免费观看mmmm| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 免费大片黄手机在线观看| 18禁在线无遮挡免费观看视频| 你懂的网址亚洲精品在线观看| 五月天丁香电影| 男女边摸边吃奶| 啦啦啦啦在线视频资源| 人人妻人人澡人人看| 精品亚洲成a人片在线观看| 久久久久视频综合| 少妇被粗大的猛进出69影院 | 国产精品无大码| 在线观看www视频免费| 精品国产乱码久久久久久小说| 黑人巨大精品欧美一区二区蜜桃 | 日韩精品有码人妻一区| 国产高清三级在线| 91久久精品国产一区二区三区| 99国产精品免费福利视频| 男男h啪啪无遮挡| 最近中文字幕2019免费版| 五月天丁香电影| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 又粗又硬又长又爽又黄的视频| 美女中出高潮动态图| 国产精品一区二区在线不卡| 岛国毛片在线播放| 国内精品宾馆在线| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 精品久久久久久电影网| 夜夜爽夜夜爽视频| 免费大片18禁| 欧美日韩综合久久久久久| 久久久久网色| 如日韩欧美国产精品一区二区三区 | 国产中年淑女户外野战色| 国产精品福利在线免费观看| 国产在线一区二区三区精| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 91久久精品电影网| 国产精品久久久久久精品古装| 国产欧美日韩综合在线一区二区 | 一区二区三区精品91| 中文字幕免费在线视频6| 一本色道久久久久久精品综合| 两个人免费观看高清视频 | 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 午夜av观看不卡| 丝瓜视频免费看黄片| 中文精品一卡2卡3卡4更新| 熟女av电影| 卡戴珊不雅视频在线播放| 欧美xxⅹ黑人| 欧美丝袜亚洲另类| 亚洲av男天堂| 久久久欧美国产精品| 啦啦啦视频在线资源免费观看| 欧美三级亚洲精品| 天堂俺去俺来也www色官网| 日韩伦理黄色片| 午夜影院在线不卡| 青青草视频在线视频观看| 久久国产精品大桥未久av | 精品久久久久久久久亚洲| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 欧美日本中文国产一区发布| 日本欧美国产在线视频| 欧美精品一区二区免费开放| 国产亚洲av片在线观看秒播厂| 丰满乱子伦码专区| 国产黄片美女视频| 国产美女午夜福利| 少妇丰满av| 大又大粗又爽又黄少妇毛片口| 9色porny在线观看| 国产有黄有色有爽视频| 韩国av在线不卡| 国产极品粉嫩免费观看在线 | 在线精品无人区一区二区三| 国语对白做爰xxxⅹ性视频网站| 人妻夜夜爽99麻豆av| 婷婷色av中文字幕| 国产精品人妻久久久影院| 熟女av电影| 成人无遮挡网站| 国产永久视频网站| 18禁动态无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品国产av成人精品| 亚洲精品乱码久久久久久按摩| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 十八禁网站网址无遮挡 | 国产极品天堂在线| 日日啪夜夜爽| 亚洲精品国产成人久久av| 亚洲av二区三区四区| 熟女人妻精品中文字幕| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看 | 永久免费av网站大全| 男人狂女人下面高潮的视频| xxx大片免费视频| 欧美人与善性xxx| 亚洲综合精品二区| 国产精品福利在线免费观看| 一个人免费看片子| 观看美女的网站| 亚洲欧美精品自产自拍| 久久精品久久久久久久性| 国产精品国产三级国产av玫瑰| 精品一品国产午夜福利视频| 久久韩国三级中文字幕| 亚洲精品乱码久久久久久按摩| 黑人巨大精品欧美一区二区蜜桃 | 大片电影免费在线观看免费| 免费大片黄手机在线观看| 久久久久精品性色| 一区二区av电影网| 欧美高清成人免费视频www| 成人无遮挡网站| 久久99精品国语久久久| av在线老鸭窝| 久久青草综合色| 国产精品一区二区性色av| 亚洲精品456在线播放app| 啦啦啦在线观看免费高清www| 看免费成人av毛片| 日韩 亚洲 欧美在线| 亚洲国产av新网站| 国产精品国产av在线观看| 18禁在线无遮挡免费观看视频| freevideosex欧美| 国产高清三级在线| 国产高清有码在线观看视频| 美女大奶头黄色视频| 乱人伦中国视频| 青春草亚洲视频在线观看| 欧美三级亚洲精品| 久久久久久久大尺度免费视频| 色哟哟·www| 夫妻性生交免费视频一级片| 国产日韩欧美视频二区| 亚洲av男天堂| 内射极品少妇av片p| 国产淫片久久久久久久久| 亚洲欧洲国产日韩| 在线播放无遮挡| 亚洲综合精品二区| 国产熟女午夜一区二区三区 | 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 国产综合精华液| 纵有疾风起免费观看全集完整版| 高清毛片免费看| 成人漫画全彩无遮挡| 男女免费视频国产| 国产91av在线免费观看| 国产精品一区二区在线不卡| av.在线天堂| 中文字幕亚洲精品专区| 国产视频首页在线观看| 日本免费在线观看一区| 中文字幕制服av| 国产亚洲最大av| 一级毛片黄色毛片免费观看视频| 香蕉精品网在线| 欧美另类一区| 熟女电影av网| 亚洲av不卡在线观看| 多毛熟女@视频| 国产有黄有色有爽视频| 欧美日韩亚洲高清精品| 国产视频首页在线观看| 午夜福利在线观看免费完整高清在| 亚洲精品国产av蜜桃| 国产精品一区二区在线不卡| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| 免费大片18禁| 久久热精品热| av在线老鸭窝| 久久韩国三级中文字幕| 国产精品成人在线| av专区在线播放| 一本久久精品| 最黄视频免费看| 蜜桃在线观看..| 成年人午夜在线观看视频| 亚洲国产精品专区欧美| 日韩,欧美,国产一区二区三区| 一本一本综合久久| 一区二区三区精品91| 伊人久久国产一区二区|