• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population

    2014-04-18 11:58:36SijunLiuYunQinFengLuMeihuDongYudiLinHuizhngLiChongShenJunhengDiYueJingGungfuJinZhibinHuHongbingShen
    THE JOURNAL OF BIOMEDICAL RESEARCH 2014年1期

    Sijun Liu, Yun Qin, Feng Lu, Meihu Dong, Yudi Lin, Huizhng Li, Chong Shen, Junheng Di, Yue Jing, Gungfu Jin, Zhibin Hu, Hongbing Shen,

    aDepartment of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    bDepartment of Public Service Management, Kangda College, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    cDepartment of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi , Jiangsu 214023, China.

    Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population

    Sijun Liua,b,△, Yun Qiana,c,△, Feng Lua, Meihua Dongc, Yudi Linc, Huizhang Lia, Chong Shena, Juncheng Daia, Yue Jianga, Guangfu Jina, Zhibin Hua, Hongbing Shena,

    aDepartment of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    bDepartment of Public Service Management, Kangda College, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    cDepartment of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi , Jiangsu 214023, China.

    Plasma lipid abnormalities are implicated in the pathogenic process of type 2 diabetes. The IDE-KIF11-HHEX gene cluster on chromosome 10q23.33 has been identified as a susceptibility locus for type 2 diabetes. We hypothesized that genetic variants at 10q23.33 may be associated with plasma lipid concentrations. Seven tagging single nucleotide polymorphisms (SNPs: rs7923837, rs2488075, rs947591, rs11187146, rs5015480, rs4646957 and rs1111875) at 10q23.33 were genotyped in 3,281 subjects from a Han Chinese population, using the Taq-Man OpenArray and Sequenom MassARRAY platforms. Multiple linear regression analyses showed that SNP rs7923837 in the 3'-flanking region of HHEX was significantly associated with triglyceride levels (P = 0.019, 0.031 mmol/L average decrease per minor G allele) and that rs2488075 and rs947591 in the downstream region of HHEX were significantly associated with total cholesterol levels (P = 0.041, 0.058 mmol/L average decrease per minor C allele and P = 0.018, 0.063 mmol/L average decrease per minor A allele, respectively). However, the other four SNPs (rs11187146, rs5015480, rs4646957 and rs1111875) were not significantly associated with any plasma lipid concentrations in this Chinese population. Our data suggest that genetic variants in the IDE-KIF11-HHEX gene cluster at 10q23.33 may partially explain the variation of plasma lipid levels in the Han Chinese population. Further studies are required to confirm these findings in other populations.

    cholesterol, triglycerides, polymorphism, genetic, iDE-KIF11-HHEX

    INTRODUCTION

    Plasma lipid abnormalities are associated with risk of type 2 diabetes[1,2]. Some studies have shown that elevated triglyceride (TG) levels and low levels of high-density lipoprotein cholesterol (HDL-C) accelerate the pathogenesis of type 2 diabetes[3-5]. Recently, several studies have investigated the potential effectof genetic factors associated with risk of type 2 diabetes on plasma lipid levels. Onuma et al.[6]analyzed the association of polymorphisms in the glucokinase (hexokinase 4) regulator (GCKR) gene with type 2 diabetes in a case-control study and with fasting blood glucose and TG levels in the general population. The A allele of SNP rs780094 was found to be associated with reduced risk of type 2 diabetes and lower levels of fasting plasma glucose, but higher levels of TG, in a Japanese population. In the study reported by Chen et al.[7], the authors found that subjects with minor alleles of SNPs rs2283228 and rs2237892 in the KQT-like subfamily member 1 (KCNQ1) gene, which were associated with type 2 diabetes, had higher levels of TG. This evidence suggests that genetic variants associated with diabetes risk may also be potential genetic determinants of plasma lipid levels.

    A genome-wide association study (GWAS) conducted in a French case-control study identified a novel type 2 diabetes susceptibility locus on chromosome 10q23.33, which is located in a gene cluster including an insulin-degrading enzyme (IDE), a kinesininteracting factor 11 (KIF11), and a hematopoietically expressed homeobox protein (HHEX)[8]. Following this discovery, several studies have confirmed this association in British[9], Finnish[10], Japanese[11,12]and Chinese populations[13-15]. Recently, we have also found that SNPs rs7923837 and rs1111875 in the IDE-KIF11-HHEX locus at 10q23.33 were independently associated with risk of type 2 diabetes in a Chinese population[16]. However, the relationship between IDE-KIF11-HHEX locus and lipid traits in different populations is not clear. Therefore, in an effort to evaluate the influence of the polymorphisms in IDE-KIF11-HHEX locus on plasma lipid concentrations, we performed a fine-mapping study by genotyping seven tagging SNPs at 10q23.33 in 3,281 Han Chinese subjects to examine the associations of these variants with plasma levels of total cholesterol (TC), TG, HDL-C and low density lipoprotein cholesterol (LDL-C).

    SUBJECTS AND METHODS

    Study subjects

    The subjects in the current study were selected from a community-based non-communicable diseases screening program comprised of more than 50,000 participants in Jiangsu Province during 2004 and 2008. All subjects were unrelated, ethnic Han Chinese. Subjects were excluded from the study if they had a history of diabetes, hypertension, coronary heart disease or cancer, or fasting plasma glucose≥5.6 mmol/L. After providing informed consent, all subjects were interviewed face-to-face using a standard questionnaire that included demographic characteristics, risk factors and disease history. Subjects who smoked 1 cigarette per day for over 1 year were defined as smokers, and those who consumed 3 or more alcohol drinks a week for over 6 months were considered as alcohol drinkers. Physical examinations, including measurements of height, weight and blood pressure, as well as laboratory tests to measure TC, TG, HDL-C and fasting plasma glucose concentrations, were performed for each participant. Sitting blood pressure was based on the average of three blood pressure readings measured. Body mass index (BMI) was calculated as weight (in kilograms) divided by the square of height (in meters). Fasting blood samples for routine laboratory examinations were obtained in the early morning after an overnight fast. All biochemical parameters were measured enzymatically on an auto-analyzer (Hitachi 7180 Biochemistry Auto-analyzer, Japan) according to the manufacturer's instructions. For subjects with TG levels < 4.52 mmol/L, LDL-C levels were estimated indirectly using the Friedewald's formula. The Institutional Review Board of Nanjing Medical University approved the study.

    SNP selection and genotyping

    Based on our previous study[16], we used a blockbased tagging strategy to select tagging SNPs using Haploview 4.2 software according to the HapMap database[http://www.hapmap.org/, phaseII Nov08, on NCBI B36 assembly, dbSNPb126; population: Han Chinese population (CHB) and Japanese population (JPT)]. The criteria included SNPs with minor allele frequency (MAF)≥ 0.10, Hardy-Weinberg equilibrium P≥0.05 and call rate≥95% when using pairwise linkage disequilibrium (r2) of 0.8 as the threshold for each block. Seven tagging SNPs (rs7923837, rs2488075, rs947591, rs11187146, rs5015480, rs4646957 and rs1111875) associated with type 2 diabetes in the IDE-KIF11-HHEX locus at 10q23.33 were included in the current study.

    Genomic DNA was isolated from leucocytes of venous blood by proteinase K digestion and phenol/ chloroform extraction. Genotyping was performed using the TaqMan OpenArray Genotyping System (Life Technologies, Carlsbad, CA, USA) and the iPLEX Sequenom MassARRAY platform (Sequenom, Inc.). For quality control, two non-template controls were used in each chip or plate. The overall call rates ranged from 98.8% to 99.8% for all SNPs.

    Statistical analysis

    Associations between the genotypes and plasma lipidconcentrations were determined by multiple linear regression analysis with adjustment for age, sex, smoking status, drinking status and BMI. The Hardy-Weinberg equilibrium was tested by a goodness-of-fit χ2test to compare the observed genotype frequencies with the expected ones among the 3,281 subjects. All statistical analyses were performed using Statistical Analysis System software version 9.1.3 (SAS Institute, Cary, NC, USA). All tests were two-sided and the significance level was set at P < 0.05.

    Table 1 Characteristics of the study population

    RESULTS

    The demographic and biochemical characteristics of the 3,281 subjects included in this study are shown in Table 1. The mean age was 56.58 (± 9.88) years and the mean BMI value was 22.12 (± 2.63) kg/m2. The mean values of TC, HDL-C, LDL-C and TG were 4.40 (± 0.80) mmol/L, 1.62 (± 0.38) mmol/L, 2.29 (± 0.74) mmol/L and 1.09 (± 0.45) mmol/L, respectively. Among these subjects, 827 subjects (25.38%) were smokers and 635 subjects (19.51%) were drinkers.

    The observed genotype frequencies for the seven SNPs were all consistent with the Hardy-Weinberg equilibrium among 3,281 subjects (P > 0.05) (Table 2). We examined the association between each SNP and TC, TG, HDL-C or LDL-C levels, respectively, in an additive model using a linear regression model with adjustment for age, sex, smoking, drinking and BMI (Table 2). We found significant associations between rs7923837 and TG (P = 0.019), between rs2488075 and rs947591 and TC (P = 0.041 and 0.018, respectively). As shown in Table 3, the G allele of rs7923837 was associated with a lower TG levels (0.031 mmol/L average decrease per G allele). Similarly, the C allele of rs2488075 and the A allele of rs947591 were both associated with lower TC levels (0.058 mmol/L average decrease per C allele and 0.063 mmol/L average decrease per A allele, respectively). Conditional analysis indicated that rs2488075 and rs947591 were not significant after adjustment with each other, as the two SNPs were in strong linkage equilibrium (LD) (r2=0.734). However, no significant associations were observed between the other four SNPs (rs11187146, rs5015480, rs4646957 and rs1111875) and blood lipid concentrations.

    We then conducted a stratification analysis for rs7923837, rs2488075 and rs947591 by age, sex, BMI, smoking, and drinking status. As shown in Table 4, the associations between rs7923837 and TG levels were more evident among subjects of the low age group (P = 0.009), male subjects (P = 0.003), non-drinkers (P = 0.019), and subjects with low BMI (P = 0.003). The associations between rs2488075, rs947591 and TC levels were more evident among subjects of low age group (P = 0.021 and 0.013, respectively), female subjects (P = 0.048 and 0.032, respectively), non-smokers (P = 0.004 and 0.002, respectively), non-drinkers (P = 0.007 and 0.003, respectively) and subjects with low BMI (P = 0.038 and 0.037, respectively).

    DISCUSSION

    To the best of our knowledge, this is the first study to investigate the association between IDE-KIF11-HHEX polymorphisms and plasma lipid concentrations in a Chinese population. Of the seven tagging SNPs at the IDE-KIF11-HHEX locus, we found that rs7923837 was associated with plasma concentrations of TG, and rs2488075 and rs947591 were associated with plasma concentrations of TC.

    Table 2 Association between lipid concentrations and selected single nucleotide polymorphisms

    rs7923837 is located in the 3'-flanking region of the HHEX gene, which encodes a transcription factor that is involved in Wnt signaling and is critical for hepatic and pancreatic development[17,18]. In addition, HHEX may regulate β-cell development and/or function by activating hepatocyte nuclear factor 1α[19]. Several studies reported that the association between rs7923837 and type 2 diabetes is mediated through decreased β-cell secretory capacity or decreased β-cell mass[20-22]. Thus, HHEX is critical for insulin signaling and islet function[23]. HHEX may influence metabolic phenotypes such as TG and TC because insulin is necessary for the regulation of metabolic phenotypes. On chromosome 10q23.33, genetic variants in HHEX have been established as susceptibility loci for type 2 diabetes[8]. In our previous fine-mapping study[16], we reported that rs7923837 and rs1111875 were independently associated with risk of type 2 diabetes in a Chinese population. Several studies have also investigated the relationship between HHEX polymorphisms and other metabolic diseases. Zhao et al.[24]found that the type 2 diabetes risk-associated G allele of rs7923837 was associated with higher pediatric BMI in European American children. Cruz et al.[25]analyzed the association between the HHEX rs5015480 and risk of metabolic syndrome (MS) in a case-control study from Mexico city and found that rs5015480 was significantly associated with MS. Taken together, this evidence suggests that genetic variants in the IDEKIF11-HHEX gene cluster at 10q23.33 may contribute to metabolism-related traits and diseases, including circulating lipid levels and diabetes risk.

    Genetic variants associated with the risk of type 2 diabetes have been found to influence plasma TG levels. The variant rs780094 in GCKR was associated with a decreased risk of type 2 diabetes, but with higher TG levels, in a GWAS of European population[26]. Similarly, in the current study, we found that the risk allele of diabetes was associated with lower TG levels. Considering that the subjects included in this study were from a healthy population, the lipid level-related variant might interpret the variation of lipid levels of baseline. The relationships between the same variant and diabetes risk and lipid levels impliesthat low lipid baseline levels in some subjects are, in part, genetically determined, causing them to be more susceptible to type 2 diabetes. This was also supported by the results from the stratification analysis, which showed that the associations between genetic variants at 10q23.33 and lipid levels were more evident among young subjects, non-smokers, non-drinkers and subjects with low BMI. However, the underlying mechanism remains unclear, and further studies are needed to elucidate the roles of genetic variants at 10q23.33 in circulating lipid levels.

    Table 3 Effects of rs7923837, rs2488075 and rs947591 on plasma lipid concentrations

    Table 4 Stratification analysis for rs7923837, rs2488075, and rs947591 and lipid levels in an additive genetic model

    There is a strong relationship between glucose, cholesterol metabolism and type 2 diabetes[27]. The study by Hao et al.[28]suggested that plasma cholesterol plays a direct role in pancreatic islet dysfunction and may be a key factor underlying the progression of type 2 diabetes. Genetic variants that are associated with the risk of type 2 diabetes have also been found to influence plasma TC levels. Sanghera et al.[29]revealed a significant association between rs10885409 in TCF7L2 with type 2 diabetes and TC levels in Asian Indians. Chen et al.[30]found rs2237895 in KCNQ1, which was thought to be a candidate gene of diabetes that influenced plasma TC levels in the Han Chinese population. They argued that this variant might result in an increased expression of KCNQ1 and a subsequent increase in insulin secretion, which could stimulate lipid synthesis. In this study, we also found that rs2488075 and rs947591 were associated with plasma TC levels. rs2488075 and rs947591 are located downstream of HHEX, which may affect metabolic phenotypes. However, the mechanism that allows the CC genotype in rs2488075 and the AA genotype in rs947591 to contribute to lower levels of TC is still unknown.

    Our study may be subject to certain limitations. First, the number of subjects in our study was moderate, thus the statistical power was limited. Second, the associations were not strong statistically; none of them passed multiple correction. Third, bias and reverse causation cannot be completely excluded in this observational epidemiological study. A Mendelian randomization approach that uses the random inheritance of genetic variants from parents to offspring may be of benefit in further studies. Thus, larger, well-designed epidemiological studies with ethnically diverse populations are warranted to confirm our findings.

    In summary, the results in the current study indicate that genetic variants in the IDE-KIF11-HHEX gene cluster at 10q23.33 are associated with plasma lipid levels in the Chinese population. These findings highlight the important correlation between lipid levels and diabetes development at the genetic level. Further studies are needed to replicate our findings in other populations.

    [1] Chaudhary R, Likidlilid A, Peerapatdit T, Tresukosol D, Srisuma S, Ratanamaneechat S, et al. Apolipoprotein E gene polymorphism: effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovasc Diabetol 2012; 11: 36.

    [2] Cannon CP. Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am J Cardiol 2008; 102: 5L-9L.

    [3] Bitzur R, Cohen H, Kamari Y, Shaish A, Harats D.Triglycerides and HDL cholesterol: stars or second leads in diabetes? Diabetes Care 2009; 32(S2): 373-7.

    [4] Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 2009; 5: 150-19.

    [5] Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB, Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 2007; 167: 1068-74.

    [6] Onuma H, Tabara Y, Kawamoto R, Shimizu I, Kawamura R, Takata Y, et al. The GCKR rs780094 polymorphism is associated with susceptibility of type 2 diabetes, reduced fasting plasma glucose levels, increased triglycerides levels and lower HOMA-IR in Japanese population. J Hum Genet 2010; 55: 600-64.

    [7] Chen Z, Yin Q, Ma G, Qian Q. KCNQ1 gene polymorphisms are associated with lipid parameters in a Chinese Han population. Cardiovasc Diabetol 2010; 9: 35.

    [8] Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881-5.

    [9] Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316: 1336-41.

    [10] Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316: 1341-5.

    [11] Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, Miki T, et al. Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 2009; 58: 493-8.

    [12] Horikawa Y, Miyake K, Yasuda K, Enya M, Hirota Y, Yamagata K, et al. Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J Clin Endocrinol Metab 2008; 93: 3136-41.

    [13] Lin Y, Li P, Cai L, Zhang B, Tang X, Zhang X et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet 2010; 11: 97.

    [14] Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 2008; 57: 2834-42.

    [15] Zhou DZ, Liu Y, Zhang D, Liu SM, Yu L, Yang YF, et al. Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese. J Hum Genet 2010; 55: 810-5.

    [16] Qian Y, Lu F, Dong M, Lin Y, Li H, Chen J, et al. Genetic variants of IDE-KIF11-HHEX at 10q23.33 associated with type 2 diabetes risk: a fine-mapping study in Chinese population. PLoS One 2012; 7: e35060.

    [17] Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004; 131: 797-806.

    [18] Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 2007; 308: 355-67.

    [19] Tanaka H, Yamamoto T, Ban T, Satoh S, Tanaka T, Shimoda M, et al. Hex stimulates the hepatocyte nuclear factor 1alpha-mediated activation of transcription. Arch Biochem Biophys 2005; 442: 117-24.

    [20] Pivovarova O, Nikiforova VJ, Pfeiffer AF, Rudovich N. The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort. Diabetes Metab Res Rev 2009; 25: 156-62.

    [21] Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 2007; 56: 3101-4.

    [22] Cai Y, Yi J, Ma Y, Fu D. Meta-analysis of the effect of HHEX gene polymorphism on the risk of type 2 diabetes. Mutagenesis 2011; 26: 309-14.

    [23] Xu P, Che Y, Cao Y, Wu X, Sun H, Liang F, et al. Polymorphisms of TCF7L2 and HHEX genes in Chinese women with polycystic ovary syndrome. J Assist Reprod Genet 2010; 27: 23-8.

    [24] Zhao J, Bradfield JP, Zhang H, Annaiah K, Wang K, Kim CE, et al. Examination of all type 2 diabetes GWAS loci reveals HHEX-IDE as a locus influencing pediatric BMI. Diabetes 2010; 59: 751-5.

    [25] Cruz M, Valladares-Salgado A, Garcia-Mena J, Ross K, Edwards M, Angeles-Martinez J, et al. Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City. Diabetes Metab Res Rev 2010; 26: 261-70.

    [26] Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331-6.

    [27] Sanghera DK, Nath SK, Ortega L, Gambarelli M, Kim-Howard X, Singh JR, et al. TCF7L2 polymorphisms are associated with type 2 diabetes in Khatri Sikhs from North India: genetic variation affects lipid levels. Ann Hum Genet 2008; 72: 499-509.

    [28] Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56: 2328-38.

    [29] Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, et al. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 2008; 9: 59.

    [30] Chen XD, Yang YJ, Li SY, Peng QQ, Zheng LJ, Jin L, et al. Several polymorphisms of KCNQ1 gene are associated with plasma lipid levels in general Chinese populations. PloS One 2012; 7: e34229.

    Received 12 May 2012, Revised 13 June 2012, Accepted 18 November 2012, Epub 20 December 2012

    This work was supported by grants from the Project of National Natural Science Foundation of China (No. 81102180, No. 81072379), Ministry of Health Research Program (No. WKJ2010-2-032), Wuxi Science & Technology Research Program (No. CSE01016) and the Priority Academic Program for the Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

    △These authors contribute equally to this work.

    The authors reported no conflict of interests.

    10.7555/JBR.27.20120091

    精品少妇黑人巨大在线播放| 女性被躁到高潮视频| 精品一区二区免费观看| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 又黄又粗又硬又大视频| 亚洲欧洲日产国产| 精品国产乱码久久久久久男人| 赤兔流量卡办理| 晚上一个人看的免费电影| 老司机影院成人| 我的亚洲天堂| 免费不卡的大黄色大毛片视频在线观看| 国产成人精品无人区| 两个人免费观看高清视频| 午夜精品国产一区二区电影| 久久 成人 亚洲| 免费不卡的大黄色大毛片视频在线观看| 久久免费观看电影| 亚洲国产精品999| 日韩制服丝袜自拍偷拍| 色婷婷久久久亚洲欧美| 亚洲欧洲精品一区二区精品久久久 | 美女大奶头黄色视频| 午夜福利在线免费观看网站| 国产精品香港三级国产av潘金莲 | 色94色欧美一区二区| 欧美97在线视频| 国产乱来视频区| 国产精品女同一区二区软件| 成人国语在线视频| 欧美人与性动交α欧美精品济南到 | 最近最新中文字幕大全免费视频 | 最新中文字幕久久久久| 成人毛片60女人毛片免费| 亚洲成人av在线免费| 国产一区二区三区综合在线观看| 欧美97在线视频| 在线观看人妻少妇| 日韩欧美一区视频在线观看| 亚洲精品国产av蜜桃| 亚洲国产色片| 国产片内射在线| 精品国产乱码久久久久久小说| 精品国产露脸久久av麻豆| 国产av一区二区精品久久| 18禁观看日本| 王馨瑶露胸无遮挡在线观看| 国产亚洲午夜精品一区二区久久| 日韩伦理黄色片| 国产成人精品久久二区二区91 | 下体分泌物呈黄色| 午夜福利视频精品| 欧美国产精品一级二级三级| 久久99精品国语久久久| 伊人亚洲综合成人网| 狠狠婷婷综合久久久久久88av| 少妇被粗大的猛进出69影院| 婷婷色av中文字幕| 免费在线观看视频国产中文字幕亚洲 | 韩国精品一区二区三区| 久久久久网色| 在线观看免费高清a一片| 色哟哟·www| 少妇人妻久久综合中文| 如日韩欧美国产精品一区二区三区| 高清黄色对白视频在线免费看| 黑丝袜美女国产一区| 亚洲精品久久成人aⅴ小说| 韩国高清视频一区二区三区| av电影中文网址| 天美传媒精品一区二区| 国产精品亚洲av一区麻豆 | 亚洲精品一二三| 欧美成人午夜免费资源| 国产精品国产三级国产专区5o| 国产在视频线精品| 亚洲欧洲精品一区二区精品久久久 | 婷婷成人精品国产| 亚洲精品日本国产第一区| 国产成人免费无遮挡视频| 在线观看三级黄色| 成人国产麻豆网| 你懂的网址亚洲精品在线观看| 男女无遮挡免费网站观看| av在线app专区| 天天躁夜夜躁狠狠躁躁| 老熟女久久久| 最近的中文字幕免费完整| 欧美人与性动交α欧美软件| 亚洲成人手机| 午夜福利影视在线免费观看| 亚洲综合精品二区| 王馨瑶露胸无遮挡在线观看| 在线观看国产h片| 大码成人一级视频| 又粗又硬又长又爽又黄的视频| 欧美日韩成人在线一区二区| 欧美+日韩+精品| 亚洲第一av免费看| 亚洲精品一区蜜桃| 乱人伦中国视频| www.自偷自拍.com| 人妻系列 视频| 丝袜脚勾引网站| 女人高潮潮喷娇喘18禁视频| 国产一区二区 视频在线| 国产成人aa在线观看| 国产精品久久久久久精品电影小说| 99久久综合免费| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成电影观看| 最近最新中文字幕大全免费视频 | 十分钟在线观看高清视频www| 欧美日韩精品成人综合77777| 青草久久国产| 欧美亚洲 丝袜 人妻 在线| 亚洲精品自拍成人| 天天躁夜夜躁狠狠久久av| 91午夜精品亚洲一区二区三区| 国产成人精品久久久久久| 久久99一区二区三区| 久久国产精品大桥未久av| 国产在线免费精品| 老汉色av国产亚洲站长工具| 久久亚洲国产成人精品v| 成年动漫av网址| 成年动漫av网址| 午夜福利乱码中文字幕| 精品国产一区二区三区四区第35| 黄色 视频免费看| 精品国产超薄肉色丝袜足j| 亚洲精品成人av观看孕妇| 欧美成人午夜精品| 黄网站色视频无遮挡免费观看| 婷婷成人精品国产| 欧美 日韩 精品 国产| 成年av动漫网址| 丝瓜视频免费看黄片| 国产精品一二三区在线看| 日韩一区二区三区影片| 蜜桃国产av成人99| 久久久久久人人人人人| 91成人精品电影| 亚洲第一av免费看| 女人高潮潮喷娇喘18禁视频| 伊人久久国产一区二区| 999久久久国产精品视频| 韩国精品一区二区三区| 精品人妻一区二区三区麻豆| 久久婷婷青草| 1024香蕉在线观看| 免费大片黄手机在线观看| 在线天堂中文资源库| 午夜老司机福利剧场| 啦啦啦在线观看免费高清www| 亚洲欧洲精品一区二区精品久久久 | 欧美精品亚洲一区二区| 婷婷色av中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费看片子| 久久久a久久爽久久v久久| 国产精品久久久av美女十八| 秋霞伦理黄片| 亚洲人成网站在线观看播放| 黄片小视频在线播放| 亚洲精品美女久久久久99蜜臀 | 精品第一国产精品| 嫩草影院入口| 最近的中文字幕免费完整| 亚洲精品日本国产第一区| www日本在线高清视频| 国产老妇伦熟女老妇高清| 亚洲精品日本国产第一区| 久久久久精品性色| 狂野欧美激情性bbbbbb| 麻豆乱淫一区二区| 久久精品久久久久久久性| 国产精品国产三级国产专区5o| 久久久久久免费高清国产稀缺| 国产精品久久久久久精品古装| 欧美亚洲日本最大视频资源| 啦啦啦啦在线视频资源| 亚洲国产欧美日韩在线播放| 成年av动漫网址| 91成人精品电影| 男女无遮挡免费网站观看| 精品人妻在线不人妻| 国产成人一区二区在线| 美女高潮到喷水免费观看| 午夜福利在线免费观看网站| 国产精品.久久久| 最近中文字幕2019免费版| 在线看a的网站| 亚洲熟女精品中文字幕| 日本wwww免费看| 中国三级夫妇交换| 97在线视频观看| 欧美日韩国产mv在线观看视频| 亚洲国产最新在线播放| 国产黄色视频一区二区在线观看| 欧美亚洲日本最大视频资源| 亚洲精品一区蜜桃| 免费看不卡的av| 精品国产露脸久久av麻豆| 久久99精品国语久久久| 七月丁香在线播放| 黄片播放在线免费| 欧美人与性动交α欧美软件| 国产精品久久久久久精品古装| 一个人免费看片子| 欧美老熟妇乱子伦牲交| 九草在线视频观看| 欧美日韩综合久久久久久| 日产精品乱码卡一卡2卡三| 亚洲av.av天堂| 我的亚洲天堂| 欧美日韩精品网址| 婷婷成人精品国产| 一个人免费看片子| 亚洲男人天堂网一区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品久久久久久婷婷小说| 香蕉国产在线看| 大码成人一级视频| 久久国产亚洲av麻豆专区| 美女国产高潮福利片在线看| 美女视频免费永久观看网站| 国产xxxxx性猛交| 亚洲精品美女久久久久99蜜臀 | 久久久久人妻精品一区果冻| 午夜免费鲁丝| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| 丝瓜视频免费看黄片| 丁香六月天网| 十八禁网站网址无遮挡| 国产福利在线免费观看视频| 免费人妻精品一区二区三区视频| 精品一区二区三区四区五区乱码 | 国产精品久久久久久av不卡| av女优亚洲男人天堂| 天堂俺去俺来也www色官网| 久久久国产欧美日韩av| 一区福利在线观看| 性高湖久久久久久久久免费观看| 国产成人精品在线电影| 亚洲国产日韩一区二区| 久久人妻熟女aⅴ| 2022亚洲国产成人精品| 精品久久久久久电影网| 午夜久久久在线观看| 久久精品久久精品一区二区三区| 国产精品久久久久成人av| 日韩一区二区三区影片| 日日啪夜夜爽| 18禁国产床啪视频网站| 狠狠婷婷综合久久久久久88av| 国产福利在线免费观看视频| 一级,二级,三级黄色视频| 国产成人91sexporn| 校园人妻丝袜中文字幕| 精品少妇久久久久久888优播| 国产精品久久久久成人av| 亚洲国产成人一精品久久久| 午夜福利一区二区在线看| 在线看a的网站| 各种免费的搞黄视频| xxxhd国产人妻xxx| 亚洲精品国产av成人精品| 亚洲欧美日韩另类电影网站| 国产爽快片一区二区三区| 考比视频在线观看| 人体艺术视频欧美日本| 日韩一本色道免费dvd| 一区在线观看完整版| www.熟女人妻精品国产| 欧美人与性动交α欧美软件| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美成人精品一区二区| 黄频高清免费视频| 久久久久精品久久久久真实原创| 亚洲精品国产色婷婷电影| 99久久精品国产国产毛片| 狠狠精品人妻久久久久久综合| 国产精品香港三级国产av潘金莲 | 多毛熟女@视频| 午夜免费鲁丝| 在线免费观看不下载黄p国产| 男女午夜视频在线观看| 欧美日本中文国产一区发布| 男的添女的下面高潮视频| 日韩不卡一区二区三区视频在线| 观看美女的网站| 少妇熟女欧美另类| 久久精品国产鲁丝片午夜精品| kizo精华| 色网站视频免费| 母亲3免费完整高清在线观看 | 成年女人毛片免费观看观看9 | 亚洲国产欧美在线一区| 国产成人免费无遮挡视频| 97精品久久久久久久久久精品| 青春草视频在线免费观看| 最近最新中文字幕大全免费视频 | 欧美人与性动交α欧美精品济南到 | 波野结衣二区三区在线| 天天操日日干夜夜撸| 视频区图区小说| 久久人人爽av亚洲精品天堂| 人妻少妇偷人精品九色| 狠狠精品人妻久久久久久综合| 亚洲精品一二三| 人成视频在线观看免费观看| 国产成人免费观看mmmm| 久久97久久精品| 青春草国产在线视频| 国产免费又黄又爽又色| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 又粗又硬又长又爽又黄的视频| 一二三四中文在线观看免费高清| 麻豆乱淫一区二区| 午夜影院在线不卡| 久久久久精品人妻al黑| 国产极品天堂在线| 中国三级夫妇交换| 日日爽夜夜爽网站| 三级国产精品片| 精品一品国产午夜福利视频| 欧美激情高清一区二区三区 | 18在线观看网站| 欧美另类一区| 日韩中文字幕欧美一区二区 | 久久久国产一区二区| 久久青草综合色| 老汉色∧v一级毛片| 91精品三级在线观看| 亚洲精品,欧美精品| 中文字幕最新亚洲高清| 久久精品久久久久久久性| 欧美人与善性xxx| 国产一区二区三区av在线| 观看美女的网站| 国产精品蜜桃在线观看| 欧美人与善性xxx| 久久精品国产自在天天线| 久久国产亚洲av麻豆专区| 在线观看www视频免费| 午夜福利一区二区在线看| 高清黄色对白视频在线免费看| 久久久国产一区二区| av女优亚洲男人天堂| 久久久精品免费免费高清| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 国产精品蜜桃在线观看| 在线精品无人区一区二区三| 午夜av观看不卡| 人人妻人人添人人爽欧美一区卜| 国产精品国产三级国产专区5o| 日韩一区二区视频免费看| 美女大奶头黄色视频| 各种免费的搞黄视频| 老司机亚洲免费影院| 一区二区日韩欧美中文字幕| 男女边摸边吃奶| 免费av中文字幕在线| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 69精品国产乱码久久久| 嫩草影院入口| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 男人爽女人下面视频在线观看| 亚洲第一av免费看| freevideosex欧美| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 国产精品99久久99久久久不卡 | 高清欧美精品videossex| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级| 久久久久久免费高清国产稀缺| 看免费成人av毛片| 免费播放大片免费观看视频在线观看| 久久久久久久精品精品| www.自偷自拍.com| 日本免费在线观看一区| 久久久国产一区二区| 欧美精品亚洲一区二区| 久久久精品免费免费高清| 国产黄色免费在线视频| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 久久久久精品人妻al黑| 日韩伦理黄色片| 国产免费一区二区三区四区乱码| 丁香六月天网| 成人毛片60女人毛片免费| 男女边吃奶边做爰视频| 国产乱来视频区| 看免费成人av毛片| 亚洲国产av新网站| 久久青草综合色| 熟妇人妻不卡中文字幕| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| a级毛片黄视频| 午夜免费男女啪啪视频观看| 黄片无遮挡物在线观看| 黄色毛片三级朝国网站| 丁香六月天网| 欧美精品人与动牲交sv欧美| 在线观看国产h片| 久久久久久久大尺度免费视频| 精品国产一区二区三区久久久樱花| 亚洲av福利一区| 韩国av在线不卡| 久久久久久久久久人人人人人人| 熟女少妇亚洲综合色aaa.| 婷婷色av中文字幕| 日本免费在线观看一区| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 精品一区在线观看国产| 一级a爱视频在线免费观看| 欧美日韩综合久久久久久| 国产精品三级大全| 久久久久久人人人人人| 国产熟女欧美一区二区| 国产高清国产精品国产三级| 久久精品国产亚洲av天美| 最近最新中文字幕大全免费视频 | 免费看不卡的av| 不卡视频在线观看欧美| 十分钟在线观看高清视频www| 一级黄片播放器| 日韩熟女老妇一区二区性免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 日韩中文字幕欧美一区二区 | 少妇人妻 视频| 成年人午夜在线观看视频| 91精品三级在线观看| 日韩中文字幕视频在线看片| 欧美成人午夜精品| 黑丝袜美女国产一区| 男女边吃奶边做爰视频| 女人被躁到高潮嗷嗷叫费观| 国产一区二区激情短视频 | 大码成人一级视频| 侵犯人妻中文字幕一二三四区| 久久久国产精品麻豆| 国产亚洲午夜精品一区二区久久| 午夜精品国产一区二区电影| 男的添女的下面高潮视频| 一二三四中文在线观看免费高清| 欧美在线黄色| 欧美日韩视频精品一区| 欧美国产精品va在线观看不卡| 亚洲在久久综合| 又粗又硬又长又爽又黄的视频| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 国产免费又黄又爽又色| 日韩中字成人| 亚洲一区中文字幕在线| 捣出白浆h1v1| 国产男人的电影天堂91| 欧美亚洲日本最大视频资源| 午夜福利在线观看免费完整高清在| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| 国产极品天堂在线| 午夜老司机福利剧场| 熟女av电影| 一本色道久久久久久精品综合| 激情视频va一区二区三区| 香蕉丝袜av| 黄色怎么调成土黄色| 亚洲国产看品久久| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 午夜福利在线免费观看网站| 91久久精品国产一区二区三区| 久久精品国产鲁丝片午夜精品| 18在线观看网站| 99久国产av精品国产电影| 日本黄色日本黄色录像| 国产精品免费大片| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 久久国内精品自在自线图片| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| www.自偷自拍.com| 18在线观看网站| 亚洲四区av| 久久国产精品大桥未久av| 人人妻人人添人人爽欧美一区卜| 国产免费又黄又爽又色| 99热国产这里只有精品6| 国产精品一二三区在线看| 天天操日日干夜夜撸| 国产1区2区3区精品| 1024香蕉在线观看| 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 男女下面插进去视频免费观看| 热re99久久国产66热| 熟女av电影| 欧美日韩亚洲国产一区二区在线观看 | 亚洲人成电影观看| 丰满迷人的少妇在线观看| 国产淫语在线视频| 十分钟在线观看高清视频www| 亚洲精品国产av蜜桃| 91aial.com中文字幕在线观看| 国产 精品1| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 精品酒店卫生间| 日本av手机在线免费观看| 亚洲第一青青草原| 多毛熟女@视频| 国产色婷婷99| 七月丁香在线播放| 久久人人97超碰香蕉20202| 国产精品一国产av| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 毛片一级片免费看久久久久| 久久精品国产亚洲av涩爱| 久久午夜综合久久蜜桃| 久热这里只有精品99| 一级片'在线观看视频| av在线老鸭窝| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 国产精品99久久99久久久不卡 | 久久久久精品人妻al黑| 中国国产av一级| 国产不卡av网站在线观看| 男女边吃奶边做爰视频| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 少妇熟女欧美另类| 狠狠婷婷综合久久久久久88av| 一级毛片我不卡| 日本黄色日本黄色录像| 综合色丁香网| 成人国语在线视频| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 久久久久久久大尺度免费视频| 两性夫妻黄色片| 激情视频va一区二区三区| 只有这里有精品99| 国产精品国产三级国产专区5o| 亚洲av中文av极速乱| 狂野欧美激情性bbbbbb| 美女大奶头黄色视频| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区黑人 | 亚洲精品一二三| 中文字幕最新亚洲高清| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| 免费少妇av软件| 大码成人一级视频| 一级爰片在线观看| 少妇的丰满在线观看| 免费黄频网站在线观看国产| 精品国产一区二区久久| 欧美成人午夜免费资源| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频| 国产白丝娇喘喷水9色精品| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看| 青青草视频在线视频观看| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久 | av片东京热男人的天堂| 在线观看人妻少妇| 精品久久蜜臀av无| 国产淫语在线视频| 午夜久久久在线观看| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 久久av网站| 久久99热这里只频精品6学生| 免费大片黄手机在线观看| 午夜福利视频精品| 亚洲成人av在线免费| 婷婷色综合www| 制服丝袜香蕉在线| 国产 精品1| 免费高清在线观看视频在线观看| 一区二区三区激情视频| 国产黄频视频在线观看| 婷婷成人精品国产| 欧美日韩一级在线毛片|