• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Internal Waves Generated by Tidal Flow over Critical Topography

    2014-04-20 09:24:01JIAXiaonaCHENXuLIQunandLIQiang
    Journal of Ocean University of China 2014年5期
    關(guān)鍵詞:裝貨車輛通行多義性

    JIA Xiaona, CHEN Xu,, LI Qun, and LI Qiang

    1) Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, P. R. China

    2) SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, P. R. China

    3) Center for Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China

    Study on Internal Waves Generated by Tidal Flow over Critical Topography

    JIA Xiaona1), CHEN Xu1),*, LI Qun2), and LI Qiang3)

    1) Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, P. R. China

    2) SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, P. R. China

    3) Center for Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China

    Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes (Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans (Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry (PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.

    internal waves; critical topography; available potential energy; kinetic energy; baroclinic energy flux

    1 Introduction

    In the process of the ocean energy cascade, internal waves play a key role in momentum and heat transfer processes (Müller, 1977). When internal waves are generated from the interaction between barotropic tide and topography, they have the same frequency as the incident barotropic tide (Zeilon, 1912, 1934; Baines, 1973, 1982; Rattray, 1960).

    Many studies have indicated that internal waves are non-ignorable sink of barotropic tide energy. Approximately 10% of the total barotropic tidal dissipation is transferred to internal waves (Bell, 1975), while only 0.3% is transferred to the continental margin. Hence, the bottom topography makes a greater contribution to the total energy conversion than the oceanic continental margin, by a factor of about 30 (Baines, 1982). Internal waves are one of the most important mechanic energy sources for deep ocean mixing and global thermohaline circulation (Munk and Wunsch, 1998; Garrett and Kunze, 2007). Consequently, it is of great significance to calculate the baroclinic energy and energy flux which are generated as tidal current flows over submarine ridges.

    Balmforth et al. (2002) estimated tidal conversion using the Green function method. In their study, the conversion rate was related to topography and the ratio of the maximum topographic slope to the slope of internal wave rays. When the topographic slope approached or equaled the slope of internal wave rays, which was termed critical topography, the barotropic-to-baroclinic conversion rate became significant.

    Let the angles of group velocity and topography relative to horizontal plane be α and β, respectively, then i) α>β corresponds to the subcritical case; ii) α<β the supercritical case; iii) α=β the critical topography. Previous experimental research on internal waves mostly focused on the subcritical and supercritical cases (Baines and Fang, 1985; Gostiaux and Dauxois, 2008; Peacock et al., 2008; Zhang et al., 2007; Lim et al., 2010; Dossmann et al., 2011). In this paper, experiments were designed to examine internal wave generation when tidal current flowed over critical topography. Zhang et al. (2008) studied the internal wave generation in a laboratory experiment of an oscillating tidal flow at the continental margin. Waves were generated only in the near-critical region, where the slope of the bottom topography matched that of internalwaves. Wang et al. (2012) did another experimental study on the relationship of and differences between the internal waves generated for two kinds of continental margins. In both studies, only the velocity field was measured and the density field was not provided. As a result, the available potential energy could not be calculated.

    The resonance mechanism of critical topography enhances internal wave generation near the bottom (Zhang et al., 2008). This experiment studies internal wave generation under the critical condition. Since both sides of the isosceles triangle are the critical regions, it is adopted to simulate the submarine ridge terrain. Phase features of internal wave rays are analyzed individually. Finally, available potential energy, baroclinic kinetic energy, and baroclinic energy fluxes are calculated to analyze the energy transfer process.

    2 Experiment Setup

    Experiments were performed in a glass tank that is 500 cm long, 15 cm wide, and 40 cm deep (Fig.1). The tank, stratified to a depth of 25 cm, was filled with uniformly salt-stratified fluid using the ‘two-bank’ method (Hill, 2002), in which surface and bottom densities were 1005 kg m-3and 1025 kg m-3, respectively. Density decreased linearly with distance from the bottom of the tank so that the buoyancy frequency N is a constant,

    The tidal flow, U=Acos(ωt), was generated by a paddle wave maker with the amplitude A of 4 cm s-1and the frequency ω of 0.63 rad s-1. The data were not collected until the internal wave filed was well-developed (taking about seven periods of time). Besides, the horizontal scale of the topography is 22 cm, and the height is 11 cm, α=44?, β=45?.

    Fig.1 Experiment setup. 1, Parallel light; 2, random dot pattern; 3, laser device; 4, glass tank; 5, topography; 6, computer; 7, camera.

    Particle Image Velocimetry (PIV) (Ihle et al., 2009) and synthetic schilieren (Dalziel et al., 2000, 2007) were used to obtain horizontal and vertical velocities and density perturbation fields (Figs.2 and 3). Images captured by camera (AVT505B) with a resolution of 2452 by 2054 pixels were analyzed using Digiflow software, and the actual view size of the field is 55 by 46 cm. When the uniformly stratified fluid, characterized by a constant buoyancy frequency, N, flowed over topography, internal waves would be generated. The internal waves consisted of four internal wave beams radiating from the topography at an angle α to the horizontal plane under supercritical and critical conditions. All beams were tangential to the slope of topography.

    Fig.2 Velocity field measured by PIV. Sections a–f are in the cross-beam direction and sections a1–a6 of the upward- and rightward-propagating wave beam.

    The density fluctuation fields caused by internal wave rays are shown in Fig.3. The two beams radiating upward are stronger and more concentrated in isopycnal displacement fields than the other two. Owing to the fact that the tidal forcing is on the right hand side of topography, the internal wave beams on the same side are stronger than those on the other side. When internal wave beams radiate away from the ridge, the interior of the beams has a phase change. Internal wave beams are reflected when hitting the bottom of the water tank or the water surface, and the beam width greatly broadens after reflection. Here, if the center of the beam width is defined as where the maximum isopycnal displacement ζmaxof about 7 mm is located and the two boundaries are defined as where 15% of ζmaxis located, the upward- and rightward- propagating wave beam, as shown in Fig.3, has a width ofabout 12 cm (d2) after reflection, almost two times of that (d1~7cm) before reflection.

    Fig.3 Density fluctuation fieldwith ten isopycnals(dark lines) from 1005 to 1023 kgm-3.

    3 Temporal and Spatial Distributions of Internal Wave Rays

    To analyze the properties of the four internal wave beams radiating from the topography with an oscillating tide flow over topography, critical (sections c and d), outward-propagating (sections a and b) and reflection regions (sections e and f) were selected in the cross-beam direction (Fig.2). Time series of horizontal baroclinic velocity u′, vertical baroclinic velocity w′, and isopycnal displacement ζ in sections a–f are shown in Fig.4. The baroclinic velocity perturbation is defined as

    where u(z, t) represents the total tidal current velocity, the angle brackets〈〉trepresents the depth-dependent temporal average, and 〈〉z(mì)represents the depth integration, z is the water depth. The temporal and spatial distribution characteristics of u′, w′ and ζ, as well as the maximum values in each section, are summarized below:

    1) Critical region: The horizontal baroclinic velocity u′in sections c and d was inphase, but the vertical baroclinic velocity w′ and isopycnal displacement ζ were outphase in the sections, respectively. The phase of ζ was approximately π/2 lagging behind w′. The influence of vortices generated by tidal flow over topography on internal wave structure was demonstrated by strong velocity fluctuations in section d (Fig.4).

    2) Outward-propagating region: The phases of u′, w′and ζ in section a were all lagging behind those in section d. Likewise, the phases in section b were all lagging behind those in section c. Therefore, it can be concluded that the propagation path of internal wave rays generated on the left side of topography was from d to a. Likewise, the propagation path of internal wave rays generated on the right side of topography was from c to b to e.

    3) Reflection region: Similar to sections d and f, sections b and e were synchronous with the phase of horizontal baroclinic velocity u′, but opposite in the phase of vertical baroclinic velocity w′ and isopycnal displacement ζ.

    The phase of isopycnal displacement fields was approximately π/2 behind that of vertical baroclinic velocity fields in all above-mentioned sections, which is consistent with the properties of linear internal waves.

    Focusing on the upward- and rightward-propagating wave beam, six cross-beam sections a1-a6 (Fig.5) were selected to study the temporal and spatial variations in the beam-propagating direction (Fig.2). As shown in Fig.4, the wave form in section a1 was greatly influenced by a vortex generated at the top of the topography. As a result, the wave beam became smoother and the initial beam width broadened, A similar beam widening was observed in an early numerical study of internal wave generation (Floor et al., 2011). However, when the wave beam was about to reach water surface, the beam width narrowed inthe beam propagating direction away from topography. This phenomenon was the result of energy loss at the surface and interaction with reflection wave beam.

    Fig.4 Time series of u′ (red lines), w′ (blue lines), and ζ (dark lines) in sections a–f (from top to bottom).

    Fig.5 Time series of isopycnal displacement fields ζ in sections a1–a6.

    Because the direction of phase velocity is perpendicular to group velocity, both the phases of waves and the positions ofmaxζvary with time in the cross-beam direction (Fig.5).

    4 Energy Transfer Characteristics of Internal Waves

    Internal waves play a key role in ocean dynamics of energy transport from small to large scales. Available potential energy, baroclinic kinetic energy, and baroclinic energy fluxes in 14 time-averaged vertical profiles were calculated to study spatial variations of generation, outward-propagating, and reflection regions.

    4.1 Baroclinic Energy

    The potential energy, ρgz, is not a particularly useful quantity for studying internal waves. Therefore, the term‘a(chǎn)vailable potential energy’ with more physical significance was introduced (Gill, 1982; Lamb, 2007). Assuming that the motion was in the x-z plane, Nash et al. (2006) gave the formulas for calculations of available potential energy and baroclinic kinetic energy as follows:

    As shown in Fig.6, the maximum values of APE and KE appeared along the path of internal wave rays.

    Because of the vortices generated by tidal flow over topography, the total energy in the sixth and seventh vertical profiles was less than that in other profiles (Fig.7). The total energy on the right side was stronger than that on the left side of topography due to the tidal forcing on the right.

    4.2 Baroclinic Energy Flux

    Profiles of isopycnal displacement, perturbation velocity, and pressure were used to estimate baroclinic energy fluxes (Fig.8)

    The pressure anomaly p′ was calculated from the density anomaly using the hydrostatic equation

    Fig.6 Internal wave energy in vertical profiles. APE (shaded dark), KE (shaded grey), and internal wave rays (dotted red lines).

    Fig.7 Depth-integrated internal wave energy in vertical profiles.

    Fig.8 Baroclinic energy fluxesin vertical profiles, left is negative and right is positive.

    5 Conclusions

    The laboratory experiments were conducted to investigate internal wave generation in this study. The research findings are as follows:

    1) When a uniformly stratified fluid, characterized by constant buoyancy frequency, N, flows over topography,internal waves are generated, which consist of four internal wave beams radiating from the topography at an angle α, the slope of topography, relative to the horizontal plane.

    2) The phase of each ray varies. For three feature regions–the critical, outward-propagating, and reflection region, internal waves are generated in the critical region and the phases of outward-propagating rays are all lagging behind that in the critical region. After reflection, rays are synchronous with the phase of horizontal baroclinic velocity u′, but out of the phase with vertical baroclinic velocity w′ and isopycnal displacement ζ.

    3) The width of rays broadens first, and then narrows along the beam at a distance from the topography.

    4) The maximum values of APE, KE and energy fluxes all occur on internal wave rays. The energy fluxes radiate outward from the critical topography, and total energy and energy fluxes away from topography are larger than those above topography.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos. 40906001 and 40906099), National 863 High-Tech Program (No. 2008AA09A402), and Chinese National Science & Technology Supporting Program (No. 2011BAC03B02-03-02).

    Althaus, A. M., Kunze, E., and Sanford, T. B., 2003. Internal tide radiation from Mendocino Escarpment. Journal of Physical Oceanography, 33: 1510-1527.

    Baines, P. G., 1973. The generation of internal tides by flatbump topography. Deep-Sea Research, 20: 179-205.

    Baines, P. G., 1982. On internal tide generation models. Deep-Sea Research, 29: 307-338.

    Baines, P. G., and Fang, X. H., 1985. Internal tide generation at a continental shelf/slope junction: A comparison between theory and a laboratory experiment. Dynamics of Atmospheres and Oceans, 9: 297-314.

    Balmforth, N. J., Ierley, G. R., and Young, W. R., 2002. Tidal conversion by subcritical topography. Journal of Physical Oceanography, 32: 2900-2914.

    Bell, T. H., 1975. Topographically generated internal waves in the open ocean. Journal of Geophysical Research, 80: 320-327.

    Chang, M.-H., Lien, R.-C., Tang, T. Y., D’Asaro, E. A., and Yang, Y. J., 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters, 33, L03607.

    Dalziel, S. B., Hughes, G. O., and Sutherland, B. R., 2000. Whole-field density measurements by ‘synthetic schlieren’. Experiments in Fluids, 28: 322-335.

    Dalziel, S. B., Carr, M., Sveen, J. K., and Davies, P. A., 2007. Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Measurement Science and Technolog, 18: 533-547.

    Dossmann, Y., Paci, A., Auclair, F., and Floor, J. W., 2011. Simultaneous velocity and density measurements for an energy-based approach to internal waves generated over a ridge. Experiments in Fluids, 51: 1013-1028.

    Floor, J. W., Auclair, F., and Marsaleix, P., 2011. Energy transfers in internal tide generation, propagation and dissipation in the deep ocean. Ocean Modelling, 38: 22-40.

    Garrett, G., and Kunze, E., 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39: 57-87.

    Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, 662pp.

    Gostiaux, L., and Dauxois, T., 2008. Laboratory experiments on the generation of internal tidal beams over steep slopes. Physics of Fluids, 19: 28-35.

    Hill, D. F., 2002. General density gradients in general domains: the ‘two-tank’ method revisited. Experiments in Fluids, 32: 434-440.

    利用地圖數(shù)據(jù)、高速公路歷史通行數(shù)據(jù)、歷史假綠通車稽查數(shù)據(jù)和貴州省多義性拆分?jǐn)?shù)據(jù)等,結(jié)合單出口嫌疑假綠通模型、貨物地理嫌疑假綠通模型、卸貨裝貨嫌疑假綠通模型和嫌疑假綠通車通行軌跡模型,通過(guò)大數(shù)據(jù)技術(shù)進(jìn)行分析處理,篩選出嫌疑假綠通的車輛通行數(shù)據(jù),并將其共享給稽查系統(tǒng),輔助稽查工作人員快速定位嫌疑假綠通車輛。

    Ihle, C. F., Dalziel, S. B., and Ni?o, Y., 2009. Simultaneous particle image velocimetry and synthetic schlieren measurements of an erupting thermal plume. Measurement Science and Technolog, 20, 125402, DOI: 10.1088/0957-0233/20/12/ 125402

    Lim, K., Ivey, G. N., and Jones, N. L., 2010. Experiments on the generation of internal waves over continental shelf topography. Journal of Fluid Mechanics, 663: 385-400.

    Lamb, K. G., 2007. Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Continental Shelf Research, 27: 1208-1232.

    Morozov, E. G., 1995. Semidiurnal internal wave global field. Deep-Sea Research I, 42 (1): 135-148.

    Müller, P., 1977. Spectral features of the energy transfer between internal waves and a larger-scale shear flow. Dynamics of Atmospheres and Oceans, 2: 49-72.

    Munk, W., and Wunsch, C., 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research I, 45: 1977-2010.

    Nash, J. D., Kunze, E., Lee, C. M., and Sanford, T. B., 2006. Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. Journal of Physical Oceanography, 36: 1123-1135.

    Peacock, T., Echeverri, P., and Balmforth, N. J., 2008. An experimental investigation of internal tide generation by two-dimensional topography. Journal of Physical Oceanography, 38: 235-242.

    Wang, T., Chen, X., and Jiang, W. S., 2012. Laboratory experiments on the generation of internal waves on two kinds of continental margin. Geophysical Research Letters, 39: L04602.

    Zeilon, N., 1912. On Tidal Boundary-Waves and Related Hydrodynamical Problems. Almqvist & Wiksells.

    Zeilon, N., 1934. Experiments on Boundary Tides: A Preliminary Report. Elander.

    Zhang, H. P., King, B., and Swinney, H. L., 2007. Experimental study of internal gravity waves generated by supercritical topography. Experiments in Fluids, 19, 096602, DOI: 10.1063/ 1.2766741.

    Zhang, H. P., King, B., and Swinney, H. L., 2008. Resonant generation of internal waves on a model continental slope. Physical Review Letters, 100 (24), 244504.

    (Edited by Xie Jun)

    (Received October 16, 2012; revised December 4, 2012; accepted May 21, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82031756

    E-mail: chenxu001@ouc.edu.cn

    猜你喜歡
    裝貨車輛通行多義性
    淺析日本HIBIKINADA 港裝運(yùn)焦炭
    家電行業(yè)成品快速裝貨技術(shù)需求分析
    新疆高速公路多義性路徑識(shí)別系統(tǒng)解決方案探析
    路徑識(shí)別要“精確”——高速公路多義性路徑識(shí)別技術(shù)及應(yīng)用探討
    基于5.8GHz自由流的高速公路多義性路徑識(shí)別系統(tǒng)探討
    薄煤層采煤機(jī)在實(shí)際應(yīng)用中裝貨問(wèn)題的探討
    與免費(fèi)路段平行的高速公路車輛通行費(fèi)收取方案
    貨運(yùn)車輛通行信息抓拍系統(tǒng)
    基于高速公路逃費(fèi)信息共享的車輛通行信用平臺(tái)
    談如何詮釋新聞價(jià)值的多義性
    新聞傳播(2015年4期)2015-07-18 11:11:28
    中国美女看黄片| 日韩精品中文字幕看吧| 免费在线观看影片大全网站| 草草在线视频免费看| 90打野战视频偷拍视频| 欧美乱妇无乱码| 久久久精品国产亚洲av高清涩受| 两个人看的免费小视频| www日本在线高清视频| 亚洲全国av大片| 日本精品一区二区三区蜜桃| a在线观看视频网站| 国产激情久久老熟女| 国产午夜精品论理片| 国产精品久久久久久亚洲av鲁大| 一二三四社区在线视频社区8| 精品久久久久久久末码| 丰满人妻熟妇乱又伦精品不卡| 91在线观看av| 神马国产精品三级电影在线观看 | 看片在线看免费视频| 精品国产亚洲在线| 丰满人妻一区二区三区视频av | 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 欧美黄色淫秽网站| 国产精品亚洲美女久久久| 好男人电影高清在线观看| 老汉色av国产亚洲站长工具| 亚洲成av人片免费观看| 亚洲人成网站高清观看| 国产99白浆流出| 宅男免费午夜| 俺也久久电影网| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区mp4| av在线播放免费不卡| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 国产熟女xx| 亚洲精品在线观看二区| 国产精品自产拍在线观看55亚洲| 亚洲欧美激情综合另类| 亚洲国产日韩欧美精品在线观看 | 精品一区二区三区视频在线观看免费| 国产av一区二区精品久久| 1024香蕉在线观看| 黄色视频,在线免费观看| 亚洲精品久久国产高清桃花| 亚洲天堂国产精品一区在线| 成人国产综合亚洲| 色噜噜av男人的天堂激情| 免费在线观看完整版高清| 天堂√8在线中文| 久久久国产精品麻豆| 男女之事视频高清在线观看| www.www免费av| 后天国语完整版免费观看| 国产成人aa在线观看| 久久这里只有精品19| 成年免费大片在线观看| 黄色丝袜av网址大全| 男女那种视频在线观看| 99国产精品99久久久久| 亚洲va日本ⅴa欧美va伊人久久| 又黄又爽又免费观看的视频| 在线观看www视频免费| 不卡一级毛片| 最好的美女福利视频网| 两个人免费观看高清视频| 18禁黄网站禁片免费观看直播| 人妻夜夜爽99麻豆av| 国产精品乱码一区二三区的特点| 亚洲欧美精品综合一区二区三区| 18禁观看日本| 国产一区在线观看成人免费| 亚洲,欧美精品.| 亚洲精品国产精品久久久不卡| 亚洲狠狠婷婷综合久久图片| 男插女下体视频免费在线播放| 成人18禁高潮啪啪吃奶动态图| 日本成人三级电影网站| 亚洲激情在线av| 又大又爽又粗| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 亚洲熟妇中文字幕五十中出| 操出白浆在线播放| 欧美日本视频| 97人妻精品一区二区三区麻豆| 18禁美女被吸乳视频| 狂野欧美激情性xxxx| 两性午夜刺激爽爽歪歪视频在线观看 | 99热只有精品国产| 亚洲成av人片免费观看| 一区二区三区国产精品乱码| 人人妻人人澡欧美一区二区| 狠狠狠狠99中文字幕| 人妻久久中文字幕网| www日本在线高清视频| 一区福利在线观看| 人成视频在线观看免费观看| 精品日产1卡2卡| 国产乱人伦免费视频| 免费av毛片视频| 午夜免费激情av| 怎么达到女性高潮| 97碰自拍视频| 黄色视频,在线免费观看| 女人被狂操c到高潮| 国产精品野战在线观看| 人人妻人人澡欧美一区二区| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 国产精品一及| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 日韩免费av在线播放| 色综合站精品国产| 久久草成人影院| 欧美激情久久久久久爽电影| 在线永久观看黄色视频| 久久性视频一级片| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 久久草成人影院| 国产黄片美女视频| 国产精品一区二区三区四区久久| 午夜老司机福利片| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 免费看十八禁软件| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 一个人观看的视频www高清免费观看 | x7x7x7水蜜桃| 国内精品一区二区在线观看| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 一本大道久久a久久精品| 国产又色又爽无遮挡免费看| 久久午夜亚洲精品久久| 男男h啪啪无遮挡| 国产三级在线视频| 母亲3免费完整高清在线观看| 久久午夜综合久久蜜桃| 久久精品人妻少妇| 人成视频在线观看免费观看| 日韩大尺度精品在线看网址| 久久久国产欧美日韩av| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 好男人电影高清在线观看| 午夜亚洲福利在线播放| 午夜久久久久精精品| 我的老师免费观看完整版| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 一边摸一边做爽爽视频免费| 欧美一区二区国产精品久久精品 | 国产爱豆传媒在线观看 | 国产精品免费视频内射| 色综合站精品国产| 特大巨黑吊av在线直播| 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 成人国语在线视频| 动漫黄色视频在线观看| 午夜福利免费观看在线| 日韩欧美在线二视频| 亚洲国产高清在线一区二区三| 亚洲精品粉嫩美女一区| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| av在线天堂中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久人人人人人| 亚洲精品中文字幕一二三四区| 日韩欧美国产在线观看| 亚洲精品一区av在线观看| 母亲3免费完整高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲自拍偷在线| 丝袜人妻中文字幕| netflix在线观看网站| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 国产一区二区在线观看日韩 | 黄片小视频在线播放| 18禁黄网站禁片午夜丰满| 国产免费男女视频| 午夜免费观看网址| 精品一区二区三区四区五区乱码| 在线观看免费视频日本深夜| 嫩草影院精品99| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区激情视频| 国产一区二区三区在线臀色熟女| 久久午夜综合久久蜜桃| 日韩成人在线观看一区二区三区| 久久性视频一级片| 欧美精品啪啪一区二区三区| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 精品国产亚洲在线| 欧美日韩乱码在线| 免费在线观看日本一区| 一区福利在线观看| 亚洲人与动物交配视频| 一边摸一边做爽爽视频免费| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 欧美午夜高清在线| 首页视频小说图片口味搜索| 亚洲 欧美 日韩 在线 免费| 日日干狠狠操夜夜爽| 久久久精品大字幕| 亚洲片人在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 级片在线观看| 亚洲成人中文字幕在线播放| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 国产亚洲精品久久久久5区| 亚洲av成人精品一区久久| 午夜福利18| 嫁个100分男人电影在线观看| 国产熟女xx| 欧美黄色片欧美黄色片| 久久久久国产一级毛片高清牌| 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看 | 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 精品熟女少妇八av免费久了| 日本成人三级电影网站| 丝袜美腿诱惑在线| 精品国内亚洲2022精品成人| 国产免费av片在线观看野外av| 狂野欧美白嫩少妇大欣赏| 老司机在亚洲福利影院| 国产精品精品国产色婷婷| 一本精品99久久精品77| 美女大奶头视频| tocl精华| 欧美不卡视频在线免费观看 | 欧美 亚洲 国产 日韩一| 深夜精品福利| 欧美中文综合在线视频| 人人妻人人澡欧美一区二区| 五月伊人婷婷丁香| 午夜激情福利司机影院| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 特级一级黄色大片| 国产av不卡久久| 国产视频内射| 老熟妇仑乱视频hdxx| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 亚洲精品美女久久av网站| 操出白浆在线播放| 曰老女人黄片| 露出奶头的视频| 两个人看的免费小视频| 在线永久观看黄色视频| 国产精品久久电影中文字幕| 欧美av亚洲av综合av国产av| 国产成人一区二区三区免费视频网站| 国产一区二区三区视频了| 一级片免费观看大全| 亚洲午夜理论影院| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 在线观看午夜福利视频| 亚洲色图av天堂| 我要搜黄色片| 黑人操中国人逼视频| 亚洲男人天堂网一区| 欧美极品一区二区三区四区| 亚洲美女黄片视频| xxxwww97欧美| 97碰自拍视频| 狂野欧美白嫩少妇大欣赏| 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 无限看片的www在线观看| 日韩三级视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美三级三区| 观看免费一级毛片| 国产私拍福利视频在线观看| 久久伊人香网站| 少妇人妻一区二区三区视频| 桃色一区二区三区在线观看| 日本五十路高清| 禁无遮挡网站| 精品国产亚洲在线| 给我免费播放毛片高清在线观看| 欧美三级亚洲精品| 丝袜人妻中文字幕| 久久香蕉精品热| 老鸭窝网址在线观看| 国产伦一二天堂av在线观看| 听说在线观看完整版免费高清| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 久久国产精品人妻蜜桃| 1024香蕉在线观看| 国产久久久一区二区三区| 精品久久久久久,| 国产麻豆成人av免费视频| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 在线a可以看的网站| 亚洲精品中文字幕一二三四区| 韩国av一区二区三区四区| 色综合站精品国产| 亚洲国产欧美网| 床上黄色一级片| 99热这里只有是精品50| 88av欧美| 亚洲在线自拍视频| 亚洲av成人av| 中文字幕久久专区| 麻豆国产97在线/欧美 | 国产成年人精品一区二区| 中文字幕最新亚洲高清| 欧美午夜高清在线| xxx96com| 国产欧美日韩精品亚洲av| 亚洲人成网站高清观看| 十八禁网站免费在线| 久久国产精品人妻蜜桃| 亚洲18禁久久av| 久久热在线av| 亚洲精品色激情综合| 日韩欧美国产在线观看| 亚洲av美国av| 久久久精品大字幕| 五月玫瑰六月丁香| 日日夜夜操网爽| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 99精品欧美一区二区三区四区| 在线播放国产精品三级| 18禁国产床啪视频网站| 亚洲在线自拍视频| 黄色视频不卡| 波多野结衣巨乳人妻| 国产三级黄色录像| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| 男女那种视频在线观看| 亚洲国产看品久久| 99久久国产精品久久久| 在线a可以看的网站| 午夜福利免费观看在线| 久久人妻av系列| 午夜福利在线在线| 中亚洲国语对白在线视频| 啦啦啦韩国在线观看视频| 亚洲成人精品中文字幕电影| 欧美人与性动交α欧美精品济南到| 国产伦在线观看视频一区| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区mp4| 亚洲av电影在线进入| 国产精品久久电影中文字幕| 日本五十路高清| 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| av有码第一页| 一本精品99久久精品77| 国产一区在线观看成人免费| av福利片在线| 黑人巨大精品欧美一区二区mp4| 久久久精品欧美日韩精品| 日本在线视频免费播放| 日韩欧美精品v在线| 嫁个100分男人电影在线观看| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 午夜成年电影在线免费观看| 久久久国产欧美日韩av| 国产麻豆成人av免费视频| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 国产精品一区二区精品视频观看| 高清毛片免费观看视频网站| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 国产精品影院久久| 久久精品国产99精品国产亚洲性色| 国产精品久久久av美女十八| 国产激情久久老熟女| 久久99热这里只有精品18| 成人18禁在线播放| 亚洲男人天堂网一区| 人妻丰满熟妇av一区二区三区| 欧美黄色片欧美黄色片| 色av中文字幕| 97碰自拍视频| 国产真实乱freesex| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看 | 欧美日韩国产亚洲二区| 69av精品久久久久久| 国产精品1区2区在线观看.| 久久久久国内视频| 悠悠久久av| 热99re8久久精品国产| 久久久久亚洲av毛片大全| 久久久久久亚洲精品国产蜜桃av| 男女下面进入的视频免费午夜| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月| 91大片在线观看| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 99国产精品一区二区三区| 99久久无色码亚洲精品果冻| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| av天堂在线播放| 欧美中文日本在线观看视频| 99久久精品热视频| 亚洲欧美日韩高清在线视频| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| 久久这里只有精品中国| 久久热在线av| 视频区欧美日本亚洲| 国产精品亚洲美女久久久| 日韩欧美免费精品| 手机成人av网站| 免费看十八禁软件| 老汉色∧v一级毛片| bbb黄色大片| 日本五十路高清| 精品日产1卡2卡| 91麻豆精品激情在线观看国产| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久毛片微露脸| 特级一级黄色大片| 又大又爽又粗| 男人舔女人的私密视频| 少妇的丰满在线观看| 国产av一区二区精品久久| 91老司机精品| 黄色视频,在线免费观看| 久久久久国产精品人妻aⅴ院| 久久久久国内视频| 男人舔女人的私密视频| 欧美成人免费av一区二区三区| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 中文字幕熟女人妻在线| 免费无遮挡裸体视频| 日本一二三区视频观看| 午夜福利在线在线| 法律面前人人平等表现在哪些方面| 久久久久久久久久黄片| 色综合婷婷激情| 国产成人精品久久二区二区91| 变态另类成人亚洲欧美熟女| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 老司机福利观看| 在线免费观看的www视频| 国产1区2区3区精品| 性色av乱码一区二区三区2| 在线a可以看的网站| 国产真实乱freesex| 无遮挡黄片免费观看| 国产av一区在线观看免费| 天堂√8在线中文| 国产午夜精品论理片| 久久天躁狠狠躁夜夜2o2o| 一区二区三区高清视频在线| 狂野欧美激情性xxxx| 1024香蕉在线观看| 亚洲av片天天在线观看| 啪啪无遮挡十八禁网站| 久久久久久人人人人人| 特大巨黑吊av在线直播| 天堂动漫精品| 女人爽到高潮嗷嗷叫在线视频| a级毛片在线看网站| 少妇粗大呻吟视频| 国产单亲对白刺激| 久久久久久久久久黄片| 好看av亚洲va欧美ⅴa在| 午夜福利在线观看吧| 亚洲专区中文字幕在线| 人妻久久中文字幕网| 国产精品一及| 亚洲国产欧美网| 国产精品自产拍在线观看55亚洲| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 亚洲最大成人中文| cao死你这个sao货| 亚洲av五月六月丁香网| 日本 欧美在线| 变态另类成人亚洲欧美熟女| 18禁裸乳无遮挡免费网站照片| 女同久久另类99精品国产91| 国产精华一区二区三区| 黄色 视频免费看| 久9热在线精品视频| 日韩免费av在线播放| 热99re8久久精品国产| 亚洲真实伦在线观看| 国产视频内射| 欧美在线黄色| www.精华液| 亚洲激情在线av| 淫妇啪啪啪对白视频| 国产av不卡久久| 男男h啪啪无遮挡| 国产精品av久久久久免费| 日韩国内少妇激情av| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 99riav亚洲国产免费| 国产午夜福利久久久久久| 国产熟女午夜一区二区三区| 97碰自拍视频| 少妇的丰满在线观看| 国产主播在线观看一区二区| 免费一级毛片在线播放高清视频| 日本 欧美在线| 神马国产精品三级电影在线观看 | 国产精品日韩av在线免费观看| 曰老女人黄片| 亚洲成人久久爱视频| 久久精品国产亚洲av香蕉五月| 午夜日韩欧美国产| 一本久久中文字幕| 成人三级黄色视频| 一级毛片女人18水好多| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 精品久久久久久久久久久久久| or卡值多少钱| 亚洲国产高清在线一区二区三| 少妇的丰满在线观看| 哪里可以看免费的av片| 精品福利观看| xxxwww97欧美| 国产高清视频在线观看网站| 欧美 亚洲 国产 日韩一| 麻豆国产av国片精品| 一a级毛片在线观看| 中文字幕高清在线视频| 免费看十八禁软件| 无遮挡黄片免费观看| 啦啦啦观看免费观看视频高清| 成人午夜高清在线视频| 老熟妇仑乱视频hdxx| 欧美一级毛片孕妇| 琪琪午夜伦伦电影理论片6080| 麻豆成人av在线观看| 成人国语在线视频| АⅤ资源中文在线天堂| 欧美不卡视频在线免费观看 | 久久精品aⅴ一区二区三区四区| 国产人伦9x9x在线观看| 久久中文字幕一级| 两个人的视频大全免费| 精品久久久久久成人av| 最近视频中文字幕2019在线8| 在线观看www视频免费| 欧美极品一区二区三区四区| 91成年电影在线观看| 全区人妻精品视频| 精品久久蜜臀av无| 欧美日韩中文字幕国产精品一区二区三区| 麻豆成人av在线观看| 免费看日本二区| 亚洲精品粉嫩美女一区| 精品不卡国产一区二区三区| www国产在线视频色| 亚洲国产欧美人成| 亚洲中文字幕日韩| 成熟少妇高潮喷水视频| 国产一区二区三区在线臀色熟女| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 在线免费观看的www视频| 亚洲一区中文字幕在线| x7x7x7水蜜桃| 亚洲熟妇中文字幕五十中出| 国产精品98久久久久久宅男小说| 亚洲一区高清亚洲精品| 日韩三级视频一区二区三区| 在线观看免费视频日本深夜| 亚洲欧美精品综合久久99|