• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Damage Localization of Marine Risers Using Time Series of Vibration Signals

    2014-04-20 09:24:10LIUHaoYANGHezhenandLIUFushun
    Journal of Ocean University of China 2014年5期

    LIU Hao, YANG Hezhen,, and LIU Fushun

    1) State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

    2) Department of Ocean Engineering, Ocean University of China, Qingdao 266100, P. R. China

    Damage Localization of Marine Risers Using Time Series of Vibration Signals

    LIU Hao1), YANG Hezhen1),*, and LIU Fushun2)

    1) State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

    2) Department of Ocean Engineering, Ocean University of China, Qingdao 266100, P. R. China

    Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.

    marine risers; structure damage detection; dynamic response; autoregressive moving average model; noise signal

    1 Introduction

    As oil production industry develops its operation into deep waters, more accurate and reliable damage detection tools for offshore structures are in high demand (Li et al., 2009). One of the most important structural components needed for deep water oil extraction is the slender pipe (riser), which is used to carry oil from the seabed to offshore facilities. Of particular importance is the integrity of the structure since the structural damage of risers may cause total collapse of pipelines or leakage of their internal products, which will have a negative economic and environmental impact (Jacques et al., 2010). Zhang et al. (2012) studied the vibration of marine risers by conducting model tests. Kishawy and Gabbar (2010) provided a review on pipeline integrity and classified the main failures. The marine riser is currently receiving considerable attention in the research community due to its complex dynamic response and the resulting economic impact. Large structural degradation affects the associated structural integrity.

    In general, structural damage causes changes in structural stiffness, mass and damping, which alter structural response behavior. Therefore, attempts to monitor the global structural condition and to maintain the structural safety have resulted in the development of the early stage damage identification and the damage-induced collapse prevention. This requires reliable and effective damage identification techniques that offer advantages over taking up the challenges such as those with signal-to-noise ratios, modal identification limitations and modeling errors.

    Over the past few decades, miscellaneous vibrationbased methods have been proposed for damage detection and health monitoring in civil, automotive, mechanical and aerospace engineering communities. Two methods are widely used in vibration-based damage detection of structural systems. One is referred to as modal-based, in which the modal parameters are functions of the physical properties of structures. In this regard, Li et al. (2006), Wang and Liu (2010), Yang and Li (2004) gave detailed studies of 3D frame structures, such as offshore platforms. The other method is based on the statistics of measured data and examines the time-histories of the recorded vibration, strain or other data from which information about the changes with the onset of damage can be directly extracted.

    For marine riser structures, time-series based methods offer several advantages over existing modal-based damage methods. First, the time-series based methods utilize response data obtained separately under undamaged and possibly damaged conditions of structures without involving a detailed analytical model of the structures. Second, the modal-based damage detection methods suffer from limitations related to the correct identification of mode shapes. Lastly, modeling errors and modal identification limitations can be avoided in the time-series based approaches.

    In this study, a statistical pattern recognition technique is implemented in the riser model and is numerically validated by several damage scenarios. A damage localization index based on coefficients of an ARMA model is proposed. The efficacy is demonstrated using a numerically simulated top tensioned riser (TTR) and the effects of different noise levels are discussed.

    2 Theory

    2.1 Modeling of Signal Vibration

    The mathematical derivation of the model begins with the use of a standardized time series as shown in the following:

    Once the initial data are pre-processed, an ARMA(p, q) model with p auto-regressive (AR) terms and q movingaverage (MA) terms is constructed as:

    where φk, θkare the kth AR and MA coefficients, respectively, while εij(t) is the residual term.

    2.2 Order Determination and Parameter Estimation

    Sohn et al. (2003) proposed an AR model using the Yule-Walker method that was later replaced by the Arfit algorithm (Neumaier and Schneider, 2001). This algorithm optimizes the model order selection criteria and computes the model order, popt. A QR factorization of a data matrix is used to evaluate, for a sequence of successive orders, the model order and to compute the parameters of the AR (popt) model that can be represented as follows

    Multiplying both sides of Eq. (3) by x(t-k), taking the mean, and defining γ(t)=E[x(t1+t)x(t1)], Eq. (3) can be rewritten as

    For k=1, 2, …, p, Eq. (4) becomes

    Eq. (5) is called the Yule-Walker formula. The coefficients of (φx1,φx2,…,φxp) can be obtained by matrix inversion.

    2.3 Damage Localization Index

    In the ARMA model, the first three AR coefficients contain most of the modal frequencies and damping information. After testing several different combinations, it was found that the Euclidean distance of the AR coefficient provides a robust damage localization parameter. Thus the proposed damage sensitivity feature is defined as follows:

    where βjis the damage sensitivity feature. The normalized damage index is applied to the damage localization parameter, as shown in Eq. (7) for the purpose of overcoming numerical instability related to small response amplitude.

    where Zjis the damage localization index and can be used for positioning damage as: i) choose element j as damaged if Zj≥Cr, or ii) choose element j as not damaged if Zj

    2.4 Effects of Noise

    Measurement noise is unavoidable, and will affect the damage detection. The noise intensity can be defined bythe signal-to-noise ratio (SNR), which is often expressed using the logarithmic decibel scale

    where Ps and Pn are the average powers of signal and noise, respectively.

    3 Simulation Case Study

    3.1 Riser Model and Properties

    Fig.1 shows a sketch of the riser configuration used for this study. The riser was assumed to be a truly vertical one without well offset, idealized as an assembly of 2-node cubic pipe elements using the Euler-Bernoulli beam theory, and discretized to total 20 elements. The element numbers are labeled in order from bottom to top. The properties of the riser model are listed in Table 1.

    This model is sinusoidally excited along the x-axis with stochastic white-noise at its top end and pinned at its bottom end. The output signal of horizontal acceleration response is obtained from each individual node (a total of 20 nodes except for restrictions).

    Fig.1 Global TTR model.

    Table 1 Properties of the riser model

    3.2 Damage Scenarios

    By simplifying the TTR as an Euler-Bernoulli beam in the global model, damages can be simulated by reducing the stiffness of short elements located in sensor regions. Many researchers used this method to simulate damage cases (Liu et al., 2007). In this study, damage scenarios are designed, and three proposed damage cases and the corresponding locations of stiffness-reduced elements are shown in Table 2.

    Table 2 Damage scenarios

    4 Results and Discussion

    4.1 Time Series Modeling of Measured Data

    The main steps are as follows: 1) generate and normalize signals at each node position of the healthy TTR structure; 2) obtain and normalize signals from the damaged structures; 3) construct ARMA models for each data channel; 4) calculate damage indexes for each sensor; 5) discuss the effects of measurement noise.

    Fig.2 shows the vibration signal at node 2 of an undamaged case. It is necessary to perform standardization of all data streams according to Eq. (1), after which the statistical features of all undamaged cases can be readily compared.

    Fig.3 shows the autocorrelation function (ACF) of the standardized data. The moving average is used to remove the periodic trend of the data.

    The optimum ARMA model order and its coefficients can be estimated once the initial data pre-processing is completed. Fig.4 shows the shift of the AIC values with the AR prediction model order. It can be seen that the orders 3–5 are appropriate for the analysis. For each data channel, the dataset is divided into two, one is used for the analysis and the other is used for model prediction and validation.

    The time prediction model is established based on the selected reference signal. Fig.5 shows that the model well reproduces the measured signal.

    Fig.2 Acceleration time history of an undamaged case.

    Fig.3 Autocorrelation function of the normalized data.

    Fig.4 Variation of Akaike information criteria (AIC) with model order.

    Fig.5 Comparison between measured and predicted signals.

    4.2 Damage Localization Results

    The ARMA model is implemented for all signals. The damage localization index is then used to locate the damage. The simulation results for the damage scenarios are shown in Fig.6.

    It can be seen from Fig.6 that there is a significant difference between the values in damaged and undamaged regions. For damage scenarios 1 to 3, the stiffness- reduced elements have the indexes greater than one. Especially for scenario 3 two nonadjacent damaged elements correspond to the two peaks in the damage locations. It is shown that the AR coefficients are related to the mechanical system, which indicates a close correlation between stiffness and AR coefficients.

    In practice, all measurements contain noise, detrimentally affecting the technique. In order to verify the proposed algorithm in actual test environment, it is necessary to consider the effects of noise. Here the signal noise ratios of 60dB and 40dB are added to various test conditions.

    Damage localization results under measured noise are shown for damage scenarios 1 and 3 in Figs.7 and 8, respectively. From the normalized DI values in Fig.7, it can be concluded that this method is able to locate damages using measurements with noise.

    Fig.6 Damage localization index. (a) ID1, (b) ID2, (c) ID3.

    Fig.7 Damage localization index with noise (ID1 with SNR=60 dB, 40 dB).

    For the damage scenario 3, the DIs accurately locate the damages of elements 5 and 10. Similarly, damage localization results with measurement noise show twocorresponding peaks at the actual damage location (Fig.8). However, as the level of noise increases, the damage indicator becomes weaker. The maximum value of the normalized DI is about 4.09 for no measurement noise, and 3.6 and 2.85 for SNR=60dB and 40dB at Node 11 of Element 10, respectively.

    The results obtained above from ARMA model parameters demonstrate good performance of this damage detection method.

    Fig.8 Damage localization index with noise (ID3 with SNR=60 dB, 40 dB).

    5 Conclusions

    Based on the ARMA model of marine risers, a new structural damage detection scheme is presented. Dynamic response records are collected from the undamaged and reference-state structure. A localization index defined by auto-regression coefficients in the ARMA model is introduced. The efficiency of the proposed framework is demonstrated by the numerical study of a TTR riser. Using the calculated results the effects of the signal-to-noise levels of 60dB and 40dB are discussed. Conclusions are drawn as follows:

    1) The vibration response predicted by the ARMA model agrees well with the measurements.

    2) The proposed method is effective in the (multiple) damage localization on marine riser structure.

    3) The damage localization index is accurate under a small SNR ratio.

    Acknowledgements

    This research was financially supported by the 973 Project (Grant No. 2011CB013704) and by the National Natural Science Foundation of China (Grant Nos. 51379005, 51009093).

    Bao, C., Hao, H., and Li, Z. X., 2013. Integrated ARMA model method for damage detection of subsea pipeline system. Engineering Structures, 48: 176-192.

    Brincker, R., Kirkegaard, P. H., Andersen, P., and Martinez, M., 1995. Damage detection in an offshore structure. In: The 13th International Modal Analysis Conference (IMAC XIII). Spie International Society for Optical, 661-667.

    De Lautour, O. R., and Omenzetter, P., 2010. Nearest neighbor and learning vector quantization classification for damage detection using time series analysis. Structural Control and Health Monitoring, 17: 614-631.

    Jacques, R., Clarke, T., Morikawa, S., and Strohaecker, T., 2010. Monitoring the structural integrity of a flexible riser during dynamic loading with a combination of non-destructive testing methods. NDT & E International, 43: 501-506.

    Kishawy, H. A., and Gabbar, H. A., 2010. Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87: 373-380.

    Li, H. J., Yang, H. Z., and Hu, S. J., 2006. Modal strain energy decomposition method for damage localization in 3D frame structures. Journal of Engineering Mechanics, 132: 941-951.

    Li, H. J., Zhang, M., Wang, J. R., and James, H., 2009. Fundamental modeling issues on benchmark structure for structural health monitoring. Science in China Series E: Technological Sciences, 52: 1999-2008.

    Liu, F., Li, H. J., Yu, G., Zhang, Y., Wang, W., and Sun, W., 2007. New damage-locating method for bridges subjected to a moving load. Journal of Ocean University of China, 6: 199-204.

    Lynch, J. P., Sundararajan, A., Law, K. H., Kiremidjian, A. S., and Carryer, E., 2004. Embedding damage detection algorithms in a wireless sensing unit for operational power efficiency. Smart Materials and Structures, 13: 800-809.

    Nair, K. K., Kiremidjian, A. S., and Law, K. H., 2006. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. Journal of Sound and Vibration, 291: 349-368.

    Neumaier, A., and Schneider, T., 2001. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software (TOMS), 27: 27-57.

    Sohn, H., Allen, D. W., Worden, K., and Farrar, C. R., 2003. Statistical damage classification using sequential probability ratio tests. Structural Health Monitoring, 2: 57-74.

    Sohn, H., and Farrar, C. R., 2001. Damage diagnosis using time series analysis of vibration signals. Smart Materials and Structures, 10: 446-452.

    Sohn, H., Czarnecki, J. A., and Farrar, C. R., 2000. Structural health monitoring using statistical process control. Journal of Structural Engineering, 126: 1356-1363.

    Wang, S. Q., and Liu, F. S., 2010. New accuracy indicator to quantify the true and false modes for eigensystem realization algorithm. Structural Engineering and Mechanics, 34: 625-634.

    Wei, Z., Yam, L. H., and Cheng, L., 2005. NARMAX model representation and its application to damage detection for multi-layer composites. Composite Structures, 68: 109-117.

    Yang, H. Z., and Li, H. J., 2004. Modal parameter identification of offshore platforms under ambient excitation. High Technology Letters, 10: 80-84.

    Zhang, Y. B., Guo, H. Y., Liu, X. C., and Li, X. M., 2012. Investigation of a new vortex-induced vibration suppression device in laboratory experiments. Journal of Ocean University of China, 11: 129-136.

    (Edited by Xie Jun)

    (Received December 25, 2012; revised May 2, 2013; accepted June 4, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. E-mail: yanghz@sjtu.edu.cn

    老女人水多毛片| 国产精品一区二区三区四区免费观看| av专区在线播放| 99热这里只有精品一区| 亚洲国产最新在线播放| 亚洲欧美成人综合另类久久久| 久久久久久久久久久免费av| 亚洲精品一区蜜桃| 亚洲人成网站在线播| 蜜桃久久精品国产亚洲av| 丝袜美足系列| 国模一区二区三区四区视频| 妹子高潮喷水视频| 午夜免费观看性视频| 免费高清在线观看日韩| 又大又黄又爽视频免费| 国产精品人妻久久久影院| 久久97久久精品| 亚洲欧美日韩另类电影网站| 久久毛片免费看一区二区三区| 少妇的逼水好多| 久久女婷五月综合色啪小说| 久久精品国产自在天天线| 色哟哟·www| av国产久精品久网站免费入址| 亚洲精品456在线播放app| 秋霞伦理黄片| 天天躁夜夜躁狠狠久久av| 黑人高潮一二区| 美女福利国产在线| 亚洲五月色婷婷综合| 日韩电影二区| 99视频精品全部免费 在线| 国产熟女午夜一区二区三区 | 九九爱精品视频在线观看| 高清视频免费观看一区二区| 亚洲精品久久久久久婷婷小说| 精品久久久久久久久av| 少妇 在线观看| 国产淫语在线视频| 中文天堂在线官网| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 亚洲精品一二三| 亚洲精品亚洲一区二区| 黄片播放在线免费| 99热这里只有精品一区| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 国产精品99久久久久久久久| 日本色播在线视频| 久久 成人 亚洲| 欧美 日韩 精品 国产| 国产一区二区三区综合在线观看 | 青春草亚洲视频在线观看| 免费黄色在线免费观看| 蜜桃在线观看..| 91精品国产国语对白视频| 欧美精品国产亚洲| videossex国产| 亚洲欧美日韩另类电影网站| 亚洲少妇的诱惑av| 人妻制服诱惑在线中文字幕| 久久热精品热| 十分钟在线观看高清视频www| 日本免费在线观看一区| 两个人免费观看高清视频| 97超碰精品成人国产| 夫妻性生交免费视频一级片| 99久久中文字幕三级久久日本| 国产高清国产精品国产三级| 亚洲欧美日韩卡通动漫| 欧美日韩亚洲高清精品| 另类亚洲欧美激情| 免费av不卡在线播放| 日韩不卡一区二区三区视频在线| 亚洲精品国产色婷婷电影| 好男人视频免费观看在线| 高清在线视频一区二区三区| 岛国毛片在线播放| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 菩萨蛮人人尽说江南好唐韦庄| 只有这里有精品99| 美女大奶头黄色视频| videosex国产| 麻豆成人av视频| 少妇人妻精品综合一区二区| 亚洲精品国产av成人精品| 午夜老司机福利剧场| av卡一久久| 国模一区二区三区四区视频| 欧美丝袜亚洲另类| 热99久久久久精品小说推荐| 国产高清不卡午夜福利| 国产一区二区在线观看日韩| 国产欧美另类精品又又久久亚洲欧美| 精品人妻熟女av久视频| 91成人精品电影| 在线精品无人区一区二区三| 精品国产一区二区久久| 久久97久久精品| 韩国av在线不卡| 特大巨黑吊av在线直播| 在线免费观看不下载黄p国产| 久久久久久人妻| 蜜桃在线观看..| 插逼视频在线观看| 久久精品国产自在天天线| 精品一区在线观看国产| 成年人午夜在线观看视频| 久久人人爽人人片av| a 毛片基地| 亚洲精品久久午夜乱码| 中文字幕最新亚洲高清| 亚洲国产精品一区三区| 亚州av有码| 国产成人精品婷婷| 高清不卡的av网站| 少妇 在线观看| 午夜影院在线不卡| 国产熟女欧美一区二区| 欧美人与性动交α欧美精品济南到 | 亚洲美女黄色视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 欧美xxxx性猛交bbbb| 精品亚洲成a人片在线观看| 欧美人与善性xxx| 中文天堂在线官网| 久久久国产一区二区| 欧美日韩国产mv在线观看视频| 亚洲欧美一区二区三区国产| 男女无遮挡免费网站观看| 国产精品.久久久| 视频在线观看一区二区三区| 免费av中文字幕在线| 美女内射精品一级片tv| 欧美 日韩 精品 国产| 免费看不卡的av| 欧美 日韩 精品 国产| 日韩精品免费视频一区二区三区 | 日日爽夜夜爽网站| 天美传媒精品一区二区| 日日爽夜夜爽网站| 美女内射精品一级片tv| 亚洲综合精品二区| 建设人人有责人人尽责人人享有的| 久久狼人影院| 91久久精品电影网| 亚洲精品乱久久久久久| 亚洲婷婷狠狠爱综合网| 特大巨黑吊av在线直播| 国产成人一区二区在线| 男女啪啪激烈高潮av片| 国产亚洲最大av| 国产精品嫩草影院av在线观看| 乱人伦中国视频| 国产成人freesex在线| 母亲3免费完整高清在线观看 | av不卡在线播放| 中文字幕亚洲精品专区| 少妇的逼水好多| 少妇被粗大猛烈的视频| 日日爽夜夜爽网站| 蜜桃久久精品国产亚洲av| 91精品一卡2卡3卡4卡| 亚洲精品日韩在线中文字幕| 黄片播放在线免费| 久久久久精品性色| 五月开心婷婷网| 国产午夜精品久久久久久一区二区三区| 男女边吃奶边做爰视频| 婷婷色综合www| 少妇的逼水好多| 成人毛片60女人毛片免费| 国产一区亚洲一区在线观看| 美女cb高潮喷水在线观看| av专区在线播放| 欧美精品一区二区大全| 免费av中文字幕在线| 亚洲av综合色区一区| 欧美激情 高清一区二区三区| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 99热全是精品| 97超碰精品成人国产| 一区二区av电影网| 久久国内精品自在自线图片| 日本欧美视频一区| 亚洲欧美成人综合另类久久久| 天美传媒精品一区二区| 99久久精品一区二区三区| 日本免费在线观看一区| 国产日韩一区二区三区精品不卡 | 国产精品99久久99久久久不卡 | av.在线天堂| 国产视频首页在线观看| 建设人人有责人人尽责人人享有的| 国产精品.久久久| 国产伦精品一区二区三区视频9| 在线观看免费高清a一片| 天天影视国产精品| 国产有黄有色有爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品夜色国产| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频| 久久精品国产鲁丝片午夜精品| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| 在线免费观看不下载黄p国产| 人人妻人人澡人人爽人人夜夜| 人妻夜夜爽99麻豆av| 极品少妇高潮喷水抽搐| 少妇人妻精品综合一区二区| 亚洲国产毛片av蜜桃av| 欧美一级a爱片免费观看看| 亚洲精品一二三| 日韩熟女老妇一区二区性免费视频| 免费观看av网站的网址| 久久久亚洲精品成人影院| 91aial.com中文字幕在线观看| 男人操女人黄网站| 一本色道久久久久久精品综合| 日本vs欧美在线观看视频| 在线观看免费高清a一片| 在现免费观看毛片| 国产不卡av网站在线观看| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| 午夜影院在线不卡| 国产精品国产三级专区第一集| 男女高潮啪啪啪动态图| 久久97久久精品| 欧美精品亚洲一区二区| 91精品国产九色| 国产欧美日韩一区二区三区在线 | 久久毛片免费看一区二区三区| 人妻 亚洲 视频| 建设人人有责人人尽责人人享有的| 成人二区视频| 纯流量卡能插随身wifi吗| 久久精品夜色国产| 亚洲av不卡在线观看| 狠狠精品人妻久久久久久综合| 三上悠亚av全集在线观看| av视频免费观看在线观看| 99精国产麻豆久久婷婷| 国产 一区精品| 亚洲国产欧美在线一区| 国产黄色视频一区二区在线观看| 午夜福利,免费看| 美女脱内裤让男人舔精品视频| 人人澡人人妻人| 建设人人有责人人尽责人人享有的| 日韩人妻高清精品专区| 国内精品宾馆在线| 久久久久国产网址| 久久午夜综合久久蜜桃| 熟妇人妻不卡中文字幕| 久久免费观看电影| 高清不卡的av网站| 一级毛片aaaaaa免费看小| 色婷婷av一区二区三区视频| 狂野欧美激情性bbbbbb| 欧美激情 高清一区二区三区| 99国产精品免费福利视频| 男女免费视频国产| 3wmmmm亚洲av在线观看| 如日韩欧美国产精品一区二区三区 | 一二三四中文在线观看免费高清| 狂野欧美白嫩少妇大欣赏| 国产亚洲av片在线观看秒播厂| 午夜福利,免费看| 亚洲激情五月婷婷啪啪| 在线观看美女被高潮喷水网站| 黄色欧美视频在线观看| 婷婷色综合大香蕉| 婷婷色av中文字幕| 国产成人精品久久久久久| 日韩精品有码人妻一区| 妹子高潮喷水视频| 日本-黄色视频高清免费观看| 国产欧美另类精品又又久久亚洲欧美| 晚上一个人看的免费电影| 成人亚洲精品一区在线观看| 在线观看三级黄色| 内地一区二区视频在线| 国产成人精品在线电影| 久久久亚洲精品成人影院| 新久久久久国产一级毛片| 人妻 亚洲 视频| 日本免费在线观看一区| 观看av在线不卡| 久久精品国产自在天天线| av免费观看日本| 免费人妻精品一区二区三区视频| 日韩中字成人| a级毛片免费高清观看在线播放| 国产精品一区二区在线不卡| 一级毛片我不卡| 一级毛片aaaaaa免费看小| 亚洲欧美一区二区三区黑人 | 一本大道久久a久久精品| 亚洲av不卡在线观看| 免费观看在线日韩| 国产日韩一区二区三区精品不卡 | 一区二区三区乱码不卡18| 尾随美女入室| 精品久久久久久久久亚洲| av卡一久久| 99国产精品免费福利视频| 国产精品人妻久久久影院| 少妇 在线观看| 制服丝袜香蕉在线| 搡老乐熟女国产| 九九爱精品视频在线观看| 欧美日韩在线观看h| 最后的刺客免费高清国语| 伊人久久国产一区二区| 亚洲国产av新网站| 9色porny在线观看| 日韩欧美精品免费久久| 97精品久久久久久久久久精品| 亚洲精品456在线播放app| 亚洲不卡免费看| 精品久久久噜噜| 久久久久久久久久久免费av| 国产精品无大码| 97超视频在线观看视频| 国产综合精华液| av电影中文网址| 丝袜喷水一区| 日本黄大片高清| 免费av中文字幕在线| 亚洲欧美一区二区三区国产| 免费看光身美女| 国产黄色免费在线视频| 美女内射精品一级片tv| 久久这里有精品视频免费| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 亚洲精品一二三| 男人操女人黄网站| 各种免费的搞黄视频| 免费日韩欧美在线观看| 久久精品熟女亚洲av麻豆精品| 观看av在线不卡| 亚洲国产色片| 国产精品99久久久久久久久| 亚洲av.av天堂| 简卡轻食公司| 麻豆成人av视频| 国产欧美亚洲国产| 亚洲精品乱码久久久久久按摩| 九九久久精品国产亚洲av麻豆| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| 婷婷成人精品国产| 亚洲精华国产精华液的使用体验| 亚洲欧美精品自产自拍| 一本—道久久a久久精品蜜桃钙片| 最近中文字幕高清免费大全6| 尾随美女入室| 国产男人的电影天堂91| 免费看av在线观看网站| 欧美精品一区二区免费开放| 亚洲综合精品二区| 两个人免费观看高清视频| 色哟哟·www| 九九爱精品视频在线观看| 满18在线观看网站| 国模一区二区三区四区视频| 亚洲久久久国产精品| 18禁在线播放成人免费| 亚洲第一av免费看| 久久精品国产自在天天线| av国产久精品久网站免费入址| 欧美最新免费一区二区三区| 日韩三级伦理在线观看| 蜜桃国产av成人99| 91午夜精品亚洲一区二区三区| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 国产亚洲最大av| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 99久国产av精品国产电影| 伦精品一区二区三区| 观看美女的网站| 日韩,欧美,国产一区二区三区| 日日撸夜夜添| 亚洲国产成人一精品久久久| 91午夜精品亚洲一区二区三区| videossex国产| 日日摸夜夜添夜夜添av毛片| 3wmmmm亚洲av在线观看| 亚洲不卡免费看| 欧美亚洲 丝袜 人妻 在线| 亚洲高清免费不卡视频| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲五月色婷婷综合| 美女脱内裤让男人舔精品视频| 欧美日韩视频高清一区二区三区二| 在线观看人妻少妇| 两个人的视频大全免费| 51国产日韩欧美| 久久精品人人爽人人爽视色| 伦理电影免费视频| 亚洲少妇的诱惑av| 亚洲精品色激情综合| 免费看av在线观看网站| 美女大奶头黄色视频| 午夜福利视频精品| 国产成人一区二区在线| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 成人毛片a级毛片在线播放| 亚洲精品av麻豆狂野| 97在线人人人人妻| 国产精品久久久久久久电影| 中文天堂在线官网| 九色成人免费人妻av| 老司机亚洲免费影院| 岛国毛片在线播放| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 91久久精品电影网| 18禁在线无遮挡免费观看视频| 久久久欧美国产精品| 99热网站在线观看| 欧美3d第一页| 国产探花极品一区二区| 久久久午夜欧美精品| 中文字幕最新亚洲高清| 亚洲国产欧美日韩在线播放| 国产探花极品一区二区| 在线观看免费日韩欧美大片 | 男女边摸边吃奶| 国产成人免费无遮挡视频| 亚洲精品乱久久久久久| 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 99国产精品免费福利视频| 熟女电影av网| 啦啦啦中文免费视频观看日本| tube8黄色片| 亚洲欧洲日产国产| 夜夜爽夜夜爽视频| av一本久久久久| 欧美97在线视频| 欧美国产精品一级二级三级| 日本91视频免费播放| 国产一区二区在线观看日韩| 在现免费观看毛片| 女性生殖器流出的白浆| videossex国产| 女人久久www免费人成看片| 一区二区av电影网| 亚洲三级黄色毛片| 成人国产av品久久久| 色94色欧美一区二区| 国产亚洲最大av| 不卡视频在线观看欧美| 黑人猛操日本美女一级片| 久久精品国产亚洲av涩爱| 热re99久久国产66热| 高清视频免费观看一区二区| 久久国产亚洲av麻豆专区| 欧美+日韩+精品| 视频中文字幕在线观看| 久久亚洲国产成人精品v| 人人妻人人澡人人看| 91成人精品电影| 国产成人91sexporn| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 简卡轻食公司| 两个人的视频大全免费| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 大香蕉97超碰在线| 在线观看免费日韩欧美大片 | 人人妻人人澡人人爽人人夜夜| 亚洲精品国产av成人精品| 免费av不卡在线播放| 天美传媒精品一区二区| 99视频精品全部免费 在线| 99久久综合免费| 欧美激情 高清一区二区三区| 国产亚洲最大av| 亚洲国产毛片av蜜桃av| 久久ye,这里只有精品| 蜜桃在线观看..| av在线播放精品| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 久久av网站| 在线观看国产h片| www.av在线官网国产| 免费观看性生交大片5| 亚洲精品一二三| 嫩草影院入口| 波野结衣二区三区在线| 女性被躁到高潮视频| 国产有黄有色有爽视频| 亚洲五月色婷婷综合| 18在线观看网站| 国产精品嫩草影院av在线观看| 成人手机av| 韩国高清视频一区二区三区| 波野结衣二区三区在线| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 中文字幕av电影在线播放| 国产在线免费精品| 亚洲av福利一区| 亚洲精品456在线播放app| 久久久久久久久久人人人人人人| a级毛片免费高清观看在线播放| 晚上一个人看的免费电影| 男女免费视频国产| 午夜免费鲁丝| 日韩成人伦理影院| 亚洲精品久久久久久婷婷小说| 美女福利国产在线| av专区在线播放| 又粗又硬又长又爽又黄的视频| 夜夜爽夜夜爽视频| 亚洲美女视频黄频| 午夜视频国产福利| 欧美国产精品一级二级三级| 亚洲av不卡在线观看| 久久久久精品久久久久真实原创| 精品人妻熟女av久视频| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品| 国产成人av激情在线播放 | 亚洲美女视频黄频| 日韩视频在线欧美| 国产精品免费大片| 欧美激情极品国产一区二区三区 | 精品一品国产午夜福利视频| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 寂寞人妻少妇视频99o| 免费大片18禁| 高清视频免费观看一区二区| 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 国产熟女欧美一区二区| 97在线视频观看| 国产又色又爽无遮挡免| av免费在线看不卡| 婷婷色av中文字幕| 两个人的视频大全免费| 美女国产高潮福利片在线看| 免费大片黄手机在线观看| 成人无遮挡网站| 婷婷色麻豆天堂久久| 一级黄片播放器| 汤姆久久久久久久影院中文字幕| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 久久av网站| 久久青草综合色| 欧美日本中文国产一区发布| 国精品久久久久久国模美| 亚洲久久久国产精品| 国产成人a∨麻豆精品| 最近中文字幕2019免费版| av电影中文网址| 蜜桃在线观看..| 高清欧美精品videossex| 成人毛片60女人毛片免费| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 精品人妻在线不人妻| 多毛熟女@视频| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 国产在视频线精品| 日韩av在线免费看完整版不卡| 女性被躁到高潮视频| 99久国产av精品国产电影| 晚上一个人看的免费电影| 美女大奶头黄色视频| 丝袜美足系列| 欧美亚洲日本最大视频资源| videosex国产| 人人妻人人添人人爽欧美一区卜| 久热这里只有精品99| 国产欧美另类精品又又久久亚洲欧美| 十八禁高潮呻吟视频| 成人国产麻豆网| 中文字幕制服av| 欧美精品一区二区大全| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 王馨瑶露胸无遮挡在线观看| 日本黄大片高清| 亚洲欧美日韩另类电影网站| 亚洲伊人久久精品综合| 丁香六月天网|