• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Macroalgae Blooms and their Effects on Seagrass Ecosystems

    2014-04-20 09:24:12HANQiuyingandLIUDongyan
    Journal of Ocean University of China 2014年5期

    HAN Qiuying, and LIU Dongyan

    Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, CAS Experimental Station of Integrated Coastal Environment in Muping, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences, Yantai 264003, P. R. China

    Macroalgae Blooms and their Effects on Seagrass Ecosystems

    HAN Qiuying*, and LIU Dongyan

    Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, CAS Experimental Station of Integrated Coastal Environment in Muping, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences, Yantai 264003, P. R. China

    Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on seagrass beds by direct and indirect ways. The competition for living space and using resources is the most direct effect on seagrass beds when macroalgae are blooming in an aquatic ecosystem. The consequence of macroalgae blooms (e.g., light reduction, hypoxia, and decomposition) can produce significant indirect effects on seagrass beds. Light reduction by the macroalgae can decrease the growth and recruitment of seagrasses, and decomposition of macroalgae mats can increase the anoxic and eutrophic conditions, which can further constrict the seagrass growth. Meanwhile, the presence of seagrass shoots can provide substrate for the macroalgae blooms. Controlling nutrient sources from the land to coastal waters is a general efficient way for coastal management. Researching into the synergistical effect of climate change and anthropognic nutrient loads on the interaction between searsasses and macroalgae can provide valuable information to decrease the negative effects of macroalgae blooms on seagrasses in eutrophic areas.

    eutrophication; decline; seagrasses; macroalgae blooms

    1 Introduction

    Seagrass beds have been widely recognized as highly important coastal systems that provide valuable ecosystem services in trapping and storing nutrients and being food resource for animals (Orth et al., 2006). Recently, their vast carbon sink capacity has been quantified (Duarte et al., 2010). Seagrass beds worldwide can provide 19004 $ ha-1at least annually (Costanza et al., 1997). Seagrass decline has been reported in recent years over the world (Orth et al., 2006; Waycott et al., 2009). The environmental effects of excess nutrients are one of causes of seagrass losses (Orth et al., 2006; Burkholder et al., 2007). Nutrient can have different effects on seagrasses based on background concentration of nutrients and seagrass species. In oligotrophic environments, nutrient enrichment can facilitate seagrass growth and biomass (Short, 1983; Alcoverro et al., 1997; Peralta et al., 2003; Invers et al., 2004) or has no effects on seagrasses (Harlin and Thorne-Miller, 1981; Murray et al., 1992; Pederson and Borum, 1993; Pedersen, 1995; Lee and Dunton, 1997). Nutrient enrichment can negatively directly or indirectly impact on seagrasses in eutrophic waters (van Katwijk et al., 2010; Christianen et al., 2012). Nutrients such as nitrate and ammonia can directly impact Zostera marina by toxicity, resulting in decreased rhizome biomass, shoot biomass and density (Burkholder et al., 1992; Short et al., 1995; van Katwijk et al., 2010; Christianen et al., 2012). In eutrophic coastal areas, proliferation of phytoplankton, epiphytic microalgae and fast-growing drifting macroalgae usually occur, promoting light reduction, increasing the sediment organic matter load, which could induce the risk of anoxia and sulfide intrusion into meristematic areas of seagrasses (Pregnall et al., 1984; Holmer and Bondgaard, 2001; Greve et al., 2003), therefore restricting seagrasses growth (Twilley et al., 1985; Nelson and Lee, 2001).

    Excessive growth of fastgrowing macroalgae has appeared in many coastal areas (Table 1). Macroalgae blooms are controlled by physical, chemical, and biological factors (Brush and Nixon, 2010). Generally, at sheltered locations where light is not limiting, nutrients control net primary production of macroalgae in most coastal systems and macroalgal biomass is therefore usually correlated to nutrient inputs (McGlathery et al., 2001). Worldwide, seagrasses experience negative effects from macroalgae blooms (Table 2), often leading to the decline of the seagrass beds. The succession from seagrasses to macroalgae can cause profound ecological changes, altering total system primary productivity, biogeochemical cycling and species composition (McGlathery, 2001). More specifically, sediments may become less stable, waters turn more turbid and nutrient turnover will increase and primary productivity, biomass as well asnursery functions will become more fluctuating (Mc-Glathery et al., 2001, 2007; Nelson, 2009). In a recent review, Thomsen et al., (2012) found that mass macroalgae have stronger affect on seagrasses than a small quantity of macroalgae, ‘rooted’ macroalgae has less effect than floating macroalgae, and bigger species of seagrass are more resistant than smaller species to macroalgae blooms. The negative effects of macroalgae blooms depend on the environmental variables in the region, impacting on the management of seagrass ecosystems subject to high nutrient loadings (Hessing-Lewis et al., 2011). Therefore, it is necessary to study the effect of macroalgae blooms on seagrass ecosystem to further understand the causes and mechanisms of seagrass decline. Our objective is to review the reported effects of macroalgae blooms on seagrass health and discuss the mechanisms leading to these effects. In addition, we discuss the effective measure to reduce the negative effects of macroalgae blooms on seagrass ecosystems and provide further research directions in the future.

    Table 1 List of macroalgae blooms recorded in literatures

    2 Mechanisms Underlying the Negative Effect of Macroalgae Blooms on Seagrasses

    2.1 Direct Effect of Macroalgae Blooms on Seagrasses

    The direct effects of macroalgae on seagrass ecosystems include the competition for space or resources (Druehl, 1973; Williams, 1990; Fourqurean et al., 1995; Ceccherlli and Cinelli, 1997). Competition between seagrasses may have more effects than competition between seagrass and other species at high densities of seagrass (Rose and Dawes, 1999). Multer (1988) found that high biomass of macroalgae appears under the conditions of low and moderate seagrass shoot density, indirectly demonstrating the competitive relationship between seagrasses and macroalgae. When nutrient availability is low, competitive dominance of seagrasses over rhizophytic macroalgae occurs (Fourqurean et al., 1995), and rhizophytic macroalgae could even accelerate seagrass beds in their early successional stage, while in the later stage of bed development, the density of macroalgae declines as the seagrass bed is rebuilt, indicating the acceleration and competition for space between seagrasses and macroalgae (Williams, 1990). Davis and Fourqurean (2001) also demonstrated that under the condition of macroalgae removal, the ratio between C and N in leaf tissue of seagrass is significantly lower, suggesting competition mechanism for N between two species.

    Table 2 Overview of effects of macroalgal blooms on seagrass

    2.2 Indirect Effects of Macroalgae Blooms on Seagrass: Light Reduction

    Light availability is a vital environmental factor affecting seagrass and macroalgae growth. Light reduction by the macroalgae may reduce the growth and recruitment of seagrasses and further affect seagrass ecosystem health. The result of light reduction induced by macroalgae blooms decreases the growth depth of seagrasses (Krause-Jensen et al., 2000; McGlathery, 2001). In highly eutrophic waters, macroalgae species can obtain the highest biomass of 0.5 kg m-2and 0.5 m canopy height (McGlathery, 2001). In Hiroshima Bay (Japan), floating Ulva canopy height can attain 20-30 cm (Sugimoto et al., 2007). Under the conditions of Cladophora vagabunda and Gracilaria tikvahiae blooms, more than 95% of light intensity is reduced from 6 to 8 cm cover (Krause-Jensen et al., 2000). In 3-4 cm ulvoid canopies, over 90% of photosynthetic photon flux density is attenuated (Sugimoto et al., 2007).

    Light limitation may reduce photosynthetic activity of seagrasses. For example, light availability reduction because of macroalgae blooms leads to the shoot density decline of eelgrass in Hamblin Pond (Hauxwell et al., 2001). The macroalgae blooms leading to light reduction for seagrasses are correlated to the duration of the macroalgal cover. Shoot growth does not increase over 10 days after the macroalgae are removed from the seagrass bed, and growth of Thalassia testudinum does not decrease over 10 days when macroalgae are present, suggesting that improving and declining light availability by drift algae does not affect the short-term growth of seagrasses(Irlandi et al., 2004). It may be because the shaded and unshaded shoots of seagrass can utilize the resources together. But in a long period, the macroalgae can significantly decrease the seagrass biomass. For example, under the conditions of 100% macroalgae canopy for 2-3 months, 25% above-ground biomass of seagrass is reduced (Irlandi et al., 2004).

    Carbon translocation and storage capacity between leaves, rhizomes and roots can control the ecological success of seagrasses under light reduction conditions (Lee and Dunton, 1996; Alcoverro et al., 1999; Touchette and Burkholder, 2000; Brun et al., 2002; Peralta et al., 2002). Ammonium assimilation into amino acids and other nutrogen-organic compounds requires carbon skeletons and energy, which are from photosynthesis or mobilized from carbon-reserves in seagrasses (Brun et al., 2008; Villazán et al., 2013). Light reduction from macroalgl blooms may increase the toxicity of ammonium on seagrasses (Brun et al., 2008; Villazán et al., 2013).

    2.3 Indirect Effects of Macroalgae Blooms on Seagrasses: Increasing Water-Column and Sediment Hypoxia

    Macroalgae may release 39% of gross production of themselves after most of the remaining fixed carbon is released (Albert and Valiela, 1994). Decomposition of macroalgae mats may release enormous dissolved organic matter into environment, which may increase biological oxygen demand and lead to the anoxia in eutrophicated waters. Extended hypoxia conditions increase energy requirements of seagrass for photosynthesis and further constrict the seagrass growth. The anoxia condition caused by dense macroalgae mats may change sulfide and nutrient cycles (McGlathery et al., 2007). High sulphide concentration resulting from the anoxia by macoralgae canopies in the seagrass beds can lead to sulphide intrusion into meristematic areas of seagrass, which decreases the maximum photosynthetic rate of seagrass and has an effect on leaf growth (Pedersen et al., 2004). In addition, sulfide concentrations in the pore water rise when plant photosynthesis decreases the oxygen supply to the roots (J?gernsen, 1982). Sulfide accumulation in the sediments may further result in the decrease of the seagrass biomass or mortality (Koch et al., 2007; van der Heide et al., 2012).

    Hypoxia and high sulphide may also decrease productivity of seagrasses by negatively affecting nutrient absorption (Pregnall et al., 1984). Because of the ability to fast absorb nutrients, fast-growing macroalgae can regenerate the nutrient from ambient environment, which can result in the temporary retention of nutrients (McGlathery et al., 1997). High respiration rates may cause a significant release of nutrients from both the sediments and decomposing algae (Sfriso et al., 1987). Under higher releasing rates of nutrients, macroalgae absorbing nutrients from water displace plants uptaking nutrients from sediments. The macroalgae bloom can bring more anthropogenic inputs of nitrogen into seagrass ecosystems, such as that from ammonia (Nelson, 2009). Higher ammonium concentration in ambient water has the deleterious effects on seagrasses (van der Heide et al., 2008). For example, the ammonia levels (>25 μmol L-1) may negatively impact on Zostera marina (van Katwijk et al., 1997), and high ammonium concentration (125 μmol L-1) can lead to the seagrass shoots reduction and seagrass death (Huntington and Boyer, 2008).

    3 Other Effects

    Because sediment is deposited on seagrass beds due to their ability to decrease current velocities and weaken wave energy (Gambi et al., 1990), seagrass presence may actually enhance macoalgae growth on the soft sediments (Tweedley et al., 2008). Macroalgae bloom can result in the sediment erosion, increasing the turbidiy of water under the condition of weak wind and wave action (Canal-Vergés et al., 2010). The turbidity and erosion may lead to the loss of eelgrass meadows by decreasing the light availability (van der Heide et al., 2008) and increasing the risk of seagrass rhizome being uprooted by water (Duarte, 2002; Han et al., 2012). In spring or summer, the degradation of huge amounts of macroalgae results in the break-down of the biological balance in the seagrass ecosystem. Macralgae with fast nutrient turnover rate can faster decompose than seagrass, which invokes nutrient releasing into water and consequently increases the concentration of nutrient, therefore further supporting macroalgae growth (McGlathery et al., 2001). All three effects above-mentioned will result in non-linear responses and favour macroalgae, thus accelerating the replacement of seagrasses by macroalgae. Thus, it is important to study the biomass thresholds of macroalgae that induces the seagrass beds decline for the seagrass ecosystem protection.

    4 Future Needs and Management Implications

    In the future, measures to decrease the negative effects of macroalgae blooms on seagrass ecosystems should be taken. Controlling nutrient sources from land to coastal waters is a general efficient way for management. Eutrophication is serious in many coastal areas due to agriculture, industry, aquaculture waste water. The occurrence of nutrients in excess is necessary for the macroalgae bloom (Hodgkin et al., 1980). There are some reports that seagrass ecosystem restoration is successful after reducing the nutrient loading into coastal areas, in Orbetello lagoon (Italy) (Lenzi et al., 2003), Mondego estuary (Portugal) (Cardoso et al., 2005) and southwest Florida (USA) (Tomasko et al., 2005).

    Climate changes, such as increased temperature and sea level rise effects on seagrasses and macroalgae have been studied (Santos, 1993; Short and Neckles, 1999; Sousa-Dias and Melo, 2008). Higher temperature could facilitate certain macroalgal species growth, especiallyspecies inducing blooms (Sousa-Dias and Melo, 2008). Increased temperature has different effects on different seagrass species (Marsh et al., 1986). Warmer species increase photosynthesis and respiration with higher temperature, but temperate species reach their photosynthesis optimum below the highest seasonal temperature (Short and Neckles, 1999). Sea level rise may decrease the light level for seagrasses, therefore negatively impacting seagrass productivity and functional values (Short and Neckles, 1999; Hauxwell et al., 2001; Irlandi et al., 2004). Sea level rise may increase water flow or enhance tidal circulation, which could accelerate flushing of the macroalgae, and therefore reduce the negative effects of macroalgae bloom on seagrass ecosystems (Flindt et al., 1997; Lenzi et al., 2003). Sea level rise will draw in seawater into estuaries and rivers, resulting in salinity change, which in turn may alter competitive situation between seagrasses and macroalgae. Global climate change acceleration can be expected in the future. It is necessary to research into the synergistical effect of climate change and anthropogenic nutrient loads on the interaction between searsasses and macroalgae in eutrophic areas, which can provide valuable information to decrease the negative effects of macroalgae bloom on seagrasses.

    Acknowledgements

    This study was funded by the Natural Science Foundation of China (41106099), CAS Scientific Project of Innovation and Interdisciplinary, the Ministry of Science and Technology Project Foundation (2014FY210600), Yantai Science and Technology Bureau (2011061) and the Natural Science Foundation of Shandong Province (ZR 2009EQ006).

    Alber, M., and Valiela, I., 1994. Production of microbial organic aggregates from macrophyte-derived dissolved organic material. Limnology and Oceanography, 39: 37-50.

    Alcoverro, T., Romero, J., Duarte, C. M., and López, N. I., 1997. Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Marine Ecoogy Progress Series, 146: 155-161.

    Alcoverro, T., Zimmerman, R. C., Kohrs, D. G., and Alberte, R. S., 1999. Resouce allocation and sucrose mobilization in light-limited eelgrass Zostera marina. Marine Ecology Progress Series, 187: 121-131.

    Auer, M. T., 1982. Ecology of filamentous algae. Journal of Great Lakes Research, 8: 1-237.

    Baden, S. P., Loo, L. O., Pihl, L., and Rosenbergs, R., 1990. Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio, 19: 113-122.

    Bell, P. R. F., 1992. Eutrophication and coral reefs-some examples in the Great Barrier Reef Lagoon. Water Research, 26: 553-568.

    Berezina, N. A., Tsiplenkina, I. G., Pankova, E. S., and Gubelit, J. I., 2007. Dynamics of invertebrate communities on the stony littoral of the Neva Estuary (Baltic Sea) under macroalgal blooms and bioinvasions. Transitional Waters Bulletin, 1: 65-76.

    Brun, F. G., Hernández, I., Vergara, J. J., Peralta, G., and Pérez-Lloréns, J. L., 2002. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Marine Ecology Progress Series, 225: 177-187.

    Brun, F. G., Olivé, I., Malta, E., Vergara, J. J., Hernández, I., and Pérez-Llorénans, J. L., 2008. Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series, 365: 67-75.

    Brush, M. J., and Nixon, S. W., 2010. Modeling the role of macroalgae in a shallow sub-estuary of Narragansett Bay, RI (USA). Ecological Modelling, 221: 1065-1079.

    Burkholder, J. M., Mason, K. M., and Glasgow Jr, H. B., 1992. Water-column nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Marine Ecology Progress Series, 81: 163-178.

    Burkholder, J. M., Tomasko, D. A., and Touchette, B. W., 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology, 350: 46-72.

    Canal-Vergés, P., Vedel, M., Valdemarsen, T., Kristensen, E., and Flindt, M. R., 2010. Resuspension created by bed load traport of macroalgae: implications for ecosystem functioning. Hydrobiologia, 649: 69-76.

    Cardoso, P. G., Brand?o, A., Pardal, M. A., Raffaelli, D., and Marques, J. C., 2005. Resilience of Hydrobia ulvae populations to anthropogenic and natural disturbances. Marine Ecology Progress Series, 289: 191-199.

    Ceccherlli, G., and Cinelli, F., 1997. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean Bay. Journal of Experimental Marine Biology and Ecology, 217: 165-177.

    Christianen, M. J. A., Govers, L. L., Bouma, T. J., Kiswara, W., Roelofs, J. G. M., Lamers, L. P. M., and van Katwijk, M. M., 2012. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology, 100: 546-560.

    Costanza, R., d’Aege, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Jose, P., Raskin, R. G., Sutton, P., and van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253-260.

    Cummins, S. P., Roberts, D. E., and Zimmerman, K. D., 2004. Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Marine Ecology Progress Series, 266: 77-87.

    Davis, B. C., and Fourqurean, J. W., 2001. Competition between the tropical alga, Halimeda incrassate and the seagrass, Thalassia testudinum. Aquatic Botany, 71: 217-232.

    den Hartog, C., 1994. Suffocation of a littoral Zostera bed by Enteromorphy radiate. Aquatic Botany, 47: 21-28.

    Druehl, L. D., 1973. Marine transplantations. Science, 179: 12.

    Duarte, C. M., 2002. The future of seagrass meadows. Environmental Conservation, 29: 192-206.

    Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., and Apostolaki, E. T., 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24: GB4032, DOI: 10.1029/2010GB003793.

    Flindt, M. R., Salomonsen, J., Carrer, M., Bocci, M., and Kamp-Nielsen, L., 1997. Loss, growth and transport dynamics of Chaetomorpha aerea and Ulva rigida in the Lagoon of Venice during an early summer field campaign. Ecological Modelling, 102: 133-141.

    Fourqurean, J. W., Powell, G. V. N., Kenworthy, W. J., and Zieman, J. C., 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Dlorida Bay. Oikos, 72: 349-358.

    Gambi, M. C., Nowell, A. R. M., and Jumars, P. A., 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Marine Ecology Progress Series, 61: 159-169.

    Greve, T. M., Borum, J., and Pedersen, O., 2003. Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography, 48: 210-216.

    Han, Q. Y., Bouma, T. J., Brun, F. G., Suykerbuyk, W., and van Katwijk, M. M., 2012. Resilience of Zostera noltii to burial or erosion disturbances. Marine Ecology Progress Series, 449: 133-143.

    Hansen, K., and Kristensen, E., 1997. Impact of macrofaunal recolinization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuarine, Coastal and Shelf Science, 45: 613-628.

    Harlin, M. M., and Thorne-Miller, B., 1981. Nutrient enrichment of seagrass beds in a rhode island coastal lagoon. Marine Biology, 65: 221-229.

    Hauxwell, J., Cebrian, J., and Baliela, I., 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82: 1007-1022.

    Hauxwell, J., Cebrian, J., and Valiela, I., 2003. Eelgrass Zostera marina loss in temperate estuaries: relationship to land derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series, 247: 59-73.

    Hemminga, M. A., 1998. The root/rhizome system of seagrasses: An asset and a burden. Journal of Sea Research, 39: 183-196. Hessing-Lewis, M. L., Hacker, S. D., Menge, B. A., and Rumrill, S. S., 2011. Context-dependent eelgrass-macroalage interactions along an estuarine gradient in the pacific northwest, USA. Estuaries and Coasts, 34: 1169-1181.

    Hodgkin, E. P., Birch, P. B., Black, R. E., and Humphries, R. B., 1980. The Peel-Harvey estuarine system study (1976-1980). Report N. 9. Department of Conservation and Environment, Perth, Western Australia.

    Holmer, M., and Bondgaard, E. J., 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulphide concentrations during hypoxic events. Aquatic Botany, 70: 29-38.

    Huntington, B. E., and Boyer, K. E., 2008. Effects of red macroalgal (Gracilariopsis sp.) abundance on eelgrass Zostera marina in Tomales Bay, California, USA. Marine Ecology Progress Series, 367: 133-142.

    Invers, O., Kraemer, G. P., Pérez, M., and Romero, J., 2004. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology, 303: 97-114.

    Irlandi, E. A., Orlando, B. A., and Biber, P. D., 2004. Drift algae-epiphyte-seagrass interactions in a subtropical Thalassia testudinum meadow. Marine Ecology Progress Series, 279: 81-91.

    J?gernsen, B. B., 1982. Mineralization of organic matter in the sea bed-the role sulphate reduction. Nature, 296: 643.

    Kamer, K., Boyle, K. A., and Fong, P., 2001. Macroalgal bloom dynamics in a highly eutrophic southern California Estuary. Estuaries, 24: 623-635.

    Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C., and Madden, C. J., 2007. Synergistic effects of high temperature and sulphide on tropical seagrass. Journal of Experimental Marine Biology and Ecology, 341: 91-101.

    Krause-Jensen, D., Middelboe, A., and Christensen, P. B., 2000. Eelgrass, Zostera marina, growth along depth gradients: Upper boundaries of the variation as a powerful predictive tool. Oikos, 91: 233-244.

    Lamote, M., and Dunton, K. H., 2006. Effects of drift macroalgae and light attenuation on chlorophyll fluorescence and sediment sulfides in the seagrass Thalassia testudinu. Journal of Experimental Marine Biology and Ecology, 334: 174-186.

    Lapointe, B. E., and O’Connell, J., 1989. Nutrient-enhanced growth of Cladophora prolifera in Harrington Sound, Bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem. Estuarine, Coastal and Shelf Science, 28: 347-360.

    Lapointe, B. L., Barile, P. J., Littler, M. M., Littler, D. S., and Bedford, B. J., 2005. Macroalgal blooms on southeast Florida coral reefs: I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae, 4: 1092-1105.

    Largo, D. B., Sembrano, J., Hiraoka, M., and Ohno, M., 2004. Taxonomic and ecological profile of ‘green tide’ species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia, 512: 247-253.

    Lavery, P. S., and McComb, A. J., 1991. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary. Estuarine, Coastal and Shelf Science, 32: 281-295.

    Lee, K. S., and Dunton, K. H., 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex K?nig. Journal of Experimental Marine Biology and Ecology, 210: 53-73.

    Lenzi, M., Palmieri, R., and Porrello, S., 2003. Restoration of the eutrophic Orbetello Lagoon (Tyrrhenian Sea, Italy): Water quality management. Marine Pollution Bulletin, 46: 1540-1548.

    Liu, D. Y., Keesing, J. K., Xing, Q. G., and Shi, P., 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58: 888-895.

    Marsh Jr., J. A., Dennison, W. C., and Alberte, R. S., 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology, 101: 257-267.

    Martínez-Lüscher, J., and Holmer, M., 2010. Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Marine Environmental Research, 69: 345-349.

    Martins, I., Pardal, M. A., Lilleb?, A. I., Flindt, M. R., and Marques, J. C., 2001. Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: A case study on the influence of precipitation and river management. Estuarine, Coastal and Shelf Science, 52: 165-177.

    McGlathery, K. J., Krause-Jensen, D., Rysgaard, S., and Christensen, P. B., 1997. Patterns of ammonium uptake within dense mats of the filamentous macroalga Chaetomorpha linum. Aquatic Botany, 59: 99-115.

    McGlathery, K. J., 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. Journal of Phycology, 37: 453-456.

    McGlathery, K. J., Anderson, C. I., and Tyler, A. C., 2001. Magnitude and variability of benthic and pelagic metabolism in atemperate coastal lagoon. Marine Ecology Progress Series, 216: 1-15.

    McGlathery, K. J., Sundb?ck, K., and Anderson, I. C., 2007. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Marine Ecology Progress Series, 348: 1-18.

    Meinesz, A. J., De Vaugelas, J., Hesse, B., and Mari, X., 1993. Spread of the introduced tropical green algae Caulerpa taxifolia in northern Mediterranean waters. Journal of Appllied Phycology, 5: 141-147.

    Merceron, M., Antoine, V., Auby, I., and Morand, P., 2007. In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks. Science of the Total Environment, 384: 293-305.

    Morand, P., and Merceron, M., 2005. Macroalgal population and sustainability. Journal of Coastal Research, 21: 1009-1020.

    Multer, H. G., 1988. Growth, ultrastructure and sediment contribution of Halimeda incrassate and Halimeda monile, Nonsuch and Falmouth Bays, Antigua W. I. Coral Reefs, 6: 179-186.

    Murray, L., Dennison, W. C., and Kemp, W. M., 1992. Nitrogen versus phosphorus limitation for growth of an estuarine population of eelgrass (Zostera marina L.). Aquatic Botany, 44: 83-100.

    Nelson, T. A., and Lee, A., 2001. A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquatic Botany, 71: 149-154.

    Nelson, W. G. (ed.), 2009. Seagrasses and protective criteria: A review and assessment of research status. Office of research and development, National Health and Environmental Effects Research Laboratory, EPA/600/R-09/050.

    Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L., 2006. A global crisis for seagrass ecosystems. BioScience, 56: 987-996.

    Peckol, P., DeMeo-Anderson, B., Rivers, J., Valiela, I., Maldonado, M., and Yates, J., 1994. Growth, nutrient uptake capacities and tissue constituents of the macroalgae, Cladophora vagabunda and Gracilaria tikvahiae, related to sitespecific nitrogen loading rates. Marine Biology, 121: 175-185.

    Pederson, M. F., and Borum, J., 1993. An annual nitrogen budget for a seagrass Zostera marina population. Marine Ecology Progress Series, 101: 169-177.

    Pederson, M. F., 1995. Nitrogen limitation of photosynthesis and growth: Comparison across aquatic plant communities in a Danish Estuary (Roskilde Fjord). Ophelia, 41: 261-272.

    Pedersen, O., Binzer, T., and Borum, J., 2004. Sulphide intrusion in eelgrass (Zostera marina L.). Plant, Cell & Environent, 27: 595-602.

    Peralta, G., Pérez-Lloréns, J. L., Hernández, I., and Vergara, J. J., 2002. Effects of light availability on growth, architecture and nutrient content of the grass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology, 269: 9-26.

    Peralta, G., Bouma, T. J., van Soelen, J., Pérez-Lloréns, J. L., and Hernández, I., 2003. On the use of sediment fertilization for seagrass restoration: A mesocosm study on Zostera marina L. Aquatic Botany, 75: 95-110.

    Pregnall, A. M., Smith, R. D., Kursar, T. A., and Alberte, R. S., 1984. Metabolic adaptations of Zostera marina (eelgrass) to diurnal periods of root anoxia. Marine Biology, 83: 141-147.

    Pregnall, A. M., and Rudy, P. P., 1985. Contribution of green macroalgal mats (Enteromorpha spp.) to seasonal production in an estuary. Marine Ecology Progress Series, 24: 167-176.

    Pregnall, A. M., and Miller, S. L., 1988. Flux of ammonium from surf-zone and nearshore sediments in Nahant Bay, Massachusetts, USA, in relation to free-living Pilayella littoralis. Marine Ecology Progress Series, 24: 167-176.

    Raffaelli, D. G., Raven, J. A., and Poole, L. J., 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology: An Annual Review, 36: 97-125.

    Raffaelli, D., 2000. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland. Helgoland Marine Research, 54: 71-79.

    Reise, K., and Siebert, I., 1994. Mass occurrence of green algae in the German Wadden Sea. German Journal of Hydrography, (Supplement), 1: 171-180.

    Rose, C. D., and Dawes, C. J., 1999. Effects of community structure on the seagrass Thalassia testudinum. Marine Ecology Progress Series, 184: 83-95.

    Santos, R., 1993. A multivariate study of biotic and abiotic relationships in a subtidal algal stand. Marine Ecology Progress Series, 94: 181-190.

    Schmidt, A. L., Wysmyk, J. K. C., Craig, S. E., and Lotze, H. K., 2012. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography, 57: 1389-1402.

    Schories, D., Anibal, J., Chapman, A. S., Herre, E., Isaksson, I., Lillebo, A. I., Pihl, L., Reise, K., Sprung, M., and Thiel, M., 2000. Flagging greens: Hydrobiid snails as substrata for the development of green algal mats (Enteromorpha spp.) on tidal flats of North Atlantic coasts. Marine Ecology Progress Series, 199: 127-136.

    Sfriso, A., Marcomini, A., and Pavoni, B., 1987. Relationships between macroalgal biomass and nutrient concentrations in a hypertrophic area of Venice Lagoon. Marine Environmental Research, 22: 297-312.

    Sfriso, A., Pavoni, B., Marcomini, A., and Orio, A. A., 1992. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice. Estuaries, 15: 517-528.

    Short, F. T., 1983. The seagrass, Zostera Marina L.: Plant morphology and bed structure in relation to sediment ammonium in izembed lagoon, Alaska. Aquatic Botany, 16: 149-161.

    Short, F. T., Burdick, D. M., and Kaldy, III., 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnology and Oceanography, 40: 740-749.

    Short, F. T., and Neckles, H. A., 1999. The effects of global climate change on seagrasses. Aquatic Botany, 63: 169-196.

    Smith, J. E., Runcie, J. W., and Smith, C. M., 2005. Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai’i. Marine Ecology Progress Series, 302: 77-91.

    Sousa-Dias, A., and Melo, R. A., 2008. Long-term abundance patterns of macroalgae in relation to environmental variables in the Tagus Estuary (Portugal). Estuarine, Coastal and Shelf Science, 76: 21-28.

    Sugimoto, K., Hiraoka, K., Ohta, S., Niimura, Y., Terawaki, T., and Okada, M., 2007. Effects of ulvoid (Ulva spp.) accumulation on the structure and function of eelgrass (Zostera marina L.) bed. Marine Pollution Bulletin, 54: 1582-1585.

    Thiel, M., and Watling, L., 1998. Effects of green algal mats on infaunal colonization of a New England mud flat-long-lasting but highly localized effects. Hydrobiologia, 375/376: 177-189.

    Thomsen, M. S., Wernberg, T., Engelen, A. H., Tuya, F., Vanderklift, M. A., Holmer, M., McGlathery, K. J., Arenas, F.,Kotta, J., and Silliman, B. R., 2012. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS One, 7: 1-8.

    Touchette, B. W., and Burkholder, J. M., 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, 250: 169-205.

    Tomasko, D. A., Corbett, C. A., Greening, H. S., and Raulerson, G. E., 2005. Spatial and temporal variation in seagrass coverage in Southwest Florida: assessing the relative effects of anthropogenic nutrient load reductions and rainfall in four contiguous estuaries. Marine Pollution Bulletin, 50: 797-805.

    Twilley, R. J., Kemp, W. M., Staver, K. W., Stevenson, J. C., and Boynton, W. R., 1985. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Marine Ecology Progress Series, 23: 179-191.

    Tweedley, J. R. M., Jackson, E. L., and Attrill, M. J., 2008. Zostera marina seagrass beds enhance the attachment of the invasive alga Sargassum muticum in soft sediment. Marine Ecology Progress Series, 354: 305-309.

    van der Heide, T., Smolders, A. J. P., Rijkens, B. G. A., van Nes, E. H., van Katwijk, M. M., and Roelofs, J. G. M., 2008. Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia, 158: 411-419.

    van der Heide, T., Govers, L. L., de Fouw, J., Olff, H., van der Geest, M., van Katwijk, M. M., Piersma, T., van de Koppel, J., Silliman, B. R., Smolders, A. J. P., and van Gils, J. A., 2012. Three-stage symbiosis forms the foundation of seagrass ecosystem. Science, 336: 1432-1434.

    van Katwijk, M. M., Vergeer, L. H. T., Schmitz, G. H. W., and Roelofs, J. G. M., 1997. Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series, 157: 159-173.

    van Katwijk, M. M., Bos, A. R., Kennis, P., and de Vries, R., 2010. Vulnerability to eutrophication of a semi-annual life history: A lesson learnt from an extinct eelgrass (Zostera marina) population. Biological Conservation, 143: 248-254.

    Villazán, B., Brun, F. G., Jiménez-Ramos, R., Pérez-Lloréns, J. L., and Vergara, J. J., 2013. Interaction between ammonium and phosphate uptake rate in the seagrass Zostera noltii. Marine Ecology Progress Series, 488: 133-143.

    Walsh, B. L., 1980. Comparative nutrient dynamics of a marsh mudflat ecosystem. Estuarine, Coastal and Shelf Science, 10: 143-164.

    Waycott, M., Duarte, M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. W., 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106: 12377-12381.

    Williams, S. L., 1990. Experimental studies of Caribbean seagrass bed development. Ecological Monographs, 60: 449-469.

    Yabe, T., Ishii, Y., Amano, Y., Koga, T., Hayashi, S., Nohara, S., and Tatsumoto, H., 2009. Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology, 10: 239-245.

    Zaitsev, Y. P., 1992. Recent change in the trophic structure of the Black Sea. Fisheries Oceanography, 1: 180-189.

    (Edited by Ji Dechun)

    (Received September 2, 2013; revised November 25, 2013; accepted March 10, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-535-2109112

    E-mail: qyhan@yic.ac.cn

    免费无遮挡裸体视频| 日日撸夜夜添| 国产精品1区2区在线观看.| 99久久成人亚洲精品观看| 99热这里只有是精品在线观看| 色哟哟·www| 国产三级中文精品| 午夜日韩欧美国产| 亚洲精品456在线播放app | 国产在视频线在精品| 午夜免费激情av| 久久久久久久久久黄片| 久久热精品热| 国产精品99久久久久久久久| 欧美极品一区二区三区四区| 亚洲精品久久国产高清桃花| 国产欧美日韩精品亚洲av| 此物有八面人人有两片| 一个人看视频在线观看www免费| 免费看日本二区| 一区二区三区免费毛片| 国产精品一区二区三区四区久久| 大型黄色视频在线免费观看| 一个人看视频在线观看www免费| 黄色丝袜av网址大全| 亚洲国产色片| 97热精品久久久久久| 嫁个100分男人电影在线观看| 男插女下体视频免费在线播放| 日本一二三区视频观看| 99久久精品国产国产毛片| 久久天躁狠狠躁夜夜2o2o| 国模一区二区三区四区视频| 成人av在线播放网站| 性插视频无遮挡在线免费观看| 91在线精品国自产拍蜜月| a级毛片免费高清观看在线播放| 久久精品国产亚洲av香蕉五月| 精品人妻1区二区| 欧美日韩黄片免| 色综合色国产| 在线播放无遮挡| 99精品在免费线老司机午夜| 在线播放国产精品三级| 亚洲av不卡在线观看| 嫩草影院精品99| 日韩精品青青久久久久久| 亚洲精品在线观看二区| 黄色日韩在线| 久久久久免费精品人妻一区二区| 一进一出抽搐动态| 亚洲国产精品成人综合色| 九九热线精品视视频播放| 久久久久久久久大av| 国产午夜精品久久久久久一区二区三区 | АⅤ资源中文在线天堂| 美女免费视频网站| 男女啪啪激烈高潮av片| 成人高潮视频无遮挡免费网站| 成年版毛片免费区| 日本 欧美在线| 国产精品一区二区三区四区久久| 91在线观看av| 99久久精品国产国产毛片| 又粗又爽又猛毛片免费看| 老司机深夜福利视频在线观看| 最近最新中文字幕大全电影3| 亚洲国产精品久久男人天堂| 亚洲成av人片在线播放无| 国产毛片a区久久久久| 成人国产一区最新在线观看| 他把我摸到了高潮在线观看| 深爱激情五月婷婷| 亚洲aⅴ乱码一区二区在线播放| 色精品久久人妻99蜜桃| 99热6这里只有精品| 国产真实乱freesex| 在现免费观看毛片| 国产亚洲av嫩草精品影院| 乱系列少妇在线播放| 亚洲人与动物交配视频| 久久99热6这里只有精品| 亚洲欧美激情综合另类| 成人鲁丝片一二三区免费| 成人亚洲精品av一区二区| 精品久久久噜噜| 韩国av一区二区三区四区| 久久久久免费精品人妻一区二区| 白带黄色成豆腐渣| 亚洲成人免费电影在线观看| 波多野结衣高清无吗| 免费av毛片视频| 久久国内精品自在自线图片| 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 久久久久久久精品吃奶| 精品久久久久久久久久久久久| 国产熟女欧美一区二区| 九九热线精品视视频播放| 亚洲欧美激情综合另类| 亚洲经典国产精华液单| 99在线人妻在线中文字幕| 国产成人av教育| 日日摸夜夜添夜夜添av毛片 | 亚洲久久久久久中文字幕| 在线观看66精品国产| 深夜精品福利| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片 | 99热这里只有是精品50| 嫩草影视91久久| 制服丝袜大香蕉在线| 亚洲人成网站在线播| 日本成人三级电影网站| 女生性感内裤真人,穿戴方法视频| 一级黄片播放器| 91狼人影院| 一a级毛片在线观看| 97热精品久久久久久| 久久久精品大字幕| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 精品久久久噜噜| 此物有八面人人有两片| 岛国在线免费视频观看| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 成人无遮挡网站| 啦啦啦观看免费观看视频高清| 亚洲精品亚洲一区二区| 亚洲精华国产精华精| 国产成人a区在线观看| 日本免费一区二区三区高清不卡| 亚洲av一区综合| 内地一区二区视频在线| 免费在线观看影片大全网站| 一个人免费在线观看电影| 亚洲人成网站在线播| 亚洲人成网站在线播放欧美日韩| 91久久精品国产一区二区三区| 成人二区视频| 国产亚洲精品久久久久久毛片| 99在线人妻在线中文字幕| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 女的被弄到高潮叫床怎么办 | x7x7x7水蜜桃| 欧美不卡视频在线免费观看| 国产成人福利小说| 男人狂女人下面高潮的视频| 亚洲电影在线观看av| 久久久久久久午夜电影| 久久久久久久久久久丰满 | 日韩高清综合在线| 国产成人一区二区在线| 国产精品一区二区三区四区久久| 国产单亲对白刺激| 91久久精品电影网| 制服丝袜大香蕉在线| 久久久久久久久久久丰满 | 一本久久中文字幕| 国产亚洲精品av在线| 热99在线观看视频| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 国产大屁股一区二区在线视频| 国产乱人视频| 日韩av在线大香蕉| 欧美高清成人免费视频www| 最新中文字幕久久久久| 国内精品久久久久久久电影| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看| 成人鲁丝片一二三区免费| 小说图片视频综合网站| 少妇裸体淫交视频免费看高清| 精品久久久久久久久久久久久| ponron亚洲| 制服丝袜大香蕉在线| 国产又黄又爽又无遮挡在线| 精品久久久久久,| 午夜福利在线观看吧| 精品久久久久久久久久免费视频| 91av网一区二区| 国产亚洲av嫩草精品影院| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 老司机午夜福利在线观看视频| 真人一进一出gif抽搐免费| 国产精品不卡视频一区二区| 日韩欧美三级三区| 亚洲男人的天堂狠狠| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频 | 级片在线观看| 日本五十路高清| 一边摸一边抽搐一进一小说| 国产成人一区二区在线| 国产精品三级大全| 久久国产精品人妻蜜桃| 少妇丰满av| 能在线免费观看的黄片| 亚洲中文字幕日韩| 色播亚洲综合网| 日日摸夜夜添夜夜添小说| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 成年版毛片免费区| 色综合站精品国产| 精品久久久久久久久久免费视频| 精品久久久久久,| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 97超视频在线观看视频| 亚洲不卡免费看| 亚洲av中文av极速乱 | 成人国产一区最新在线观看| 嫩草影院入口| 搡老熟女国产l中国老女人| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 亚洲电影在线观看av| 校园人妻丝袜中文字幕| 18+在线观看网站| 国产91精品成人一区二区三区| 麻豆av噜噜一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 深夜精品福利| 精品99又大又爽又粗少妇毛片 | 精品久久久久久成人av| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 看十八女毛片水多多多| 一夜夜www| 国产精品电影一区二区三区| 丰满的人妻完整版| 91精品国产九色| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 国产综合懂色| 欧美bdsm另类| 国产视频内射| 成人毛片a级毛片在线播放| 亚洲五月天丁香| 亚洲无线观看免费| 欧美性猛交黑人性爽| 亚洲天堂国产精品一区在线| avwww免费| 在线看三级毛片| 三级国产精品欧美在线观看| 久久久久国内视频| h日本视频在线播放| 欧美性感艳星| 免费一级毛片在线播放高清视频| 日本精品一区二区三区蜜桃| 尤物成人国产欧美一区二区三区| 少妇丰满av| 日本撒尿小便嘘嘘汇集6| 国产一级毛片七仙女欲春2| 亚洲国产精品成人综合色| 在线观看舔阴道视频| 天堂√8在线中文| 国产精品久久电影中文字幕| 亚洲精品成人久久久久久| 少妇人妻精品综合一区二区 | 人妻丰满熟妇av一区二区三区| 久久亚洲精品不卡| 干丝袜人妻中文字幕| 国内少妇人妻偷人精品xxx网站| 97热精品久久久久久| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 精品一区二区三区av网在线观看| 成人三级黄色视频| 麻豆av噜噜一区二区三区| 国产爱豆传媒在线观看| 午夜精品久久久久久毛片777| 精品不卡国产一区二区三区| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 欧美性感艳星| 午夜免费男女啪啪视频观看 | 成人av在线播放网站| 在线观看免费视频日本深夜| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 天堂动漫精品| 国产 一区 欧美 日韩| 男女下面进入的视频免费午夜| 成年免费大片在线观看| 日韩欧美国产一区二区入口| 国产精品一区www在线观看 | 极品教师在线视频| 日本色播在线视频| 国产精品伦人一区二区| 成人三级黄色视频| 免费看日本二区| 精品人妻1区二区| 熟女人妻精品中文字幕| 亚洲专区中文字幕在线| 亚洲成人久久爱视频| 小说图片视频综合网站| 在线观看午夜福利视频| 国产老妇女一区| 99久久无色码亚洲精品果冻| 色综合色国产| 成人午夜高清在线视频| 搞女人的毛片| 制服丝袜大香蕉在线| 亚洲精华国产精华液的使用体验 | 国产伦精品一区二区三区视频9| 男人狂女人下面高潮的视频| 久久国产乱子免费精品| 国产日本99.免费观看| 22中文网久久字幕| 欧美xxxx性猛交bbbb| av在线蜜桃| 国产精华一区二区三区| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 欧美日韩黄片免| 午夜免费激情av| 又紧又爽又黄一区二区| 午夜免费激情av| 国产精品亚洲一级av第二区| 一区二区三区免费毛片| 国产视频一区二区在线看| 亚洲五月天丁香| 99久久九九国产精品国产免费| 一夜夜www| 欧美激情国产日韩精品一区| 69人妻影院| 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 欧美+日韩+精品| av在线天堂中文字幕| 国产亚洲精品综合一区在线观看| 我要看日韩黄色一级片| 国产免费男女视频| 岛国在线免费视频观看| 精品福利观看| 最近最新免费中文字幕在线| 久久香蕉精品热| 午夜老司机福利剧场| 三级男女做爰猛烈吃奶摸视频| 欧美成人a在线观看| 99久久九九国产精品国产免费| av视频在线观看入口| 亚洲欧美日韩东京热| 男女之事视频高清在线观看| 欧美不卡视频在线免费观看| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 日日摸夜夜添夜夜添av毛片 | 中文资源天堂在线| 俄罗斯特黄特色一大片| 伊人久久精品亚洲午夜| 我要看日韩黄色一级片| 久久精品国产亚洲av涩爱 | 国产精品三级大全| 18+在线观看网站| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 狂野欧美激情性xxxx在线观看| 午夜日韩欧美国产| 免费观看人在逋| 日韩在线高清观看一区二区三区 | 国内精品久久久久精免费| 天堂动漫精品| 国产精品野战在线观看| 乱人视频在线观看| 亚洲欧美日韩东京热| av视频在线观看入口| 色综合色国产| 欧美成人一区二区免费高清观看| 国产午夜福利久久久久久| 日韩亚洲欧美综合| 嫩草影视91久久| 久久精品国产亚洲网站| 美女大奶头视频| 人妻久久中文字幕网| 成人国产麻豆网| 在线播放国产精品三级| 亚洲精品色激情综合| 人妻丰满熟妇av一区二区三区| 哪里可以看免费的av片| 国产精品人妻久久久久久| 在线免费观看的www视频| 精品一区二区三区av网在线观看| 成年女人永久免费观看视频| 国产成人一区二区在线| 免费人成视频x8x8入口观看| 熟女电影av网| 在线免费十八禁| 又粗又爽又猛毛片免费看| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 欧美潮喷喷水| 俄罗斯特黄特色一大片| 婷婷亚洲欧美| 亚洲欧美清纯卡通| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 热99在线观看视频| 亚洲av成人精品一区久久| 亚洲熟妇熟女久久| 中国美白少妇内射xxxbb| 嫩草影院新地址| 国内精品一区二区在线观看| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 麻豆av噜噜一区二区三区| 黄片wwwwww| 黄色丝袜av网址大全| 88av欧美| 日韩欧美在线乱码| 欧美激情在线99| 女同久久另类99精品国产91| 国产人妻一区二区三区在| 人人妻,人人澡人人爽秒播| 久久草成人影院| 亚洲美女视频黄频| 欧美一级a爱片免费观看看| 琪琪午夜伦伦电影理论片6080| 尾随美女入室| 亚洲最大成人av| 少妇的逼水好多| 免费高清视频大片| 别揉我奶头 嗯啊视频| 日韩一本色道免费dvd| 一区二区三区免费毛片| 精品人妻一区二区三区麻豆 | 伊人久久精品亚洲午夜| 色综合站精品国产| 国产久久久一区二区三区| 午夜免费成人在线视频| 国产精品嫩草影院av在线观看 | 久久久久久伊人网av| 亚洲成a人片在线一区二区| 亚洲成人久久性| 欧美丝袜亚洲另类 | 国产亚洲av嫩草精品影院| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满 | 观看美女的网站| 99精品在免费线老司机午夜| 亚洲av成人av| 午夜精品一区二区三区免费看| 高清日韩中文字幕在线| 国产精品伦人一区二区| 亚洲乱码一区二区免费版| 美女 人体艺术 gogo| 91午夜精品亚洲一区二区三区 | 男女啪啪激烈高潮av片| 在线免费十八禁| 精品一区二区三区人妻视频| 99久久精品国产国产毛片| 国产视频一区二区在线看| 亚洲精华国产精华精| 亚洲av五月六月丁香网| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 一级毛片久久久久久久久女| 欧美日本视频| 国产精品精品国产色婷婷| 在线观看舔阴道视频| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 久久久精品大字幕| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 亚洲av第一区精品v没综合| 99视频精品全部免费 在线| 国产美女午夜福利| 男人舔女人下体高潮全视频| 亚洲三级黄色毛片| 日本a在线网址| av.在线天堂| 亚洲欧美激情综合另类| www.色视频.com| 天堂av国产一区二区熟女人妻| 我要搜黄色片| 久久精品91蜜桃| 国产视频内射| 我的女老师完整版在线观看| netflix在线观看网站| 欧美成人a在线观看| 国产高潮美女av| 免费看日本二区| 久久久久久久久久黄片| 国产伦在线观看视频一区| 最后的刺客免费高清国语| 日韩精品青青久久久久久| 蜜桃久久精品国产亚洲av| 变态另类丝袜制服| 久久久久国产精品人妻aⅴ院| 一本一本综合久久| 国产 一区精品| 又黄又爽又刺激的免费视频.| 亚洲性夜色夜夜综合| 一级黄色大片毛片| 久久精品国产亚洲网站| 久久精品国产清高在天天线| 在线播放无遮挡| videossex国产| 此物有八面人人有两片| 99久久成人亚洲精品观看| 亚洲精品国产成人久久av| 黄色日韩在线| 99热6这里只有精品| 99久久精品热视频| 欧美高清成人免费视频www| 午夜福利在线观看吧| 波多野结衣高清无吗| 国产精品永久免费网站| 噜噜噜噜噜久久久久久91| 国产高清不卡午夜福利| aaaaa片日本免费| 日日撸夜夜添| 欧美日韩国产亚洲二区| 国产亚洲精品久久久com| 亚洲欧美日韩无卡精品| 国产精品无大码| 国产aⅴ精品一区二区三区波| av在线天堂中文字幕| 亚洲成人免费电影在线观看| 亚洲一区高清亚洲精品| 亚洲国产欧洲综合997久久,| 看免费成人av毛片| 能在线免费观看的黄片| 久久这里只有精品中国| 亚洲精华国产精华液的使用体验 | 成人午夜高清在线视频| 一区二区三区高清视频在线| 内地一区二区视频在线| 亚洲精品国产成人久久av| 亚洲av五月六月丁香网| 少妇人妻精品综合一区二区 | 亚洲第一区二区三区不卡| 成人二区视频| 国产国拍精品亚洲av在线观看| 又黄又爽又免费观看的视频| 18禁黄网站禁片午夜丰满| 久久99热这里只有精品18| 男女那种视频在线观看| 两个人视频免费观看高清| 久久久久久九九精品二区国产| 亚洲美女搞黄在线观看 | 两人在一起打扑克的视频| 免费av毛片视频| 亚洲性久久影院| 春色校园在线视频观看| 一级a爱片免费观看的视频| 天堂网av新在线| 欧美在线一区亚洲| 久久热精品热| 国产在视频线在精品| 亚洲av一区综合| 悠悠久久av| 男人狂女人下面高潮的视频| 国产黄a三级三级三级人| 亚洲精品一卡2卡三卡4卡5卡| 欧美色欧美亚洲另类二区| 亚洲自偷自拍三级| 国产毛片a区久久久久| 无人区码免费观看不卡| 色吧在线观看| 国产精品乱码一区二三区的特点| 精品人妻熟女av久视频| 久久久久久伊人网av| 老司机深夜福利视频在线观看| 简卡轻食公司| 香蕉av资源在线| 老司机深夜福利视频在线观看| 午夜精品久久久久久毛片777| 婷婷六月久久综合丁香| 欧美日韩国产亚洲二区| 麻豆成人午夜福利视频| 黄色女人牲交| 国产探花在线观看一区二区| 色精品久久人妻99蜜桃| 精品久久久久久,| 国产精品野战在线观看| 最后的刺客免费高清国语| 一级a爱片免费观看的视频| 精品久久久久久久人妻蜜臀av| 高清毛片免费观看视频网站| 婷婷色综合大香蕉| 午夜日韩欧美国产| 成年人黄色毛片网站| 搡女人真爽免费视频火全软件 | 国产白丝娇喘喷水9色精品| 欧美色欧美亚洲另类二区| 国产亚洲91精品色在线| 国产精品98久久久久久宅男小说| 色视频www国产| 国产一区二区在线av高清观看| 国产亚洲精品久久久久久毛片| 欧美成人免费av一区二区三区| 中文字幕熟女人妻在线|