• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revision of P-wave Velocity and Thickness of Hydrate Layer in Shenhu Area, South China Sea

    2014-04-20 09:24:03GONGJianmingZHANGXunhuaZOUChangchunCHENQiangWANGLichenYUANChunfangHUGaoweiandJIANGYubo
    Journal of Ocean University of China 2014年5期

    GONG Jianming, ZHANG Xunhua ZOU Changchun, CHEN Qiang WANG Lichen, YUAN Chunfang, HU Gaowei and JIANG Yubo

    1) Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Qingdao Institute of Marine Geology, Qingdao 266071, P. R. China

    2) School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China

    3) College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China

    4) College of Marine Geosciences, Ocean University of China, Qingdao 266100, P. R. China

    Revision of P-wave Velocity and Thickness of Hydrate Layer in Shenhu Area, South China Sea

    GONG Jianming1),*, ZHANG Xunhua1), ZOU Changchun2), CHEN Qiang1), WANG Lichen2), YUAN Chunfang3), HU Gaowei1), and JIANG Yubo1),4)

    1) Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Qingdao Institute of Marine Geology, Qingdao 266071, P. R. China

    2) School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China

    3) College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China

    4) College of Marine Geosciences, Ocean University of China, Qingdao 266100, P. R. China

    To revise P-wave velocity and thickness of the hydrate layer in the Shenhu area of the South China Sea, acoustic and resistivity logging curves are reanalyzed. The waterlogging phenomenon is found in the shallow sediments of five drilling wells, which causes P-wave velocity to approximate the propagation velocity of sea water (about 1500 m s-1). This also affects the identification of the hydrate layer and results in the underestimate of its thickness. In addition, because there could be about a 5 m thick velocity ramp above or below the hydrate layer as interpreted by acoustic and resistivity logging curves, the recalibrated thickness of this layer is less than the original estimated thickness. The recalibrated P-wave velocity of the hydrate layer is also higher than the original estimated velocity. For the drilling well with a relatively thin hydrate layer, the velocity ramp plays a more important role in identifying and determining the thickness of the layer.

    velocity ramp; thickness; hydrate layer; Shenhu area

    1 Introduction

    The Shenhu area is located in the southeast of the Pearl River Mouth Basin between the Xisha Trough and Dongsha Islands in the middle of the continental slope of the northern South China Sea (Wu et al., 2007) (Fig.1). There exist large Cenozoic sedimentary thickness and rich sedimentary organic matter in this area. A number of large and medium-sized oil and gas fields have been discovered here. For instance, the LW3-1-1 gas field with the resource attaining about 1000×108m3is located only 40 km from the hydrate-drilled portion of the Shenhu area. Therefore, the gas resource of hydrate in this area is considerable. Since the Mesozoic, three tectonic movements have occurred in this area, and numerous fractures and gas chimneys were produced. These tectonic structures furnish the conduit system and reservoir space for the formation and accumulation of hydrate, and provide conditions for the migration of hydrocarbon gases, turbidity fans, slumping blocks, canyon waterways and other sedimentary bodies (Gong et al., 2010, 2011; Zhang, 2007).

    Fig.1 Map of the study area in the South China Sea (modified from Wu et al., 2007). The red cycle is the LW3-1-1 well; the green line is a seismic section.

    In 2007, China Geological Survey conducted the gas hydrate drilling in the Shenhu area. Hydrate samples were taken in three (A, B, C) of the eight drilled wells (Wu et al., 2007; Liang et al., 2006). According to the analysis of drilling data and seismic profiles of the three wells, the seismic profile at well B shows the largest amplitude, the best continuity, and the most obvious augen blanking zoneof the bottom-simulating reflector (BSR) (Fig.2). However, the hydrate layer of this well has the smallest thickness of 17.5 m and the smallest velocity of 1900 m s-1(Table 1). Why does well B having such a thickness and velocity display the largest amplitude and the smoothest continuity of BSR? One hypothesis is that free gas exists under the hydrate layer (Liang et al., 2009). To further address this question, potential errors are discussed using the acoustic logging curve to determine the thickness and acoustic velocity of the hydrate layer, and the BSR characteristics of well B are investigated in the next section.

    Fig.2 Seismic reflection profile of well B in Shenhu area, South China Sea (modified from Liang et al., 2009).

    Table 1 Hydrate layer thicknesses at three hydrate-bearing drilling wells in Shenhu area

    2 Well Logging Method

    The logging combination, logging parameters and interpretation of logging data in investigated area are based on the range of the gas hydrate stability zone and the BSR characteristics interpreted from the seismic profile (Zou and Shi, 2003; Lu et al., 2008). To obtain hydrate samples from the drilling cores, two wells were drilled at the same site. The first hole was the pilot to confirm the hydrate horizon through wireline logging; the second was designed for coring. The logging combination consists of seven instruments–gamma ray, resistivity logging, density logging, full-wave acoustic logging, temperature-azimuth logging, caliper logging, and neutron logging tools. The logging parameters include gamma ray, deep and shallow resistivity, long and short spacing density, P-wave and S-wave velocity, well temperature, well deviation, well azimuth, caliper, long and short spacing neutron count rate, and others (Fan and Zhu, 2011).

    There are system and non-system measurement errors (Liang et al., 2010). Because gas hydrate in the Shenhu area accumulates in unconsolidated sediments, non- system errors caused by sidewall collapse and waterlogging are common and can be eliminated by selecting the standard well and standard curve. According to the normal distribution of measured values on the curve, the environmental correction for interval transit time and the process of decompaction and compaction have been done (Lu et al., 2008).

    To revise the thickness of hydrate and P-wave velocity in the Shenhu area, the above-mentioned deep and shallow resistivity, P-wave velocity and other parameters were analyzed before (Mathews, 1986; Paull et al., 2000; Tréhu et al., 2003). In this study, the impact of the ubiquitous waterlogging phenomenon of hydrate was investigated.

    3 Results

    3.1 P-Wave Velocity Response of Hydrate Layer in Shenhu Area

    Generally speaking, P-wave velocities in the eight drilling wells slowly increased from top to bottom. However, the logging velocity was nearly constant between the seafloor and 125 mbsf for most of drilling wells. Below 125 m, velocity changed with lithology variation (e.g., the varied section of gamma ray logging corresponding to wells D, E, and C). With regard to the hydrate layer, the velocities had abnormally high values relative to the background value (Liang et al., 2009; Lu and Liang, 2008). The velocity of hydrate-bearing sediments in well A reached2200 m s-1, but the velocity above or below the hydrate layer fell after a rise, to about 1800 m s-1. The corresponding velocity in well B reached 1900 m s-1; the velocity above the hydrate layer was 1800 m s-1, but below this layer it was only 1600 m s-1, for which the speculation is due to the existence of a free gas. Finally, the velocity of hydrate-bearing sediments in well C was 2400 m s-1, and the velocity above the hydrate layer was about 1900 m s-1.

    It was found that the velocity of the hydrate-bearing section was significantly higher than that of the non- hydrate section at wells A and C. At well B, the velocity of the hydrate-bearing section was not much higher than that of the non-hydrate section above the hydrate layer.

    3.2 Effects of Waterlogging Phenomenon on P-Wave Velocity

    In general, the P-wave velocity of hydrate-bearing sediments is greater than that of non-hydrate sediments. However, for loose non-hydrate sediments influenced by seawater, this velocity is reduced, which may greatly impact the velocity of the sedimentary strata.

    Normally, the waterlogging phenomenon leads to two kinds of variations in the velocity logging curve. First, the logging velocity is close to seawater velocity. Second, there is a decrease in swing amplitude of the velocity curve (lower frequency) (He et al., 2010; Wang, 2012). In view of these characteristics, the data collected at the eight drilling wells were analyzed and the waterlogging phenomenon was found in five of them. The P-wave velocity was about 1500 m s-1, close to the velocity of wave propagation in seawater or unconsolidated seabed surface sediments (Fig.3). In three of these five wells, there could be the second waterlogging phenomenon near the BSR. If the waterlogging occurred in the hydrate layer, the P-wave velocity could be underestimated, and the correct thickness of the hydrate layer could be difficult to obtain.

    Fig.3 P-velocities of 4 drilling wells in Shenhu area (modified from Lu et al., (2008)). A, C–hydrate-bearing drilling wells; G, C, H–waterlogging drilling wells.

    3.3 Effects of Velocity Ramp on Hydrate Layer Thickness

    As mentioned above, the P-wave velocity of hydratebearing sediments is significantly higher than that of non-hydrate sediments. From the plot of density versus P-wave velocity in the hydrate layer based on seismic profiles (Fig.4), the velocities at wells A and C reach to 2130 m s-1and 2170 m s-1, respectively, which are significantly greater than those at non-hydrate-bearing drilling wells (such as D, E, F, G, H). The velocity at well B is about 1900 m s-1, which is a little higher than those at nonhydrate-bearing drilling wells.

    Fig.4 Average density versus P-wave velocity in hydrate layer based on seismic profiles. A, B, C–hydrate-bearing drilling wells, D, E, F, G and H–non-hydrate-bearing drilling wells.

    To explain the velocity difference, the acoustic and resistivity logging curves in the hydrate layer at well A were reanalyzed and the thickness and actual velocity in the hydrate layer at well B recalibrated. Table 1 lists the statistical results of the hydrate layer thicknesses from the logging data. The dagger represents the data from the cruise report, and the double dagger the recalibrated results. The differences between the two datasets may be caused by the velocity ramp above or below the hydrate layer (or the half amplitude point), which is considered the outer edge of the hydrate layer. Therefore, the mature hydrate layer thickness is at least 5 m less than the originally estimated thickness (Fig.5).

    Fig.5 shows the thickness and velocity ramp of the hydrate layer at well A, which is recalibrated from Table 1. As seen in the figure, the P-wave velocity increases gradually from the outer edge of the hydrate layer to the mature core, forming the velocity ramp, which indicates that the ramp thickness can reach 5 meters from drilling wells C and A. It is also seen that the velocity logging curve of the hydrate layer at well B is within the range of the velocity ramp, and the velocity of the hydrate layer at the well is the average velocity with the velocity ramp, therefore the hydrate layer velocity in Fig.4 is underestimated. To obtain the actual velocity of the thin hydrate layer at well B, the velocity ramp influence must beeliminated. Fig.6 shows the plot of density versus P-wave velocity that was recalculated after eliminating that influence. As seen in Fig.6, the velocity of the hydrate layer at well B is clearly increased to nearly 2000 m s-1, while the velocities of hydrate layers at wells C and A almost remain unchanged. Generally, if the thickness of a hydrate layer is less than 5 m, the velocity of the hydrate layer will be underestimated. Because the velocity of the actual hydrate layer at well B is relatively high, it is assumed that free gas is under the BSR (Liang et al., 2009). Therefore, it can be understood that the seismic profile of well B possesses the characteristics of the largest BSR amplitude, the greatest continuity, and the most obvious augen blanking zone.

    Fig.5 Logging curve of well A with velocity ramp (modified from Liang et al. (2009)).

    Fig.6 Density versus P-wave velocity, recalculated by eliminating the influence of velocity ramp.

    4 Discussion

    Seismic attributes are obtained from relative variations of lithology and physical properties of underground strata. Parameters must be calibrated by logging data, the accuracy of which affects the parameter calibration. Because of the influence of logging device parameters, sidewall condition, logging time and other operating factors, there will be varying magnitudes of errors in the longitudinal direction, along with systematic errors at each well, during well logging. Petrophysical parameters directly calibrated by logging data may be in error. As a result, the credibility of the wireline logging response in a loose marine sediment environment is often greatly compromised (Fan and Zhu, 2011).

    4.1 Impact of Waterlogging on Hydrate Layer

    As mentioned above, shallow sediments are unconsolidated and waterlogging is ubiquitous. In this study, waterlogging appeared at five of eight wells and the P-wave velocity was only 1500 m s-1between the seafloor and 125 mbsf. The actual velocity of strata is obscured because of waterlogging. If there is a hydrate layer above 125 m, the high-velocity characteristics of that layer may be concealed, and thereby difficult to detect. If a hydrate layer thickness influenced by waterlogging is relatively large and hydrate saturation is high, the high resistivity of the layer can not greatly be influenced and the hydrate layer can still be identified. For this reason, the impact on the hydrate layer identification may be related to its thickness and hydrate saturation.

    Recent drilling results from the Shenhu area show that hydrate is something related to waterlogging phenomenon. In two (A, B) of the three wells (A, B, F) hydrate was found without the waterlogging phenomenon ,while it was found in only one (C) of the five wells (C, D, E, G, H) with such a phenomenon. It should be noted that even in well C, there is no direct contact between the hydrate layer and the waterlogging layer, or rather there is a transition zone with gradually increased velocity (Fig.3). Therefore the waterlogging phenomenon or waterlogging layers can be used as an indirect indicator for detecting the existence of hydrate during drilling operations.

    4.2 Influences on Velocity Ramp

    As mentioned above, there is a 5-m thick velocity ramp above or below the hydrate layer based on the hydrate samples from the two wells. Because of limited number of drilling wells, the results might not be representative for this area. The boundary between conventionally consolidated sandstone and mudstone layers can usually be determined by the half amplitude point, and then the thicknesses of the two layers can be confirmed. However, the boundary between the hydrate and non-hydrate layers has a gradual change, and the boundary distinction is greatly influenced by the hydrate saturation; besides, the ramp is modified by the lithology of overlying strata, porosity and other factors. In particular, the ramp has a stronger impact on the hydrate layer velocity for a thin hydrate layer.

    Limited by logging instruments, it is difficult to avoid the impact of the velocity ramp on velocities of hydratelayers (especially thin hydrate layers). To reduce or weaken such impacts on the hydrate layer velocities, the relationship between the thicknesses and acoustic wave velocities of hydrate layers was examined and the velocity ramp determined in this study. To obtain a better velocity ramp and a more objective hydrate layer velocity, the future study should focus on fitting the acoustic wave velocity from hydrate drilling to the crossing-well seismic velocity or on correcting the acoustic wave velocity by density-velocity and gamma-velocity methods.

    5 Conclusions

    The measured data at the three wells (A, B, and C) in the Shenhu area show that the velocity of the hydratebearing layer is generally higher than that of the nonhydrate layer. However, there are fewer anomalies of velocity at well B than at wells A and C. On the logging curve, the anomaly of the P-wave velocity is the primary basis for delimiting hydrate layer thickness.

    The hydrate drilling wells in the Shenhu area have small depths; most of strata encountered during drilling consist of unconsolidated sediments of the late Neogene. The implementation of naked hole logging resulted in the waterlogging phenomenon at most of the drilling wells, which reduced the P-wave velocity of sedimentary strata and caused the thickness deviation of the hydrate layer.

    According to the P-wave velocity data at wells A and C, a 5-m thick velocity ramp might exist above and below the hydrate layer. If the hydrate layer is thick, the influence of this ramp on the layer velocity may be slight. Note that the velocity may be underestimated for a thin hydrate layer.

    After eliminating the velocity ramp influence, the hydrate layer velocity at well B was clearly increased to nearly 2000 m s-1, and the hydrate layer thickness was reduced by about 7 m and to just 10.5 m.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Nos. 41273066 and MRE200805). The authors are grateful to Dr. Jingan Lu and Prof. Chunshan Dai for their suggestions. Many thanks also go to the reviewers for their helpful comments.

    Fan, Y. R., and Zhu, X. J., 2011. Review on logging responses and evaluation methods of natural gas hydrated reservoir. Well Logging Technology, 35 (2): 104-111.

    Gong, J. M., He, Y. H., Yan, G. J., Yang, C. S., Li, G., and Yuan, C. F., 2011. Features and controlling factors of BSR in Shenhu area, South China Sea. Petroleum Geology & Experiment, 33 (6): 25-30.

    Gong, J. M., Yang, Y. Q., Yan, G. J., Hu, X. P., Li, G., and Ma, L. J., 2010. Research on the bottom boundary of thermogenic gas hydrate stability zone in Shenhu area, South China Sea. Journal of China University of Mining & Technology, 39 (6): 870-876.

    He, S. Y., Xie, N., Peng, H. B., and Zhang, C. X., 2010. Identification and evaluation of water flooded zones with logging data and its application. Offshore Oil, 30 (2): 91-95.

    Liang, J., Wang, H. B., and Guo, Y. Q., 2006. Study of seismic velocity about gas hydrates in the northern slope of the South China Sea. Geoscience, 20 (1): 123-129.

    Liang, J., Wang, M. J., Lu, J. A. ,Wang, H. B., Liang, J. Q., and Su, P. B., 2010. Logging response characteristics of gas hydrate formation in Shenhu area of the South China Sea. Geoscience, 24 (3): 506-514.

    Liang, J., Wang, M. J., Wang, H. B., Lu, J. A., and Liang, J. Q., 2009. Relationship between the sonic logging velocity and saturation of gas hydrate in Shenhu area, northern slope of South China Sea. Geoscience, 23 (2): 217-223.

    Lu, J. A., and Liang, J. Q., 2008. The impact analysis of disseminated gas hydrates on reservoir properties. Geological South China Sea, 20 (1): 55-57.

    Lu, J. A., Yang, S. X., Wu, N. Y., Zhang, G. X., Zhang, M., and Liang, J. Q., 2008. Well logging evaluation of gas hydrates in Shenhu area, South China Sea. Geoscience, 22 (3): 447-451.

    Mathews, M., 1986. Logging characteristics of methane hydrate. The Log Analyst, 27: 26-63.

    Paull, C. K., Matsumoto, R., and Wallace, P. J., 2000. Proceedings of the Ocean Drilling Program Leg164, Scientific Results. College Station, Ocean Drilling Program, Texas.

    Tréhu, A. M., Bohrmann, G., Rack, F. R., et al., 2003. Proceedings of the Ocean Drilling Program Leg 204, Initial Reports. College Station, Texas: Ocean Drilling Program.

    Wang, Z. J., 2012. Well logging features of water flooded zones in Shasi member Chunhua Oilfield. Journal of Oil and Gas Technology, 34 (2): 84-87.

    Wu, N. Y., Zhang, H. Q., Yang, S. X., Liang, J. Q., Wang, H. B., Su, X., Lu, Z. Q., Fu, S. Y., Zhang, G. X., and Lu, J. A., 2007. Preliminary discussion on natural gas hydrate reservoir system of Shenhu area, north slope of South China Sea. Natural Gas Industry, 27 (9): 1-6.

    Zhang, S. L., 2007. Accumulation conditions and prospect for natural gas hydrate resources in Baiyun Sag, Pearl River Mouth Basin. China Petroleum Exploration, 6: 23-27.

    Zou, C. C., and Shi, K., 2003. Well logging features of gas hydrate reservoir. World Well Logging Technology, 18 (6): 32-34.

    (Edited by Xie Jun)

    (Received December 17, 2012; revised September 12, 2013; accepted May 13, 2014) ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-80778387

    E-mail: gongjianm@aliyun.com

    亚洲人成电影免费在线| 免费不卡黄色视频| 精品国内亚洲2022精品成人| 999精品在线视频| 午夜免费成人在线视频| 午夜福利免费观看在线| 免费在线观看黄色视频的| 国产成人啪精品午夜网站| 一区二区三区国产精品乱码| 国产99白浆流出| 亚洲国产毛片av蜜桃av| 亚洲av美国av| 大香蕉久久成人网| 午夜成年电影在线免费观看| 精品国产乱子伦一区二区三区| 少妇熟女aⅴ在线视频| 亚洲专区中文字幕在线| 日韩欧美三级三区| a在线观看视频网站| 成年女人毛片免费观看观看9| 别揉我奶头~嗯~啊~动态视频| 露出奶头的视频| 男人舔女人下体高潮全视频| 亚洲av成人一区二区三| 免费在线观看日本一区| 又黄又爽又免费观看的视频| 欧美日本亚洲视频在线播放| 国产精品自产拍在线观看55亚洲| 18禁裸乳无遮挡免费网站照片 | 中亚洲国语对白在线视频| 中出人妻视频一区二区| 亚洲色图av天堂| 久久国产精品男人的天堂亚洲| 大陆偷拍与自拍| 操出白浆在线播放| 色播在线永久视频| 久久久久亚洲av毛片大全| 亚洲中文av在线| 国产亚洲av嫩草精品影院| 亚洲avbb在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产xxxxx性猛交| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 久久国产精品影院| 亚洲av美国av| 午夜老司机福利片| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 免费搜索国产男女视频| 中文字幕最新亚洲高清| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| 欧美一区二区精品小视频在线| www.999成人在线观看| 在线观看免费日韩欧美大片| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 国产精品爽爽va在线观看网站 | 精品欧美一区二区三区在线| 岛国在线观看网站| 两个人免费观看高清视频| cao死你这个sao货| 美女扒开内裤让男人捅视频| 国产精品亚洲一级av第二区| АⅤ资源中文在线天堂| 国产极品粉嫩免费观看在线| 久久 成人 亚洲| 午夜精品国产一区二区电影| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 欧美成人午夜精品| 亚洲精品美女久久av网站| 国产成人影院久久av| 正在播放国产对白刺激| 99久久久亚洲精品蜜臀av| 国产精品一区二区三区四区久久 | 国产亚洲欧美98| 中文字幕高清在线视频| 午夜福利18| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 欧美丝袜亚洲另类 | 中亚洲国语对白在线视频| 国产片内射在线| 成人国语在线视频| 午夜福利影视在线免费观看| 亚洲国产毛片av蜜桃av| 亚洲精品久久国产高清桃花| 中文字幕久久专区| 成人国产一区最新在线观看| 黄频高清免费视频| 亚洲第一电影网av| 悠悠久久av| 黄片小视频在线播放| 成人手机av| 国内精品久久久久精免费| 国产欧美日韩一区二区三区在线| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 69精品国产乱码久久久| 9191精品国产免费久久| 久久狼人影院| 人成视频在线观看免费观看| 欧美久久黑人一区二区| av天堂在线播放| 一夜夜www| 人妻久久中文字幕网| 成年版毛片免费区| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 欧美乱妇无乱码| 啦啦啦韩国在线观看视频| 18禁观看日本| 满18在线观看网站| 精品久久久久久久久久免费视频| 乱人伦中国视频| 久久人妻福利社区极品人妻图片| 国产亚洲欧美精品永久| 亚洲中文字幕一区二区三区有码在线看 | 露出奶头的视频| 国产成人欧美在线观看| 久热爱精品视频在线9| 欧美激情 高清一区二区三区| 99精品久久久久人妻精品| 精品久久久久久久人妻蜜臀av | 欧美人与性动交α欧美精品济南到| 国产精品野战在线观看| 欧美在线黄色| 给我免费播放毛片高清在线观看| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 一级作爱视频免费观看| 美女国产高潮福利片在线看| 中文字幕人妻丝袜一区二区| 久久久久久亚洲精品国产蜜桃av| 精品国产亚洲在线| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 久久性视频一级片| 国产亚洲精品一区二区www| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 一级毛片精品| 午夜a级毛片| 男人的好看免费观看在线视频 | 国产日韩一区二区三区精品不卡| 乱人伦中国视频| 69av精品久久久久久| 国产精品一区二区在线不卡| 日本五十路高清| 亚洲av熟女| 国产精品一区二区在线不卡| 日韩欧美国产一区二区入口| 久久久久九九精品影院| 免费在线观看视频国产中文字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 97超级碰碰碰精品色视频在线观看| 曰老女人黄片| 亚洲人成77777在线视频| 精品日产1卡2卡| 在线观看66精品国产| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲 国产 在线| 亚洲av第一区精品v没综合| 精品第一国产精品| 国产成人系列免费观看| 亚洲五月婷婷丁香| 国产精品乱码一区二三区的特点 | 精品久久久精品久久久| 天堂动漫精品| 人妻久久中文字幕网| 欧美亚洲日本最大视频资源| 久久中文字幕一级| 怎么达到女性高潮| 啦啦啦免费观看视频1| 黄片大片在线免费观看| 亚洲av成人一区二区三| 91精品三级在线观看| 亚洲欧美激情综合另类| 999精品在线视频| 51午夜福利影视在线观看| 人人澡人人妻人| 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影| 非洲黑人性xxxx精品又粗又长| 日日爽夜夜爽网站| 成人三级黄色视频| av视频在线观看入口| 精品日产1卡2卡| 丝袜在线中文字幕| 亚洲五月天丁香| 国产精品野战在线观看| 宅男免费午夜| 亚洲男人的天堂狠狠| 丝袜在线中文字幕| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看 | 女性被躁到高潮视频| АⅤ资源中文在线天堂| 国产精品一区二区在线不卡| 日韩 欧美 亚洲 中文字幕| 久9热在线精品视频| 亚洲自偷自拍图片 自拍| 91精品三级在线观看| 精品午夜福利视频在线观看一区| 妹子高潮喷水视频| 免费人成视频x8x8入口观看| 91在线观看av| 欧美激情极品国产一区二区三区| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 男人的好看免费观看在线视频 | 亚洲中文日韩欧美视频| 亚洲视频免费观看视频| 中出人妻视频一区二区| 日本五十路高清| 国产精华一区二区三区| 激情在线观看视频在线高清| 曰老女人黄片| 免费看美女性在线毛片视频| 可以在线观看毛片的网站| 国产xxxxx性猛交| 国产欧美日韩综合在线一区二区| 国产亚洲av高清不卡| 日韩视频一区二区在线观看| 成人欧美大片| 国产在线观看jvid| 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区mp4| or卡值多少钱| 我的亚洲天堂| 国产精品香港三级国产av潘金莲| 性欧美人与动物交配| 久久婷婷成人综合色麻豆| 国产精品久久久久久人妻精品电影| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 日本在线视频免费播放| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 国产精品99久久99久久久不卡| or卡值多少钱| 高潮久久久久久久久久久不卡| 一a级毛片在线观看| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 91精品国产国语对白视频| 在线永久观看黄色视频| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| 午夜免费激情av| 女性被躁到高潮视频| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 天堂√8在线中文| 成人18禁在线播放| 在线观看免费视频网站a站| 18禁黄网站禁片午夜丰满| 一边摸一边抽搐一进一出视频| av有码第一页| 国产av一区在线观看免费| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 手机成人av网站| 淫秽高清视频在线观看| 91老司机精品| 日韩欧美一区二区三区在线观看| 国产成人啪精品午夜网站| 色在线成人网| 久久久久久亚洲精品国产蜜桃av| 午夜福利高清视频| av福利片在线| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久成人网| 亚洲三区欧美一区| 久久久久九九精品影院| 国产视频一区二区在线看| 国产成人精品久久二区二区91| 国产99久久九九免费精品| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看 | 在线观看免费午夜福利视频| 在线观看www视频免费| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 久久中文字幕一级| 午夜福利影视在线免费观看| av在线天堂中文字幕| 免费在线观看日本一区| 99在线人妻在线中文字幕| 亚洲欧洲精品一区二区精品久久久| 中文字幕人成人乱码亚洲影| 狂野欧美激情性xxxx| 国产av在哪里看| 女警被强在线播放| 久久久久久人人人人人| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 一级片免费观看大全| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 日韩大尺度精品在线看网址 | 国产精品野战在线观看| 国产亚洲欧美在线一区二区| 一区二区三区国产精品乱码| 亚洲精品美女久久av网站| 国产精品一区二区免费欧美| 欧美激情 高清一区二区三区| 国产精品永久免费网站| av欧美777| 国产区一区二久久| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 一本久久中文字幕| 午夜两性在线视频| 18禁裸乳无遮挡免费网站照片 | 大型黄色视频在线免费观看| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 国产99白浆流出| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 禁无遮挡网站| 老司机靠b影院| 精品欧美国产一区二区三| 国产亚洲av高清不卡| 麻豆av在线久日| 国产精品免费视频内射| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 99在线视频只有这里精品首页| 国产99白浆流出| 91国产中文字幕| 在线观看66精品国产| 久久天躁狠狠躁夜夜2o2o| av免费在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 一本大道久久a久久精品| av在线天堂中文字幕| 国产亚洲精品av在线| videosex国产| 免费一级毛片在线播放高清视频 | 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 欧美乱色亚洲激情| 亚洲av第一区精品v没综合| 欧美绝顶高潮抽搐喷水| 色播亚洲综合网| 成年版毛片免费区| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女 | 国产一区二区三区视频了| 香蕉国产在线看| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片 | 女人高潮潮喷娇喘18禁视频| 亚洲人成伊人成综合网2020| 神马国产精品三级电影在线观看 | 久久性视频一级片| 亚洲成人久久性| 欧美人与性动交α欧美精品济南到| 亚洲成人久久性| 欧美日韩福利视频一区二区| 午夜免费成人在线视频| 91麻豆av在线| 免费av毛片视频| 国产片内射在线| 久久中文看片网| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| av在线天堂中文字幕| 搞女人的毛片| 一级,二级,三级黄色视频| 九色亚洲精品在线播放| 18禁裸乳无遮挡免费网站照片 | 男女午夜视频在线观看| 老司机福利观看| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| av有码第一页| 久久精品亚洲精品国产色婷小说| 亚洲国产精品成人综合色| 激情在线观看视频在线高清| 十八禁人妻一区二区| 欧美日韩黄片免| 满18在线观看网站| 国语自产精品视频在线第100页| 免费看十八禁软件| 悠悠久久av| 午夜老司机福利片| 搡老岳熟女国产| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片 | 一级a爱片免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜a级毛片| 级片在线观看| 亚洲熟妇中文字幕五十中出| 波多野结衣巨乳人妻| 亚洲狠狠婷婷综合久久图片| av电影中文网址| 搡老妇女老女人老熟妇| 777久久人妻少妇嫩草av网站| 十八禁人妻一区二区| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 午夜福利高清视频| 久久久国产成人精品二区| 亚洲片人在线观看| 淫妇啪啪啪对白视频| 色综合站精品国产| а√天堂www在线а√下载| 校园春色视频在线观看| 久久天堂一区二区三区四区| 淫妇啪啪啪对白视频| av有码第一页| 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 午夜两性在线视频| 国产麻豆成人av免费视频| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看完整版高清| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 色播亚洲综合网| 亚洲 欧美 日韩 在线 免费| 非洲黑人性xxxx精品又粗又长| 国产成人系列免费观看| 黄色丝袜av网址大全| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 18美女黄网站色大片免费观看| 激情视频va一区二区三区| 99精品久久久久人妻精品| 国产野战对白在线观看| 午夜久久久在线观看| 国产一卡二卡三卡精品| 麻豆一二三区av精品| 俄罗斯特黄特色一大片| 黄色成人免费大全| 操出白浆在线播放| 美女午夜性视频免费| 亚洲欧洲精品一区二区精品久久久| 欧美日本中文国产一区发布| 亚洲国产日韩欧美精品在线观看 | 天堂影院成人在线观看| 变态另类丝袜制服| 超碰成人久久| 禁无遮挡网站| 免费看a级黄色片| 午夜成年电影在线免费观看| 啦啦啦 在线观看视频| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 夜夜看夜夜爽夜夜摸| 一区在线观看完整版| av天堂在线播放| 日韩欧美在线二视频| 亚洲久久久国产精品| 91九色精品人成在线观看| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址| 三级毛片av免费| 一a级毛片在线观看| 黄色a级毛片大全视频| 亚洲av电影在线进入| 午夜激情av网站| 两性夫妻黄色片| 人人妻人人澡欧美一区二区 | 国产精品日韩av在线免费观看 | 亚洲成av人片免费观看| 99国产极品粉嫩在线观看| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 国产免费男女视频| 青草久久国产| 日本五十路高清| www.熟女人妻精品国产| 91精品三级在线观看| 欧美乱色亚洲激情| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 国产高清videossex| 久久久国产精品麻豆| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| 久久人人精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| 国产精品1区2区在线观看.| 日韩有码中文字幕| 欧美黑人精品巨大| 精品久久久久久久人妻蜜臀av | 一本大道久久a久久精品| 久久久久九九精品影院| 欧美日本亚洲视频在线播放| 久久国产精品人妻蜜桃| 日韩欧美免费精品| 不卡一级毛片| 色综合欧美亚洲国产小说| 久久精品影院6| 在线十欧美十亚洲十日本专区| 精品欧美国产一区二区三| 成人三级黄色视频| 啦啦啦观看免费观看视频高清 | 亚洲三区欧美一区| 亚洲免费av在线视频| 欧美黑人精品巨大| 中文字幕高清在线视频| 久久精品成人免费网站| 亚洲 国产 在线| 色尼玛亚洲综合影院| 一个人免费在线观看的高清视频| 亚洲五月色婷婷综合| 99久久精品国产亚洲精品| 亚洲成人国产一区在线观看| 久久精品亚洲精品国产色婷小说| 两性夫妻黄色片| 国产又爽黄色视频| 日日摸夜夜添夜夜添小说| 老鸭窝网址在线观看| 日韩精品青青久久久久久| 欧美中文综合在线视频| 国产精品九九99| 搞女人的毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美在线黄色| 真人做人爱边吃奶动态| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品中文字幕在线视频| 成熟少妇高潮喷水视频| 在线天堂中文资源库| 女性被躁到高潮视频| 国产欧美日韩综合在线一区二区| 国产av一区二区精品久久| 一级毛片高清免费大全| www.www免费av| 无遮挡黄片免费观看| 国内精品久久久久精免费| 国产成人精品久久二区二区91| 18禁观看日本| 天堂影院成人在线观看| 午夜亚洲福利在线播放| 12—13女人毛片做爰片一| 午夜成年电影在线免费观看| 黑丝袜美女国产一区| 国产精品亚洲一级av第二区| 欧美中文日本在线观看视频| 亚洲久久久国产精品| 成年版毛片免费区| 日韩一卡2卡3卡4卡2021年| 88av欧美| 亚洲av五月六月丁香网| 欧美日韩一级在线毛片| 他把我摸到了高潮在线观看| 欧美乱色亚洲激情| 99精品久久久久人妻精品| 两个人免费观看高清视频| 欧美乱码精品一区二区三区| 一本久久中文字幕| 国产真人三级小视频在线观看| 麻豆一二三区av精品| 高清毛片免费观看视频网站| 美女免费视频网站| 日日夜夜操网爽| 亚洲精品久久国产高清桃花| 亚洲国产精品999在线| 91大片在线观看| 欧美成人性av电影在线观看| 此物有八面人人有两片| 亚洲天堂国产精品一区在线| 日本a在线网址| 国产一级毛片七仙女欲春2 | 精品不卡国产一区二区三区| 国产亚洲欧美98| 变态另类丝袜制服| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 亚洲无线在线观看| 妹子高潮喷水视频| 日本三级黄在线观看| 99精品欧美一区二区三区四区| 欧美日韩瑟瑟在线播放| 精品熟女少妇八av免费久了| 国产私拍福利视频在线观看| 在线观看舔阴道视频| 午夜精品久久久久久毛片777|