• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decomposition of the Unsteady Wave Patterns for Bessho form Translating-Pulsating Source Green Function

    2014-04-20 09:24:09XIAOWenbinandDONGWencai
    Journal of Ocean University of China 2014年5期

    XIAO Wenbin, and DONG Wencai

    Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, P. R. China

    Decomposition of the Unsteady Wave Patterns for Bessho form Translating-Pulsating Source Green Function

    XIAO Wenbin, and DONG Wencai*

    Department of Naval Architecture, Naval University of Engineering, Wuhan 430033, P. R. China

    In order to interpret the physical feature of Bessho form translating-pulsating source Green function, the phase function is extracted from the integral representation and stationary-phase analysis is carried out in this paper. The complex characteristics of the integral variable and segmentation of the integral intervals are discussed in m complex plane. In θ space, the interval [-π/2+φ, -π/2+φ-iε] is dominant in the near-field flow, and there is a one-to-one correspondence between the real intervals in m space and the unsteady wave patterns in far field. If 4τ>1 (τ is the Brard number), there are three kinds of propagation wave patterns such as ring-fan wave pattern, fan wave pattern and inner V wave pattern, and if 0<4τ<1, a ring wave pattern, an outer V and inner V wave pattern are presented in far field. The ring-fan or ring wave pattern corresponds to the interval [-π+α, -π/2+φ] for integral terms about k2, and the fan or outer V wave pattern and inner V wave pattern correspond to [-π+α, -π/2) and (-π/2, -π/2+φ] respectively for terms about k1. Numerical result shows that it is beneficial to decompose the unsteady wave patterns under the condition of τ≠0 by converting the integral variable θ to m. In addition, the constant-phase curve equations are derived when the source is performing only pulsating or translating.

    translating-pulsating source; unsteady wave patterns; stationary-phase analysis; near-field flow component; wave component

    1 Introduction

    Three dimensional (3D) translating-pulsating source Green function is a key kernel for seakeeping calculation and analysis, whose advantage is an automatic satisfaction of the linearized free-surface and radiation conditions. There are now several forms in polar Fourier representation of 3D translating-pulsating source Green function in frequency domain, such as the Havelock form (Havelock, 1958), Michell form (Hanaoka, 1953) and Bessho form (Bessho, 1977). Green function of the Bessho form is considered as the best type in numerical computation (Matao, 1992) with a single integral form and all its mathematical terms are elementary functions. Some rapid and stable integral calculations have been carried out by Iwashita and Ohkusu (1989), Du and Wu (1998) and Maury et al. (2003), and some results (Bruzzone et al., 2001; Du et al., 2005, 2012) had been applied to investigate the free motions and excited wave forces of a ship advancing in waves.

    In the study about the wave patterns of 3D translating-pulsating source, Noblesse and Hendrix (1992) obtained the far-field waves of translating-pulsating source in Cartesian coordinate system, and explored the relationship between the wave characteristics, forward speed and oscillating parameters. Further, Noblesse and Chen (1995) decomposed the free-surface potential into a single integral and a double Fourier integral, corresponding to the wave component and local component respectively. By an asymptotic analysis, Chen and Diebold (1999) then obtained the analytical expressions of the transverse and divergent waves in the far field. More theoretical studies about the wave patterns are presented in Chen (2002) and Noblesse and Yang (2003), in which wave descriptions including the surface tension effect and a simpler far-field representation are summarized. Experiments using a modified Wigley model were carried out to obtain the unsteady waves and a highly accurate method was applied to measure the diffraction waves by Iwashita et al. (2011). In terms of wave pattern application, Ohkusu (1980) and Kashiwagi (2010) evaluated the added resistance by means of unsteady wave pattern analysis, which is beneficial for the deeper hydrodynamic understanding of ship-generated waves.

    Inspired by the ideas of Noblesse and Hendrix (1992), Xu (2012) studied the far-field wave patterns of Havelock form translating-pulsating source by using a special variable substitution and found that parallel waves would appear at integral end, which could yet be cancelled out between different terms. For Michell form, Miao et al. (1995) derived the constant-phase curve equations aboutthe integral variable, and probed into the far-field radiation behaviors and its propagation properties. Bessho form Green function may achieve some numerical advantages in seakeeping calculations, but some researchers (Matao, 1992; Xu and Dong, 2011) hold the view that its physical feature is not so clear as the Havelock form or Michell form, which is largely due to the complexity of the integral path in complex plane.

    This paper mainly investigates the unsteady wave patterns for Bessho form Green function by performing stationary-phase analysis method. The constant-phase curve equations are achieved from the integral representation and its transformation. The paper focuses on the explicit determination of near-field flow and wave components for Bessho form translating-pulsating source, and the relationships between the wave behavior and the integral interval in complex plane. If the physical feature of Bessho form is more definite, it is expected to further guide its practical application in seakeeping problem.

    2 Integral Representation of Bessho Form Green Function

    A right-handed equilibrium axis system oxyz is defined in the condition of deep water with the origin o on the plane of undisturbed free surface, and the z-axis is positive upwards. The axis system translates with a uniform forward speed U in the positive x direction. The 3D Green function at field point (x, y, z) is defined as a speed dependent velocity potential G of a translating-pulsating source at (ξ, η, ζ) with an oscillating frequency ω, which is given by Bessho (1977) as

    k1,2is the generalized wave number and sign is the symbolic function. It is obvious that the integral path of Eq. (1) is located in θ space, which can be divided into two kinds of conditions according to the value of τ, as depicted in Fig.1.

    Fig.1 Integral path of Eq. (1) in θ space. (a) 4τ>1 and (b) 4τ<1.

    A new integration variable of M=sgnc·m=sgnc·k1cosθ is introduced and a closed curve in M space (or m space) is built for k1. By the Cauchy integral theorem, the terms about k1can be rewritten (Iwashita and Ohkusu, 1989) as

    The lower limit β1and upper limit β2in Eq. (2) are determined by the actual division of integral interval. The terms about k2also can be replaced by a new variable, with a similar result to that with Eq. (2).

    3 Decomposition of Near-Field Flow and Wave Components in Bessho Form

    In Eq. (2), ()Mφ represents some characteristics of the exponential part of integrating function, whose real part is the oscillating amplitude and imaginary part is the phase value. So the phase function of Bessho form can be defined by the imaginary part of ()Mφ as

    According to the traits of phase function, the wave pattern in far field can be determined by stationary-phase analysis method. If dψ/dM = 0 in Eq. (3), it is easy to obtain

    By substituting the Eq. (4b) in Eq. (3), the parametric equation of stationary-phase curve can be performed as Eq. (5)

    and the range of variable θ depends on actual integral path in Fig.1. According to Eq. (5), the position of the source point and field point is related to the unsteady wave pattern at specific instants, such as those for the occurrence of wave crests and wave hollows. In m space, the integral path is converted, which is shown in Figs.2 and 3.

    Limits of integration about m(0), m(-π+α) and m(-π/2) can be defined as Eqs. (7a), (7b), and (7c).

    It can be seen from Eq. (3) that there is no point of stationary phase in the intervals identified by the dashed lines in Figs.2 and 3, where the imaginary part of m is not zero, because X and Y must be real numbers. Therefore, the corresponding terms in Eq. (1) have no disturbance in far field, which can be defined as the near-field flow component. The variable m is real in the intervals presented by the solid lines in Figs.2 and 3, where the stationary phase of ψ(M) is in existence, so the contribution of the corresponding terms in Eq. (1) is dominant in far field. The solid-lines intervals, defining the wave component, can be divided into three parts such as D1, D2and AA, constituting the far-field waves of Green function. Particularly, the terms about k1have strong oscillations in the vicinity of ±π/2 of θ space, which deserves more attention while calculating the integration. However, the terms about k2are out of singularity along its whole interval. In Table 1, the detailed integral interval for the near-field flow and wave components are presented in the complex plane.

    When 4τ<1, the integral path in θ space consists of two complex intervals and one real interval. It is very interesting that the complex interval [-π+α, -π] is converted to real in m space, and the special value m(-π) is located on different sides of -τ for k1and k2respectively. This interval merging phenomenon is beneficial not only to the integration calculation, but also to the decomposition of unsteady wave patterns.

    The stationary-phase analysis above is illuminated in m space, whereas the original integration variable is in the θ space for Bessho form Green function. In order to make sure that the Green function will keep its characters by performing the variable substitution, m (or M) and θ must keep the monotonic relationship in different intervals, which is significant for the wave pattern analysis.

    Fig.2 The new integral path for terms about k1in m space.

    Fig.3 The new integral path for terms about k2in m space.

    Table 1 Integral interval in complex plane for the near-field flow and wave components

    4 Unsteady Wave Patterns of Bessho Form Green Function

    An advancing ship in deep water will generate unsteady waves and these wave patterns depend on both the encounter frequency and forward speed. For frequency domain method of Green function, the unsteady wave of a harmonically oscillating source at forward speed can be expressed by the constant-phase curve equation introduced from phase function.

    In order to find the wave systems together with theircharacteristics, the parametric Eq. (5) can be numerically calculated by different intervals in far field. Three stationary curves can be obtained from Eq. (5), and the other three curves are determined by symmetric transformation for Y is symmetric of the x axis. Fig.4 depicts the wave patterns propagating outward when the source is located at (ξ ,η, ζ)=(0,0,-0.1). This figure shows that, for the value of 4τ>1, there are three distinct wave patterns such as inner V waves from D1, fan waves from D2and ringfan waves from AA. For the value of 4τ<1, D1and D2correspond to the inner V waves and outer V waves respectively, and the ring waves are from AA, whose forward wavelengths are shorter than those at the backward positions of the source. The results of these propagation wave patterns are consistent with those obtained by Noblesse and Hendrix (1992).

    Fig.4 Constant-phase curves of far wave patterns when the source is located at (0,0,0.1)-. (a) τ=0.35, (b) τ=0.2, (c) τ=0.25+, and (d) τ=0.25-.

    Fig.4 shows that the wave patterns from D2and AA are closely connected to parameter τ. With an increasing forward speed U and oscillating frequency ω, two waves above tend to propagate downstream of the source, in which the ring waves are degenerated into ring-fan waves and outer V waves into fan waves. On the other hand, the wave patterns from D1include the transverse and divergent waves all the time. It is important to note that when excited waves would appear upstream of the ship, Chen and Diebold (1999) pointed out that the ring-fan waves would not propagate forward if τ >2/27, which means that the excited waves would not be observed in front of an advancing ship. Fig.5 illustrates the cusp angles δ (to the negative ox direction) of ring-fan waves at different values τ. Numerical calculation demonstrates that cusp angle δ is between 0? and 125.26?, which agrees well with Noblesse and Hendrix (1992) and Xu (2012).

    Fig.5 Cusp angle δ of ring-fan waves at different value of τ.

    5 Constant-Phase Curves and Wave Patterns in the Condition of τ=0

    The previous section mainly discusses the wave patterns in the case of τ≠0. The special wave patterns of the Bessho form Green function need further study when τ=0. In physical phenomenon, there are only ring waves if the source is stationary. When the oscillating frequency of a source is equal to zero, the source will move forward at a certain speed with no oscillating motions, and the wave pattern here is known as Kelvin wave pattern (Miao et al., 1995; Xu, 2012).

    By performing κ1,2=K0k1,2in Eq. (1), κ then possesses the same physics dimension as wave number, and the integrand can be rewritten as Eq. (8).

    Three parameters X', Y' and Z' now directly demote the relative distance between the source point and field point. By stationary-phase analysis method, the phase function extracted from Eq. (8) is now written as

    When the frequency ω≠0 and forward speed U→0, parameter κ1tends to +∞, and the limit of terms about κ1is shown in Eq. (10).

    Therefore, the wave patterns in far field don’t exist for κ1. If the forward speed U=0 and κ2=ω2/g, the constant-phase curve equation can be written as Eq. (11).

    Fig.6 and Fig.7 illustrate the wave shape under the condition of τ=0. In Fig.6, the source’s oscillating frequency ω≠0, whose constant-phase curves are all circles with the same center o and same wavelengths in all directions. In Fig.7, the source’s forward speed U≠0 and the constant-phase curves are steady Kelvin wave patterns. The wave patterns of the two presented cases agree well with the results obtained by Faltinsen (2005) and Xu (2012), which proves that the wave patterns of Bessho form Green function are still describable when τ=0.

    Fig.6 Wave shape with ω≠0 and U=0.

    Fig.7 Wave shape with U≠0 and ω=0.

    6 Conclusions

    1) The constant-phase curves can be obtained through stationary-phase analysis for the Bessho form translating-pulsating source. The different intervals are determined according to the features of constant-phase curves for the near-field flow and wave components. And the two field components are related to integral intervals in θ space and it is a fast way to determine them by converting the integral variable θ to m.

    2) In θ space, the near-field flow component is confined to the interval[-π/2+φ,-π/2+φ-iε], and there is a one-to-one correspondence between the real intervals in m space and unsteady waves in far field, in which the ring-fan waves or ring waves correspond to the interval [-π+α,-π/2+φ] for terms about k2, the fan waves or outer V waves correspond to the interval [-π+α,-π/2) for terms about k1, and the inner V waves to the interval(-π/2,-π/2+φ]for terms about k1.

    3) The mathematical expressions of propagating wave patterns can be derived not only under the condition of τ≠0 but also τ=0 from the integral representation and the transformation of Bessho form Green function.

    4) Most importantly, the physical feature of Bessho form Green function is clarified by the research of the present paper. The application of this numerically advantageous type of Green function form to ocean structure’s seakeeping calculation can also be expanded with a clear and definite physical feature.

    Acknowledgements

    This study has received financial support from the National Natural Science Foundation of China under Grant No. 50879090 and the Key Program of Hydrodynamics of China under Grant No.9140A14030712JB11044.

    Bessho, M., 1977. On the fundamental singularity in the theory of ship motion in a seaway. Memoirs of the Defense Academy of Japan, 17 (8): 95-105.

    Bruzzone, D., Gualeni, P., and Sebastiani, L., 2001. Effects of different three dimensional formulations on the seakeeping computations of high speed hulls. 8th International Symposium on Practical Design of Ships and Other Floating Structures. Shanghai, Vol. 1, 547-553.

    Chen, X. B., 2002. Role of surface tension in modeling ship waves. 17th International Workshop on Water Waves and Floating Bodies. Cambridge, UK, 1-4.

    Chen, X. B., and Diebold, L., 1999. Analytical expressions of unsteady ship wave patterns. 14th International Workshop on Water Waves and Floating Bodies. Port Huron, USA, 25-28.

    Du, S. X., and Wu, Y. S., 1998. A fast evaluation method for Bessho form translating-pulsating source Green’s function. Shipbuilding of China, 2: 40-48 (in Chinese with English abstract).

    Du, S. X., Hudson, D. A., Price, W. G., and Temarel, P., 2005. Prediction of three-dimensional seakeeping characteristics of fast hull forms: Influence of the line integral terms. International Conference on Fast Sea Transportation. St. Petersburg, Russia, 1-8.

    Du, S. X., Hudson, D. A., Price, W. G., and Temarel, P., 2012. An investigation into the hydrodynamic analysis of vessels with a zero or forward speed. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 226 (2): 83-102.

    Faltinsen, O. M., 2005. Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press, UK, 454pp.

    Hanaoka, T., 1953. On the velocity potential in Michell’s system and the configuration of the wave-Ridges due to a moving ship. Journal of the Society of Naval Architects of Japan, 93: 1-10.

    Havelock, T. H., 1958. The effect of speed of advance upon the damping of the heave and pitch. Transactions Institution Naval Architects, 100: 131-135.

    Iwashita, H., and Ohkusu, M., 1989. Hydrodynamic forces on a ship moving with forward speed in waves. Journal of the Society of Naval Architects of Japan, 166: 87-109.

    Iwashita, H., Elangovan, M., Kashiwagi, M., and Sasakawa, T., 2011. On an unsteady wave pattern analysis of ships advancing in waves. Journal of the Japan Society of Naval Architects and Ocean Engineers, 13: 95-106 (in Japanese with English abstract).

    Kashiwagi, M., 2010. Prediction of added resistance by means of unsteady wave-pattern analysis. 25th International Workshop on Water Waves and Floating Bodies. Harbin, China, 1-4.

    Matao, T., 1992. 3D Green function of oscillating body with forward speed on water of finite depth. Journal of Kansai Society of Naval Architects of Japan, 217: 67-75.

    Maury, C., Delhommeau, G., Ba, M., Boin, J. P., and Guibaud, M., 2003. Comparison between numerical computations and experiments for seakeeping on ship models with forward speed. Journal of Ship Research, 47 (4): 347-364.

    Miao, G. P., Liu, Y. Z., Yang, Q. Z., and Liu, Z. Y., 1995. On the 3-D pulsating source of Michell’s type with forward speed. Shipbuilding of China, 4: 1-11 (in Chinese with English abstract).

    Noblesse, F., and Chen, X. B., 1995. Decomposition of freesurface effects into wave and near-field components. Ship Technology Research, 42 (4): 167-185.

    Noblesse, F., and Hendrix, D., 1992. On the theory of potential flow about a ship advancing in waves. Journal of Ship Research, 36 (1): 17-29.

    Noblesse, F., and Yang, C., 2003. Farfield waves. 18th International Workshop on Water Waves and Floating Bodies. Le Croisic, France, 1-5.

    Ohkusu, M., 1980. Added resistance in waves in the light of unsteady wave pattern analysis. Proceedings of 13th Symposium on Naval Hydrodynamics. Tokyo, Japan, 413-425.

    Xu, Y., 2012. Study on the mechanism of hydrodynamic interaction between multiple ships advancing in waves at close proximity. PhD thesis, Naval University of Engineering, Wuhan, 178pp (in Chinese with English abstract).

    Xu, Y., and Dong, W. C., 2011. Study on characteristics of 3-D translating-pulsating source Green function of deep-water Havelock form and its fast integration method. China Ocean Engineering, 25 (3): 365-380.

    (Edited by Xie Jun)

    (Received January 15, 2013; revised May 28, 2013; accepted May 21, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. E-mail: haigongdwc@163.com

    看非洲黑人一级黄片| 在线观看免费日韩欧美大片 | 国产老妇伦熟女老妇高清| 亚洲中文av在线| 国产一级毛片在线| 最后的刺客免费高清国语| 哪个播放器可以免费观看大片| 成年人免费黄色播放视频| 亚洲不卡免费看| 国产亚洲一区二区精品| 18禁在线播放成人免费| 777米奇影视久久| 国产日韩欧美在线精品| 午夜免费鲁丝| 国产成人精品婷婷| 亚洲精品日韩av片在线观看| 免费观看a级毛片全部| 国产精品一区二区三区四区免费观看| 又黄又爽又刺激的免费视频.| 亚洲美女搞黄在线观看| 国产精品久久久久久久久免| 亚洲欧洲日产国产| 免费高清在线观看日韩| 国产毛片在线视频| av线在线观看网站| 国产视频内射| 曰老女人黄片| 美女内射精品一级片tv| 久久青草综合色| 日本爱情动作片www.在线观看| 日本午夜av视频| 国产av精品麻豆| 天天影视国产精品| 丝袜在线中文字幕| 人妻少妇偷人精品九色| 美女内射精品一级片tv| 一级二级三级毛片免费看| 一本色道久久久久久精品综合| 成人手机av| 在线天堂最新版资源| 欧美激情 高清一区二区三区| 97在线人人人人妻| 三级国产精品片| 国产精品久久久久久av不卡| 亚洲综合色惰| 免费高清在线观看视频在线观看| 欧美激情极品国产一区二区三区 | 狂野欧美白嫩少妇大欣赏| 亚洲婷婷狠狠爱综合网| a级毛片免费高清观看在线播放| 亚洲av.av天堂| 亚洲熟女精品中文字幕| 久久久久久久久久久久大奶| 精品99又大又爽又粗少妇毛片| 亚洲欧美清纯卡通| 91久久精品国产一区二区三区| 午夜视频国产福利| 国产淫语在线视频| 丝袜喷水一区| 精品亚洲成a人片在线观看| 久热久热在线精品观看| 亚洲av免费高清在线观看| 国产av国产精品国产| 青春草亚洲视频在线观看| 亚洲欧洲国产日韩| 国产精品一国产av| 91午夜精品亚洲一区二区三区| 18+在线观看网站| 内地一区二区视频在线| 啦啦啦啦在线视频资源| 久久国产亚洲av麻豆专区| 免费观看a级毛片全部| 亚洲av男天堂| 国产精品 国内视频| 日韩人妻高清精品专区| 亚洲丝袜综合中文字幕| 亚洲图色成人| 亚洲国产欧美日韩在线播放| 97精品久久久久久久久久精品| 老司机影院成人| 插阴视频在线观看视频| 99久久综合免费| 亚洲欧美日韩卡通动漫| 综合色丁香网| 久久午夜综合久久蜜桃| 大码成人一级视频| 日韩三级伦理在线观看| 免费播放大片免费观看视频在线观看| 制服诱惑二区| 这个男人来自地球电影免费观看 | 日本91视频免费播放| 国产精品国产三级国产专区5o| 久久精品夜色国产| 国产亚洲一区二区精品| 天堂俺去俺来也www色官网| 亚洲欧美日韩另类电影网站| 熟女人妻精品中文字幕| 久久午夜福利片| 毛片一级片免费看久久久久| 国产免费视频播放在线视频| 亚洲五月色婷婷综合| 在线观看人妻少妇| 久久av网站| 交换朋友夫妻互换小说| av福利片在线| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 国产精品久久久久成人av| 国产精品女同一区二区软件| 大码成人一级视频| 国产男人的电影天堂91| 美女国产视频在线观看| 精品午夜福利在线看| 欧美bdsm另类| 亚洲色图 男人天堂 中文字幕 | 亚洲美女搞黄在线观看| 国产黄色视频一区二区在线观看| 丰满饥渴人妻一区二区三| 老熟女久久久| 成人综合一区亚洲| 欧美+日韩+精品| 在线精品无人区一区二区三| 亚洲av成人精品一区久久| 亚洲精品乱码久久久v下载方式| 蜜桃久久精品国产亚洲av| 涩涩av久久男人的天堂| 精品一区二区三卡| 亚洲三级黄色毛片| 少妇被粗大的猛进出69影院 | 男女边吃奶边做爰视频| 色哟哟·www| 十分钟在线观看高清视频www| 欧美日韩视频精品一区| 久久99一区二区三区| 伊人亚洲综合成人网| 母亲3免费完整高清在线观看 | 狂野欧美激情性xxxx在线观看| 国产日韩一区二区三区精品不卡 | 免费观看性生交大片5| 观看美女的网站| 中文字幕精品免费在线观看视频 | 日韩不卡一区二区三区视频在线| 99热国产这里只有精品6| 欧美人与性动交α欧美精品济南到 | 九色亚洲精品在线播放| 爱豆传媒免费全集在线观看| 国产成人精品婷婷| 中文字幕最新亚洲高清| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 亚洲图色成人| 99久久人妻综合| 97在线人人人人妻| 男女无遮挡免费网站观看| 亚洲成人一二三区av| 蜜桃久久精品国产亚洲av| 三上悠亚av全集在线观看| 欧美精品高潮呻吟av久久| h视频一区二区三区| 欧美 日韩 精品 国产| 亚洲精品456在线播放app| 十八禁高潮呻吟视频| 国产精品麻豆人妻色哟哟久久| 免费看不卡的av| 精品少妇黑人巨大在线播放| 日韩,欧美,国产一区二区三区| 亚洲欧美精品自产自拍| 国产女主播在线喷水免费视频网站| 在线看a的网站| 91久久精品电影网| 日韩一本色道免费dvd| 国产 一区精品| 亚洲国产精品专区欧美| 国产国语露脸激情在线看| 26uuu在线亚洲综合色| 桃花免费在线播放| 在线观看国产h片| 亚洲精品乱久久久久久| 99热网站在线观看| 97在线视频观看| 精品久久国产蜜桃| 日韩三级伦理在线观看| 一级二级三级毛片免费看| 国产精品久久久久久av不卡| 亚洲国产精品成人久久小说| 亚洲av综合色区一区| 99久久人妻综合| 一个人免费看片子| 日韩精品免费视频一区二区三区 | 丰满迷人的少妇在线观看| 日韩强制内射视频| 亚洲欧洲精品一区二区精品久久久 | 久久人人爽人人片av| 秋霞在线观看毛片| 免费黄网站久久成人精品| 精品人妻在线不人妻| 久久久欧美国产精品| videosex国产| 成年美女黄网站色视频大全免费 | videossex国产| 51国产日韩欧美| 亚洲国产精品国产精品| 亚洲,欧美,日韩| 伊人久久精品亚洲午夜| 久久婷婷青草| 我的老师免费观看完整版| 国产伦精品一区二区三区视频9| 亚洲美女黄色视频免费看| 日韩三级伦理在线观看| 国产亚洲最大av| 97在线视频观看| 欧美日韩国产mv在线观看视频| 在线免费观看不下载黄p国产| 99热这里只有精品一区| 久热这里只有精品99| 精品熟女少妇av免费看| 国产高清不卡午夜福利| 交换朋友夫妻互换小说| 欧美日韩在线观看h| 一级毛片 在线播放| 亚洲av电影在线观看一区二区三区| 日本爱情动作片www.在线观看| 春色校园在线视频观看| 国产爽快片一区二区三区| 国产又色又爽无遮挡免| 日本黄色日本黄色录像| 国产免费现黄频在线看| 国产毛片在线视频| 最近中文字幕2019免费版| 一区二区av电影网| 欧美另类一区| 高清欧美精品videossex| 蜜桃久久精品国产亚洲av| 九草在线视频观看| 精品熟女少妇av免费看| 91aial.com中文字幕在线观看| 亚洲精品色激情综合| 亚洲av电影在线观看一区二区三区| 精品少妇内射三级| a 毛片基地| 久久久久久久大尺度免费视频| 一级爰片在线观看| 久久av网站| 亚洲欧美一区二区三区黑人 | 精品少妇内射三级| 久久精品夜色国产| 久久精品国产鲁丝片午夜精品| 久热这里只有精品99| 黄色一级大片看看| 视频区图区小说| 国产精品女同一区二区软件| 老司机影院成人| 高清毛片免费看| 中文字幕人妻熟人妻熟丝袜美| 成年人免费黄色播放视频| 夜夜看夜夜爽夜夜摸| 日本黄大片高清| 九九久久精品国产亚洲av麻豆| 亚洲情色 制服丝袜| 最近的中文字幕免费完整| 伦理电影大哥的女人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产女主播在线喷水免费视频网站| 日本wwww免费看| 最近中文字幕高清免费大全6| 人妻系列 视频| 一个人免费看片子| 在线精品无人区一区二区三| 国产免费福利视频在线观看| 日本vs欧美在线观看视频| 久久久国产一区二区| 99久国产av精品国产电影| 九九爱精品视频在线观看| 黄色一级大片看看| 视频在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 中国三级夫妇交换| 国产成人免费无遮挡视频| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 热99久久久久精品小说推荐| 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 久久久精品区二区三区| 欧美人与善性xxx| freevideosex欧美| 青青草视频在线视频观看| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| 久久久国产一区二区| 在线观看www视频免费| 亚洲国产精品999| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 熟女人妻精品中文字幕| 日韩电影二区| freevideosex欧美| 色哟哟·www| 国产精品久久久久久精品电影小说| 欧美精品高潮呻吟av久久| 午夜日本视频在线| 视频中文字幕在线观看| 亚洲精品中文字幕在线视频| 色5月婷婷丁香| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 日韩 亚洲 欧美在线| 看免费成人av毛片| 日韩不卡一区二区三区视频在线| 精品久久久精品久久久| 中文字幕亚洲精品专区| 伦理电影大哥的女人| 国产成人91sexporn| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 欧美97在线视频| 不卡视频在线观看欧美| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 精品久久久精品久久久| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 国产伦精品一区二区三区视频9| 日韩免费高清中文字幕av| 亚洲国产成人一精品久久久| 久热这里只有精品99| 人成视频在线观看免费观看| 少妇人妻 视频| 国产免费视频播放在线视频| 成人二区视频| 精品少妇黑人巨大在线播放| 亚洲美女黄色视频免费看| 国产视频首页在线观看| 老司机亚洲免费影院| 九色亚洲精品在线播放| av在线老鸭窝| 伊人久久精品亚洲午夜| 国产有黄有色有爽视频| 草草在线视频免费看| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 国产不卡av网站在线观看| videosex国产| 日本av免费视频播放| 我的女老师完整版在线观看| 国精品久久久久久国模美| 天堂俺去俺来也www色官网| 欧美激情国产日韩精品一区| 欧美日韩在线观看h| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 精品熟女少妇av免费看| 国产精品无大码| 日本猛色少妇xxxxx猛交久久| 美女cb高潮喷水在线观看| 午夜福利视频在线观看免费| 日本免费在线观看一区| 十分钟在线观看高清视频www| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 波野结衣二区三区在线| 美女国产视频在线观看| 下体分泌物呈黄色| 久久婷婷青草| 制服丝袜香蕉在线| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 建设人人有责人人尽责人人享有的| 久久av网站| 看非洲黑人一级黄片| 男女边吃奶边做爰视频| 超碰97精品在线观看| 黑丝袜美女国产一区| 菩萨蛮人人尽说江南好唐韦庄| 丰满少妇做爰视频| 精品99又大又爽又粗少妇毛片| 人妻一区二区av| 在线看a的网站| 亚洲一级一片aⅴ在线观看| av国产久精品久网站免费入址| 国产老妇伦熟女老妇高清| 又黄又爽又刺激的免费视频.| 伊人亚洲综合成人网| 9色porny在线观看| 亚洲av综合色区一区| 免费av不卡在线播放| 色5月婷婷丁香| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 中文欧美无线码| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区蜜桃 | 乱码一卡2卡4卡精品| 国产成人精品无人区| 国产精品女同一区二区软件| 久久久久久久大尺度免费视频| 精品酒店卫生间| 美女国产视频在线观看| 男男h啪啪无遮挡| 99久久精品一区二区三区| 亚洲色图 男人天堂 中文字幕 | av在线观看视频网站免费| 99久久综合免费| 亚洲国产精品国产精品| 少妇高潮的动态图| 久久久久久伊人网av| 久久精品夜色国产| 国产免费现黄频在线看| 一本色道久久久久久精品综合| 久久午夜福利片| 亚洲欧美成人精品一区二区| 亚洲怡红院男人天堂| 亚洲综合精品二区| 一级毛片aaaaaa免费看小| 日韩一本色道免费dvd| 国产综合精华液| 国产爽快片一区二区三区| 日本免费在线观看一区| 有码 亚洲区| 久久精品久久久久久久性| 满18在线观看网站| 91久久精品国产一区二区三区| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆| 2018国产大陆天天弄谢| 婷婷成人精品国产| 国产熟女欧美一区二区| 黑人高潮一二区| 在线免费观看不下载黄p国产| www.av在线官网国产| 成人国语在线视频| 欧美丝袜亚洲另类| 精品国产露脸久久av麻豆| 一级a做视频免费观看| 国产爽快片一区二区三区| 伊人亚洲综合成人网| 国产免费视频播放在线视频| 久热这里只有精品99| 极品人妻少妇av视频| 三级国产精品片| 免费观看在线日韩| 国产片内射在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 久久精品国产a三级三级三级| 男女免费视频国产| 一级二级三级毛片免费看| 亚洲不卡免费看| 成人毛片a级毛片在线播放| 丝袜脚勾引网站| 亚洲精品中文字幕在线视频| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 精品一品国产午夜福利视频| 欧美bdsm另类| 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 国产综合精华液| 成年女人在线观看亚洲视频| 在线观看免费日韩欧美大片 | 中文字幕久久专区| 婷婷色综合大香蕉| 精品一区二区三区视频在线| 黄色配什么色好看| 久久午夜综合久久蜜桃| 美女中出高潮动态图| av免费在线看不卡| 国产一级毛片在线| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 久久狼人影院| 久久精品久久久久久噜噜老黄| 99久国产av精品国产电影| 亚洲成色77777| av一本久久久久| 乱人伦中国视频| 久久久亚洲精品成人影院| 男男h啪啪无遮挡| 国产午夜精品一二区理论片| 亚洲伊人久久精品综合| 人妻少妇偷人精品九色| 女人久久www免费人成看片| 色哟哟·www| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 国产亚洲精品久久久com| 免费看光身美女| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 免费高清在线观看视频在线观看| 最近手机中文字幕大全| 在线精品无人区一区二区三| 亚洲综合色网址| 免费黄网站久久成人精品| 国产精品偷伦视频观看了| 一本一本综合久久| 国产精品一区二区在线观看99| 午夜免费鲁丝| 少妇的逼水好多| 久久精品国产自在天天线| 最近的中文字幕免费完整| 国产有黄有色有爽视频| 久久青草综合色| 熟女av电影| 狂野欧美激情性xxxx在线观看| 久久久国产欧美日韩av| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 精品国产一区二区三区久久久樱花| xxxhd国产人妻xxx| 欧美激情 高清一区二区三区| 国产男女内射视频| 国产日韩欧美在线精品| www.色视频.com| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| av不卡在线播放| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| 欧美精品高潮呻吟av久久| h视频一区二区三区| 美女主播在线视频| 麻豆精品久久久久久蜜桃| 国产精品 国内视频| 老司机亚洲免费影院| 成人毛片60女人毛片免费| 免费观看的影片在线观看| 高清视频免费观看一区二区| 国产精品免费大片| 天天影视国产精品| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 亚洲人成网站在线播| 亚洲熟女精品中文字幕| 免费日韩欧美在线观看| 久久国产精品男人的天堂亚洲 | 岛国毛片在线播放| 男女边吃奶边做爰视频| 美女中出高潮动态图| 99久久中文字幕三级久久日本| 久热久热在线精品观看| 国产精品成人在线| 欧美xxxx性猛交bbbb| 国产熟女欧美一区二区| 性色avwww在线观看| 99精国产麻豆久久婷婷| 美女cb高潮喷水在线观看| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 亚洲在久久综合| 啦啦啦中文免费视频观看日本| 免费看光身美女| 日韩成人av中文字幕在线观看| 欧美人与善性xxx| 国产成人av激情在线播放 | 久久久久久久久久久久大奶| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区| 久久精品久久久久久久性| 国产 一区精品| 三上悠亚av全集在线观看| 精品久久久久久久久亚洲| 国产一级毛片在线| 日本av免费视频播放| 免费看av在线观看网站| av免费观看日本| 丝袜在线中文字幕| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 久久久精品区二区三区| 日韩精品有码人妻一区| 高清在线视频一区二区三区| 精品久久久久久电影网| 中文字幕人妻熟人妻熟丝袜美| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 亚洲欧洲国产日韩| 99久久人妻综合| 各种免费的搞黄视频| 欧美精品高潮呻吟av久久| av又黄又爽大尺度在线免费看| 一级爰片在线观看| 啦啦啦在线观看免费高清www| 亚洲丝袜综合中文字幕| 久久ye,这里只有精品| 久久久久久久久久成人| 人人妻人人添人人爽欧美一区卜| 麻豆成人av视频| 啦啦啦中文免费视频观看日本| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区成人| 99视频精品全部免费 在线| 成年人午夜在线观看视频| 国产女主播在线喷水免费视频网站| 97精品久久久久久久久久精品| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 亚洲人成网站在线播| 精品国产一区二区久久| 国产乱人偷精品视频| www.色视频.com| 久久久a久久爽久久v久久| 精品午夜福利在线看| 一级毛片aaaaaa免费看小| 精品一区在线观看国产|