• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Study of Tidal Asymmetry:Preferable Asymmetry of Nonlinear Mechanisms in Xiangshan Bay,East China Sea

    2014-04-17 02:42:56XUPengMAOXinyanJIANGWenshengandZHOULiangming
    Journal of Ocean University of China 2014年5期

    XU Peng,MAO Xinyan,JIANG Wensheng,and ZHOU Liangming

    1)Physical Oceanography Laboratory,Ocean University of China,Qingdao 266100,P.R.China

    2)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao 266100,P.R.China

    ? Ocean University of China,Science Press and Springer-Verlag Berlin Heidelberg 2014

    1 Introduction

    Astronomical tidal waves can be distorted when they propagate into coastal shelves,bays and estuaries,due to the generation of the overtides and compound tides by nonlinear mechanisms(Speer and Aubrey,1985; Friedrichs and Madsen,1992; Nidzieko,2010; Songet al.,2011).This distortion is characterized by tidal elevation and current asymmetry,which refers to a difference between durations of rising and falling tides,as well as a difference in durations and magnitudes of flooding and ebbing currents(Boon and Byrne,1981; Friedrichs and Aubrey,1988; de Swart and Zimmerman,2009).The asymmetry of tides plays an important role in the transport and accumulation of suspended matters and sediments in tidal inlets and basins(Lanzoni and Seminara,1998; Wanget al.,2002; Nidzieko,2012; van Maren and Gerritsen,2012).

    Xiangshan Bay,the biggest aquaculture base in Zhejiang province,is located on the east coast of China,with an average water depth of 10 m and a total area of about 560 km2.The bay is narrow and semi-enclosed,and has a horizontal scale of 70 by 10 km(Fig.1).Topography in the bay is characterized by two shallower ends and a deeper middle portion,with some deep spots scattered along the bay.About 1/3 of the total bay area is mudflats,most of which are distributed around the head,with only a few distributed along the edge of the channel(Dong and Su,1999a).Wind and waves are weak in the bay(Caoet al.,1995),while tides are very energetic and highly asymmetric(Zhu and Cao,2010),and dominate the distribution pattern of suspended matters and sediments(Gaoet al.,1990).In a semi-diurnal system such as Xiangshan Bay(Dong and Su,1999a,b),the tidal asymmetry is mainly caused by the interaction between the principal semidiurnal tide M2and its first overtide M4generated by the nonlinear tidal process(Speer and Aubrey,1985).

    The tidal asymmetry has been studied by various researchers.Parker(1991)proposed that four primary physical mechanisms are responsible for the generation of shallow water tides,which are the time-varying channel depth and the time-varying embayment width in the continuity equation,and the nonlinear advection and bottom friction terms in the momentum equations.In shallow water systems where bottom friction is conspicuous,the trough of tidal waves propagates slower than the crest due to the stronger bottom friction during low tide,which results in a shorter duration of the rising tide(LeBlond, 1978; Friedrichs and Aubrey,1994; Lanzoni and Seminara,2008; Wanget al.,2002).However,the existence of large intertidal flats may significantly change the asymmetric tides,and makes the duration of the rising tide longer than that of the falling tide(Shetye and Gouviea,1992).Friedrichs and Madsen(1992)proposed that the relative importance of the time-varying channel depth and the time-varying embayment width determines the asymmetry of tidal elevation.The duration of the rising tide is shorter when the time-varying depth dominates over the time-varying width; otherwise,it is longer.

    Until now,the studies on asymmetric tide in Xiangshan Bay have been rare.Dong and Su(1999a,b)published the only paper regarding the generation mechanism of overtide M4in the Bay.They reported that the overtide M4grows from 0.02 m at the mouth to 0.36 m at the head based on the observations,and they analyzed the different effect of nonlinear mechanisms using a depth-averaged numerical model.

    In Dong and Su’s study(1999a,b),only the effect of nonlinear mechanisms on the amplitude of overtide M4was discussed.Thus,it is necessary to understand how each nonlinear mechanism affects the tidal elevation asymmetry through examining both amplitudes and phases of semidiurnal tide M2and overtide M4.In this study a finite-volume coastal ocean model(FVCOM)was employed to simulate the highly asymmetric tides and to investigate how each of the primary nonlinear mechanisms affects the tidal asymmetry in Xiangshan Bay.The paper is organized as follows:Section 2 introduces the main characteristics of the asymmetric tides in Xiangshan Bay based on the observations.The model configuration and validation are presented in Section 3.Section 4 is the result analysis by comparing the benchmark and various sensitivity experiments.The conclusions are drawn in Section 5.

    Fig.1 The bathymetry of Xiangshan bay.The areas covered by red and yellow colors are the mudflats.B1-B3 are the locations of the tidal level and current mooring sites while only tidal levels are measured at D1 and D2.The dashed line at the head represents the cross-section in Fig.8 and the small panel shows the location of the bay in the East China Sea.

    2 Field Observations in Xiangshan Bay

    Several cruises have been carried out to collect tidal level and current data in Xiangshan Bay since 2008(Table 1).All the high-frequency sampling data were averaged over a 10-minute interval,and also vertically averaged on current profiles.

    Table 1 Stations and instrumentation

    Considering the phase difference between tidal elevation and current,it can be seen that Xiangshan Bay belongs to a standing wave system and the tidal current in the inner bay is rectilinear due to the shoreline limitation.There are two other apparent and important characteristics of the tide in Xiangshan Bay.One is that the tidal elevation changes from a shorter duration of the rising tide at the mouth to a longer duration at the head.By taking stations D2 and B2 to represent the mouth and head of the Bay(Fig.1),respectively,it can be seen that the tidal range increases from the mouth(about 4.0 m)to the head(about 6.5 m)with an increasing degree of tidal asymmetry(Figs.2a,2b).The tidal elevation at station D2 shows weak asymmetry,with the duration of the falling tide ex-ceeding that of the rising tide by about 1 hour.However,the asymmetry of tidal elevation is inverted at station B2,with a duration of the rising tide 2-hour longer than that of the falling tide.The other characteristic is that the peak magnitudes of flooding and ebbing currents are almost identical though the durations of them are quite different.Additionally,a big and a tiny peak exist for the flooding current,while only one peak occurs for the ebb current(Fig.2c).

    Fig.2 Observed tidal elevations at station D2(a),station B2(b),and the magnitude(c)and the direction(d)of vertically-mean tidal currents at station B2.The gray color represents the duration of the falling tide.

    3 Model Configuration and Validation

    3.1 Model Configuration

    FVCOM is a free surface primitive equation model,developed by the UMASSD-WHOI development team,and has the capability to simulate asymmetrical tidal fields in small inlets(Chenet al.,2003; Chenet al.,2006a,b; Chenet al.,2007; Chenet al.,2009; Huang

    et al.,2008).The model equations are solved on an unstructured boundary-fitted triangular mesh in horizontal and on a generalized terrain-following sigma coordinate system in vertical(Pietrzaket al.,2002; Chenet al.,2003).

    The computational domain of this study is bounded by the coastline on the west,and the open boundary on the shelf of the East China Sea(Fig.3).The horizontal resolution at the open boundary is 10 km and gradually increases to 200 m in Xiangshan Bay.The model bathymetry inside the bay was digitized from nautical charts(China Maritime Safety Administration,2008),while bathymetry outside Xiangshan Bay was extracted from the SKKU bathymetry data(Choiet al.,2002).Eight primary tidal constituents(M2S2N2K2K1O1P1Q1)from OTPS(Oregon State University Tidal Prediction Software)were specified at the open boundary.The water density field was set to be constant and the wind forcing was neglected in numerical experiments.These assumptions were taken considering the shallowness of,the small runoff into and the calm winds over the bay all year round(Dong and Su,2000; Zhanget al.,2008).

    Fig.3 The unstructured grid of FVCOM.The dashed line in the figure delineates the location of Xiangshan Bay.

    FVCOM includes a wetting/drying scheme to simulate the flooding and ebbing processes over the intertidal flat,which has been applied to verify the role of intertidal flats in channel dynamics(Zhenget al.,2003; Huanget al.,2008).In this study,a depth of 5 cm was chosen as a critical value to determine if a cell is wet or dry.

    A two-zone parameterization of the bottom drag coefficient was introduced into this model(Sheng and Wang,2004; Nicolle and Karpytchev,2007).Outside the bay,the conventional value of ~2.5×10?3was used,while inside the bay,~0.3×10?3was set based on the ADCP data(Xuet al.,2012).

    3.2 Model Validation

    Fig.4 shows the simulated co-tidal charts of M2and M4tides in Xiangshan Bay.The amplitude of M2increases from 1.5 m at the mouth to 2.2 m at the head,in accor-dance with that reported by Dong and Su(1999a,b).The amplitude of M4grows in a pattern similar to that of M2along the bay,starting with 0.02 m at the mouth and increasing to 0.33 m at the head,which is also consistent with Dong and Su’s(1999a,b)observations except for a 3 cm difference at the head.Thus the model performs well for the simulation of overtide M4in Xiangshan Bay.

    Time series of calculated and observed tidal elevation and current in Xiangshan Bay are compared(Fig.5).To quantify the difference between the model results and observations,the relative error(E)and the correlation coefficient(r)are computed as follows(Spitz and Klinck,1998):whereMandOare the calculated results and the observed data and the overbar represents the temporal average.The relative error(E)gives a measure of the relative difference in amplitudes while the correlation coefficient(r)measures the phase difference between the simulated results and the observed data.

    For the tidal elevation comparison,the relative errors range from 2.5% to 4.4%,and the correlation coefficients are very close to 1.0.However,the relative errors range from 10.8%(Figs.5e)to 36.6%(Fig.5b),and the correlation coefficients vary from 0.8 to 0.9 for the tidal current comparison.It is clear that the model does well in reproducing the asymmetric tide in Xiangshan Bay(Figs.5a and 5g).How nonlinear mechanisms affect the asymmetric tidal field in Xiangshan Bay is investigated using the model results in the following section.

    Fig.4 Co-tidal charts of M2(upper panel)and M4(lower panel).The colors show the amplitudes(in meters),and the white lines are the co-tidal phase lines(in degrees).The white areas between coastlines and the colored area are the intertidal zone.

    Fig.5 Time series of the observed(dashed line)and calculated results(solid line).The blue color represents tidal elevation,while the red represents tidal current.Panels(a)–(g)show the results of the 2008 cruise at station D1,the 2010 cruise at stations B1,B2,B3,the 2011 cruise at stations B2,B3,and the 2012 cruise at station D2,respectively.

    4 Discussion of Nonlinear Mechanisms

    The benchmark and four sensitivity experiments were conducted to examine the contributions of nonlinear mechanisms to the tidal elevation asymmetry in Xiangshan Bay(Table 2).The considered mechanisms include those associated with bottom friction,morphology,bathymetry, and nonlinear advection.Two parameters are used in the discussion,one is the relative phase between M2and M4,2gM2?gM4; the other one isHM4/HM2,i.e.,the amplitude ratio of M4to M2tides.The sign of the former indicates the asymmetry direction,while the latter represents the degree of tidal asymmetry.If the relative phase is positive,the duration of the rising tide is shorter than that of the falling tide,and vice versa(Speer and Aubrey,1985).

    Table 2 The description of the sensitivity experiments

    Fig.6 shows the variations of harmonic constants of M2and M4constituents and the two parameters from mouth to head in the benchmark experiment.Besides the increasing trend as mentioned in Section 3.2,it can be found that the relative phase decreases from 67? around the mouth to?37? in the inner bay,indicating the inversion of tidal asymmetry along the bay(Fig.6a).The reversal point is at the location 19 km from the bay mouth,which divides the bay into two opposite systems.In the outer bay,the tidal elevation asymmetry is weak due to the small amplitude of M4tide(Fig.6b),while the asymmetry becomes stronger in the inner bay because the amplitude ratio increases by approximately 15 times along the bay.

    Fig.6 The calculated M2 and M4 harmonic constants along the bay in the benchmark experiment.Panel(a)presents the M2 phase(solid line),the M4 phase(dashed line),and the relative phase(line with circles),while panel(b)shows the M2 amplitude(solid line),the M4 amplitude(dashed line),and the amplitude ratio of M4 to M2(line with crosses).The horizontal dashed lines mark the M2 and M4 phases and amplitudes at the bay head.

    4.1 Role of Bottom Friction

    The bottom friction plays two opposite roles in the tidal asymmetry,the dissipation and the generation of highfrequency tides.In EXP 1,the bottom drag coefficient in Xiangshan Bay increases from 0.3×10?3of the benchmark value to 2.5×10?3.The enhanced bottom damping effect reduces phase speeds of both M2and M4tides(Fig.7a).The M2phase difference between the mouth and the head is about 11? larger compared to that in the benchmark case.However,there is little phase discrepancy of M4tide between these two experiments.Since the bottom friction slows down the propagation of M2tide much more than it does for M4tide,the relative phase in the bay increases significantly,implying a reverse trend of the tidal elevation asymmetry at the head.The inverse point in EXP 1 moves 20 km further toward the head due to the increase of the relative phase in the inner bay.Therefore the bottom friction plays an important role in generating a shorter rising tide in Xiangshan Bay.

    Fig.7 to the same as in Fig.6,but for EXP 1.

    The bottom damping effect can not only slow down the phase speeds of M2and M4tides but also reduce their amplitudes(Parker,1991).In EXP 1,the M2amplitude at the head decreases by only 5%,while the M4amplitude drops by 48%,and hence the amplitude ratio decreases by one half from 0.15 to 0.08(Fig.7b).This suggests that the bottom friction damps the M4amplitude more than it damps the M2amplitude and results in a smaller amplitude ratio.Therefore,the strong bottom friction can decrease the degree of the tidal elevation asymmetry,and vice versa.It should be noted that the reduction of the tidal amplitude in EXP 1 has little influence on the width of intertidal flat(decreasing by only 4%).The average lower low tides of the benchmark case and EXP 1 are almost the same,both of which occur on the slope of the channel rather than on the side of the flat where a small water-level variation would correspond to a great change in flooded area(Fig.8).

    Fig.8 The average lower low spring tides of the experiments(numbers in parenthesis)in the cross-section marked by the dashed line in Fig.1.

    In addition to its damping effect,the nonlinear mechanism of bottom friction also causes the interaction between tides due to the quadratic form of bottom friction(τb=Cd|U|U).However,as Parker(1991)pointed out,the quadratic bottom friction cannot generate overtide in a semidiurnal-tide dominating system if there is no mean flux.For this reason,the nonlinear effect of bottom friction has no contribution to the asymmetric tide.

    4.2 Effect of the Intertidal Storage Volume

    According to previous studies(Speer and Aubrey,1985; Friedrichs and Madsen,1992),the intertidal storage volume plays a crucial role in the systems where the duration of the rising tide is shorter.In EXP 2,the intertidal flat(Fig.1)was removed from the computational domain in order to examine its contribution to the asymmetric tide in Xiangshan Bay.

    The removal of this intertidal flat enhances the convergence of the bay,leads to a faster M2phase speed(Lanzoni and Seminara,1998),and decreases the M2phase difference by 3?(Fig.9a).However,due to the absence of the intertidal flat,the M4phase sharply increases from 1? at the mouth to over 120? around the head in the benchmark experiment,but remains about 35? along the bay in EXP 2.Owing to the large M4phase variation,the relative phase in the bay becomes negative.The results of EXP 2 indicate that the time-varying width,dominant in the inner bay,prefers a longer duration of rising tide.

    Tidal amplitudes are quite different between EXP 2 and the benchmark experiment.More energy is transferred from M2to M4tides in EXP 2 than in the benchmark experiment(Fig.9b).A further comparison shows that the absence of the intertidal flat not only inverts the tidal elevation asymmetry in the inner bay,but also promotes the energy shift from M2to M4.It is indicated that M4overtide generated by time-varying width and other nonlinear mechanisms may be out of phase.

    Fig.9 The same as in Fig.6,but for EXP 2.

    4.3 Nonlinear Effect of Time-Varying Depth

    Time-varying depth is mainly caused by sea surface oscillation.EXP 3 was set up to investigate the contribution of the time-varying depth to the tidal elevation asymmetry in Xiangshan Bay,in which the channel depth was reduced by 3 m and the bathymetry of the intertidal flat remained the same as in the benchmark experiment.The reduction of the channel depth can increase the convergence of the bay,and can also enhance the dissipation by bottom friction.Owing to these two opposite effects,the average lower low tide in EXP 3 remained the same as that in the benchmark experiment(Fig.8),which guarantees that the effects of the time-varying width between the two experiments are almost the same.Compared with the benchmark experiment,the M2phase speed in EXP 3 slowed down and the phase difference increased by 10? due to the shoaling in the bay(Fig.10a).The M4phase remained almost the same at the mouth and head,while the spatial gradient from the outer to the inner bay became moderate,and the inversion point was pushed 11 km toward the head.This distribution pattern of the tides and the relative phases were very similar to that in EXP 1,suggesting that the time-varying depth plays a similar role as bottom friction in affecting tidal asymmetry.

    Nevertheless,the contribution of the bottom friction to the tidal elevation asymmetry in Xiangshan Bay is due to its linear damping effect,while the time-varying depth is a nonlinear mechanism responsible for the energy transfer from M2to M4tides.Compared to the benchmark experiment,the EXP 3 results show that the M2amplitude increases at both the mouth and the head,but the M4amplitude increases at the mouth and decreases at the head.Thus the relative phase of EXP 3 presents a similar pattern to that of the benchmark experiment(Fig.10b).

    The variations of the amplitude ratio along the bay confirm that the time-varying depth is a nonlinear mechanism which prefers longer duration of rising tide.Therefore,the time-varying depth would promote the generation of overtide M4at the mouth but suppress it in the inner bay.

    Fig.10 To the same as in Fig.6,but for EXP 3.

    4.4 Effect of Nonlinear Advection

    In EXP 4,the horizontal advection terms in the momentum equations were neglected,and the results were compared with the benchmark experiment to assess the contribution of nonlinear advection to the tidal elevation asymmetry in Xiangshan Bay.

    Fig.11 a shows that the absence of nonlinear advection corresponds to a 3? smaller phase difference of M2tide and a much greater phase difference of M4tide between EXP 4 and the benchmark experiments,and causes the negative relative phase all over the bay.The tidal elevation at the mouth changes from that of a shorter rising tide in the benchmark experiment to a longer rising tide in EXP 4.It indicates that the nonlinear advection prefers shorter rising tide and can counteract the effect of the intertidal volume storage like the time-varying depth.However,the nonlinear advection regulates the relative phase by different means from the time-varying depth.The former exerts a greater influence on the M4tide phase while the latter affects the M2tide phase more.

    Little influence of nonlinear advection has been found on the M2amplitude by comparisons.However,the M4amplitude in EXP 4 increases significantly at the head,which enhances the degree of the tidal elevation asymmetry(Fig.11b).Owing to the enhanced intensity of the longer-rising-tide system in the inner bay,the influence of the intertidal flat transforms the system around the mouth from a shorter to longer rising tide.The tidal range becomes larger in EXP 4,but the width of the intertidal flat increases by only 6%(Fig.8).The contribution of the intertidal volume storage in EXP 4 is similar to that in the benchmark experiment.

    Fig.11 To the same as in Fig.6,but for EXP 4.

    5 Conclusions

    Observations show that the tide in Xiangshan Bay is highly asymmetric,and the tidal elevation asymmetry reverses along the bay.In this paper,a finite-volume coastal ocean model was employed to study the physical mechanisms behind this asymmetry.The contribution of each primary nonlinear mechanism to the asymmetry in tidal field is discussed by conducting the sensitivity experiments.

    According to the different effects on the relative phase between M2and M4tides,the nonlinear mechanisms responsible for the tidal elevation asymmetry in Xiangshan Bay are sorted into two categories.The time-varying width prefers a longer duration of rising tide,while the time-varying depth and nonlinear advection prefers a shorter duration.Although the nonlinear effect of bottom friction is not associated with the generation of overtide M4,its damping effect causes a shorter duration of rising tide.

    The inversion of the tidal elevation asymmetry is caused by the changes in dominant nonlinear mechanisms along the bay.The time-varying depth and nonlinear advection dominate in the outer bay and result in a shorter duration of rising tide there.However,the asymmetry of the tidal elevation reverses along the bay because of the large intertidal volume storage at the head.The M4phase adjusts itself rapidly along the bay.Because the overtides generated by the nonlinear mechanisms of the two categories are out of phase,the amplitude of M4generated by all the nonlinear mechanisms is smaller than the sum of that generated by each individual.

    Acknowledgements

    This study is sponsored by the National Natural Science Foundation of China(41106006)and the National Key Technology R&D Program of China(2011BAC03 B02).We also thank Dr.Changsheng Chen for providing the FVCOM code.

    Boon,J.D.,and Byrne,R.J.,1981.On basin hypsometry and the morphodynamic response of coastal inlet systems.Marine Geology,40:27-48,DOI:10.1016/0025-3227(81)90041-4.

    Cao,X.Z.,Tang,L.M.,and Zhang,Y.X.,1995.Analyses of the hydrography features and the ability for containing contaminator for port Xiangshan.Donghai Marine Science,13(1):10-19(in Chinese with English abstract).

    Chen,C.S.,Beardsley R.C.,and Cowles,G.,2006b.An unstructured grid,finite-volume coastal ocean model(FVCOM)system.Oceanography,19(1):78-89,DOI:10.5670/oceanog.2006.92.

    Chen,C.S.,Beardsley,R.C.,and Cowles,G.,2006a.An unstructured grid,finite-volume coastal ocean model:FVCOM user manual.SMAST/UMASSD,New Bedford,Mass,318pp.

    Chen,C.S.,Huang,H.S.,Beardsley,R.C.,Liu,H.D.,Xu,Q.C.,and Cowles,G.,2007.A finite volume numerical approach for coastal circulation studies:Comparisons with finite difference models.Journal of Geophysical Research,112,C03018,DOI:10.1029/2006JC003485.

    Chen,C.S.,Liu,H.D.,and Beardsley,R.C.,2003.An unstructured grid,finite-volume,three-dimensional,primitive equations ocean model:Application to coastal ocean and estuaries.Journal of Atmospheric and Oceanic Technology,20:159-186.

    Chen,C.S.,Malanotte-Rizzoli,P.,Wei,J.,Beardsley,R.C.,Lai Z.,Xue,P.F.,Lyu,S.J.,Xu,Q.C.,Qi,J.,and Cowles,G.W.,2009.Application and comparison of Kalman filters for coastal ocean problems:An experiment with FVCOM.Journal of Geophysical Research,114,C05011,DOI:10.1029/ 2007JC004548.

    China Maritime Safety Administration,2008.Xiangshan Gang and Approaches.China Navigation Publications Press,Tianjin.

    Choi,B.,Kim,K.,and Eum,H.M.,2002.Digital bathymetric and topographic data for neighboring seas of Korea.Journal of Korean Society of Coastal Ocean Engineers,14:41-50(in Korean with English abstract).

    de Swart,H.E.,and Zimmerman,T.J.F.,2009.Morphodynamics of tidal inlet systems.Annual Review of Fluid Mechanics,41:203-229,DOI:10.1146/annurev.fluid.010908.165159.

    Dong,L.X.,and Su,J.L.,1999a.Tide response and wave distortion in Xiangshan Bay I:Observation and analysis.Acta Oceanogica Sinica,21:1(in Chinese with English abstract).

    Dong,L.X.,and Su,J.L.,1999b.Tide response and wave distortion in Xiangshan Bay II:Numerical modeling study in the Xiangshan Bay.Acta Oceanogica Sinica,21:2(in Chinese with English abstract).

    Dong,L.X.,and Su,J.L.,2000.Salinity distribution and mixing in Xiangshan Bay I:Salinity distribution and circulation pattern.Oceanologia et Limnologia Sinica,31:157-158(in Chinese with English abstract).

    Friedrichs,C.T.,and Aubrey,D.G.,1988.Non-linear tidal distortion in shallow well-mixed estuaries:A synthesis.Estuarine,Coastal and Shelf Science,27(5):521-545,DOI:10.1016/ 0272-7714(88)90082-0.

    Friedrichs,C.T.,and Aubrey,D.G.,1994.Tidal propagation in strongly convergent channels.Journal of Geophysical Research,99:3321-3336,DOI:10.1029/93JC03219.

    Friedrichs,C.T.,and Madsen,O.S.,1992.Nonlinear diffusion of the tidal signal in frictionally dominated embayments.Journal of Geophysical Research,97:5637-5650,DOI:10.1029/92JC00354.

    Gao,S.,Xie,Q.,and Feng,Y.,1990.Fine-grained sediment transport and sorting by tidal exchange in Xiangshan Bay,Zhejiang,China.Estuarine,Coastal and Shelf Science,31:397-409,DOI:10.1016/0272-7714(90)90034-O.

    Huang,H.S.,Chen,C.S.,Blanton,J.O.,and Andrade,F.A.,2008.A numerical study of tidal asymmetry in Okatee Creek,South Carolina.Estuarine,Coastal and Shelf Science,78:190-202,DOI:10.1016/j.ecss.2007.11.027.

    Lanzoni,S.,and Seminara,G.,1998.On tide propagation in convergent estuaries.Journal of Geophysical Research,103:30793-30812,DOI:10.1029/1998JC900015.

    LeBlond,P.H.,1978.On tidal propagation in shallow rivers.Journal of Geophysical Research,83:4717-4721,DOI:10.1029/JC083iC09p04717.

    Nicolle,A.,and Karpytchev,M.,2007.Evidence for spatially variable friction from tidal amplification and asymmetry in the Pertuis Breton(France).Continental Shelf Research,27:2346-2356,DOI:10.1016/j.csr.2007.06.005.

    Nidzieko,N.J.,2010.Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides.Journal of Geophysical Research,115,C08006,DOI:10.1029/2009JC005864.

    Nidzieko,N.J.,2012.Tidal asymmetry and velocity skew over tidal flats and shallow channels within a macrotidal river delta.Journal of Geophysical Research,117,C03001,DOI:10.1029/2011JC007384.

    Parker,B.B.,1991.The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions(review).In:Tidal Hydrodynamics.Parker,B.B.,ed.,Wiley,New York,237-268.

    Pietrzak,J.,Jakobson,J.B.,Burchard,H.,Vested,H.J.,and Petersen,O.,2002.A three-dimensional hydrostatic model for coastal and ocean modeling using a generalized topography following co-ordinate system.Ocean Modelling,4:173-205,DOI:10.1016/S1463-5003(01)00016-6.

    Sheng,J.,and Wang,L.,2004.Numerical study of tidal circulation and nonlinear dynamics in Lunenburg Bay,Nova Scotia.Journal of Geophysical Research,109,C10018,DOI:10.1029/ 2004JC002404.

    Shetye,S.R.,and Gouviea,A.D.,1992.On the role of geometry of cross-section in generating flood-dominance in shallow estuaries.Estuarine,Coastal and Shelf Science,35:113-126,DOI:10.1016/S0272-7714(05)80107-6.

    Song,D.H.,Wang,X.H.,Kiss,A.E.,and Bao,X.W.,2011.The contribution to tidal asymmetry by different combinations of tidal constituents.Journal of Geophysical Research,116,C12007,DOI:10.1029/2011JC007270.

    Speer,P.E.,and Aubrey,D.G.,1985.A study of non-linear tidal propagation in shallow inlet/estuarine systems Part II:Theory.Estuarine,Coastal and Shelf Science,21:207-224,DOI:10.1016/0272-7714(85)90097-6.

    Spitz,Y.H.,and Klinck,J.M.,1998.Estimate of bottom and surface stress during a spring-neap tide cycle by dynamical assimilation of tide gauge observations in the Chesapeake Bay.Journal of Geophysical Research,103:12761-12782,DOI:10.1029/98JC00797.

    van Maraen,D.S.,and Gerritsen,H.,2012.Residual flow and tidal asymmetry in the Singapore Strait,with implications for resuspension and residual transport of sediment.Journal of Geophysical Research,117,C04021,DOI:10.1029/2011JC 007615.

    Wang,Z.B.,Jeuken,M.C.J.L.,Gerritsen,H.,de Vriend,H.J.,and Kornman,B.A.,2002.Morphology and asymmetry of the vertical tide in the Westerschelde Estuary.Continental Shelf Research,22:2599-2609,DOI:10.1016/S0278-4343(02)00134-6.

    Xu,P.,Liu,Z.Y.,Mao,X.Y.,and Jiang,W.S.,2012.Estimation of vertical eddy viscosity and bottom drag coefficients in tidally energetic narrow bay.Periodical of Ocean University of China,43:1-7(in Chinese with English abstract).

    Zhang,L.X.,Jiang,X.S,and Cai,Y.H.,2008.Characteristics of nutrient distributions and eutrophication in seawater of the Xiangshan Harbor.Marine Environmental Science,27:488-491(in Chinese with English abstract).

    Zheng,L.Y.,Chen,C.S.,and Liu,H.D.,2003.A modeling study of the Satilla River Estuary,Georgia.I:Flooding-drying process and water exchange over the salt marsh-estuary-shelf complex.Estuaries,26:651-669,DOI:10.1007/BF02711977.

    Zhu,J.Z.,and Cao,Y.,2010.Application of FVCOM for computation of 3D tidal flow and salinity in Xiangshan Bay.Marine Environmental Science,29:899-903(In Chinese with English abstract).

    久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| 99热全是精品| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产av蜜桃| 亚洲av成人不卡在线观看播放网 | 人人澡人人妻人| 精品国内亚洲2022精品成人 | 国产精品一区二区精品视频观看| 精品熟女少妇八av免费久了| 日本猛色少妇xxxxx猛交久久| 中文欧美无线码| 国产福利在线免费观看视频| 久久人妻福利社区极品人妻图片| 国产av精品麻豆| 精品国产乱码久久久久久男人| 国产精品影院久久| 黄色视频在线播放观看不卡| √禁漫天堂资源中文www| 精品国产一区二区三区久久久樱花| 亚洲国产看品久久| 日韩 亚洲 欧美在线| 午夜激情久久久久久久| av又黄又爽大尺度在线免费看| 国产成人av教育| 精品久久久久久电影网| 黑人猛操日本美女一级片| 高潮久久久久久久久久久不卡| 亚洲精品第二区| 国产淫语在线视频| 国产免费福利视频在线观看| 午夜激情久久久久久久| 国产亚洲av高清不卡| av欧美777| 国产免费福利视频在线观看| 亚洲avbb在线观看| 黄色视频在线播放观看不卡| 国产淫语在线视频| 国产成人影院久久av| 亚洲欧洲日产国产| 热99国产精品久久久久久7| 亚洲专区中文字幕在线| 亚洲国产精品999| 久久人妻熟女aⅴ| 国产精品成人在线| 99久久精品国产亚洲精品| 亚洲 欧美一区二区三区| 国产成+人综合+亚洲专区| 欧美日韩黄片免| 国产又爽黄色视频| 美女高潮到喷水免费观看| 天天操日日干夜夜撸| tocl精华| 欧美另类亚洲清纯唯美| av电影中文网址| 99热全是精品| av欧美777| www.999成人在线观看| 日本黄色日本黄色录像| 免费女性裸体啪啪无遮挡网站| 成人手机av| 一本—道久久a久久精品蜜桃钙片| 国产一区二区 视频在线| 丰满少妇做爰视频| 91字幕亚洲| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 亚洲欧美色中文字幕在线| 国产av精品麻豆| 成人国语在线视频| 午夜日韩欧美国产| 飞空精品影院首页| 人妻一区二区av| 十八禁高潮呻吟视频| 精品人妻1区二区| 久久精品aⅴ一区二区三区四区| 亚洲中文av在线| 中亚洲国语对白在线视频| 久久香蕉激情| 两个人看的免费小视频| 少妇 在线观看| 99久久人妻综合| 高清视频免费观看一区二区| 国产成人影院久久av| 黄色片一级片一级黄色片| 亚洲国产中文字幕在线视频| 久久热在线av| 欧美乱码精品一区二区三区| 一级a爱视频在线免费观看| 日韩 亚洲 欧美在线| 国产亚洲av片在线观看秒播厂| 人人妻人人爽人人添夜夜欢视频| 亚洲激情五月婷婷啪啪| 日本猛色少妇xxxxx猛交久久| 中文字幕av电影在线播放| 97人妻天天添夜夜摸| 国产在线一区二区三区精| 久久av网站| 国产成人精品无人区| 视频区图区小说| 久久影院123| 欧美性长视频在线观看| av天堂在线播放| 男女床上黄色一级片免费看| 男女下面插进去视频免费观看| 国产国语露脸激情在线看| 高清在线国产一区| 咕卡用的链子| 久久人人97超碰香蕉20202| 久久久欧美国产精品| 精品久久久久久久毛片微露脸 | 91麻豆精品激情在线观看国产 | 亚洲欧洲日产国产| 无限看片的www在线观看| 国产一级毛片在线| 在线永久观看黄色视频| 精品国产乱码久久久久久男人| 亚洲熟女精品中文字幕| 精品第一国产精品| 欧美日韩精品网址| 天天躁狠狠躁夜夜躁狠狠躁| 在线天堂中文资源库| 久久免费观看电影| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 欧美性长视频在线观看| 亚洲国产毛片av蜜桃av| 久久国产精品大桥未久av| 在线观看免费日韩欧美大片| 国产精品免费大片| 五月天丁香电影| 丝瓜视频免费看黄片| 热99久久久久精品小说推荐| 黄频高清免费视频| 久久精品久久久久久噜噜老黄| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费视频播放在线视频| 国产亚洲一区二区精品| 久久毛片免费看一区二区三区| 免费观看人在逋| 久热这里只有精品99| 国产激情久久老熟女| 老司机在亚洲福利影院| 亚洲精品国产精品久久久不卡| 日本vs欧美在线观看视频| 99国产精品一区二区三区| 久久天堂一区二区三区四区| 99热网站在线观看| 丝袜脚勾引网站| 亚洲av美国av| 日韩大片免费观看网站| 亚洲专区国产一区二区| 99精国产麻豆久久婷婷| 欧美黄色淫秽网站| 99久久精品国产亚洲精品| 欧美亚洲日本最大视频资源| 97在线人人人人妻| 欧美激情极品国产一区二区三区| 亚洲精品自拍成人| 在线观看免费午夜福利视频| 多毛熟女@视频| 热99国产精品久久久久久7| 午夜免费成人在线视频| 国产一区二区三区综合在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久久视频综合| 精品少妇内射三级| 在线亚洲精品国产二区图片欧美| 久久亚洲国产成人精品v| 久久免费观看电影| 亚洲avbb在线观看| 不卡av一区二区三区| videos熟女内射| 男人舔女人的私密视频| 久久天堂一区二区三区四区| 国产精品亚洲av一区麻豆| 一级a爱视频在线免费观看| 岛国毛片在线播放| 免费av中文字幕在线| 老司机靠b影院| 天堂中文最新版在线下载| 亚洲国产精品一区三区| 欧美在线黄色| 一进一出抽搐动态| 亚洲精品成人av观看孕妇| 国产精品九九99| 国产成人欧美在线观看 | 男女国产视频网站| av在线老鸭窝| bbb黄色大片| 国产老妇伦熟女老妇高清| 亚洲av美国av| 老司机福利观看| 亚洲精品在线美女| 欧美在线一区亚洲| 亚洲av成人一区二区三| 黄片小视频在线播放| 精品一区二区三区四区五区乱码| 另类精品久久| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 丁香六月天网| 午夜精品久久久久久毛片777| 国产精品久久久久成人av| 亚洲av美国av| 欧美国产精品一级二级三级| 嫩草影视91久久| 色精品久久人妻99蜜桃| 亚洲av片天天在线观看| 一本一本久久a久久精品综合妖精| av超薄肉色丝袜交足视频| 成人免费观看视频高清| 丝袜在线中文字幕| 一边摸一边做爽爽视频免费| www日本在线高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠狠狠99中文字幕| 亚洲国产精品一区二区三区在线| 一区二区av电影网| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 91成年电影在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利影视在线免费观看| 五月天丁香电影| 国产亚洲精品第一综合不卡| 大香蕉久久网| 日本av免费视频播放| av一本久久久久| 99久久99久久久精品蜜桃| av视频免费观看在线观看| 欧美精品一区二区大全| 色综合欧美亚洲国产小说| 黄色毛片三级朝国网站| 国产又爽黄色视频| 欧美精品一区二区大全| 免费av中文字幕在线| 97人妻天天添夜夜摸| 久久久国产欧美日韩av| 亚洲国产日韩一区二区| tocl精华| 一级毛片精品| 极品少妇高潮喷水抽搐| 91av网站免费观看| 日本wwww免费看| 久久99热这里只频精品6学生| 99国产极品粉嫩在线观看| 亚洲九九香蕉| 最新在线观看一区二区三区| 精品国产国语对白av| 不卡一级毛片| 一二三四社区在线视频社区8| 制服诱惑二区| 精品少妇内射三级| 三上悠亚av全集在线观看| 国产精品影院久久| 性色av乱码一区二区三区2| 久久久国产一区二区| 亚洲欧美激情在线| 精品少妇黑人巨大在线播放| 免费看十八禁软件| 91老司机精品| 婷婷色av中文字幕| 欧美日本中文国产一区发布| 大香蕉久久成人网| 精品少妇久久久久久888优播| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 自线自在国产av| 在线观看免费视频网站a站| 婷婷色av中文字幕| 十八禁网站免费在线| 亚洲av美国av| 99热网站在线观看| 国产精品一区二区精品视频观看| 日韩三级视频一区二区三区| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看| 久久免费观看电影| 我要看黄色一级片免费的| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 自线自在国产av| 18在线观看网站| 久久精品国产综合久久久| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区久久| 人妻一区二区av| 十分钟在线观看高清视频www| 国产精品一区二区精品视频观看| 国产有黄有色有爽视频| 久久青草综合色| 波多野结衣av一区二区av| 嫁个100分男人电影在线观看| 日韩免费高清中文字幕av| 深夜精品福利| 男女高潮啪啪啪动态图| 免费少妇av软件| 69精品国产乱码久久久| 秋霞在线观看毛片| 欧美在线一区亚洲| 人妻人人澡人人爽人人| www.av在线官网国产| 高清在线国产一区| 搡老岳熟女国产| 国产av又大| 热re99久久国产66热| 国产又色又爽无遮挡免| 色综合欧美亚洲国产小说| 中文字幕制服av| 电影成人av| 精品国产国语对白av| 国产伦理片在线播放av一区| www.精华液| 老熟女久久久| a在线观看视频网站| 国产在视频线精品| 久久精品人人爽人人爽视色| 一区二区三区四区激情视频| 欧美激情 高清一区二区三区| 久久久久国产一级毛片高清牌| 亚洲精品国产区一区二| 久久精品成人免费网站| 国产男人的电影天堂91| 日日摸夜夜添夜夜添小说| 亚洲av成人一区二区三| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 久久国产精品大桥未久av| 啦啦啦 在线观看视频| 最新的欧美精品一区二区| 天天操日日干夜夜撸| 亚洲人成电影观看| 欧美精品亚洲一区二区| 精品免费久久久久久久清纯 | 捣出白浆h1v1| 9色porny在线观看| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 日韩电影二区| 成人三级做爰电影| 天天影视国产精品| 老司机午夜福利在线观看视频 | 久久精品国产亚洲av香蕉五月 | 国产一区二区在线观看av| 老汉色∧v一级毛片| 国产黄色免费在线视频| 久久人人爽人人片av| 人成视频在线观看免费观看| www日本在线高清视频| 大陆偷拍与自拍| 日日夜夜操网爽| 十八禁网站网址无遮挡| 两个人看的免费小视频| 久久av网站| 高清在线国产一区| 宅男免费午夜| 亚洲国产精品一区三区| 欧美黑人欧美精品刺激| 精品国产乱子伦一区二区三区 | 热re99久久国产66热| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 捣出白浆h1v1| 91精品国产国语对白视频| 99国产精品免费福利视频| 久久国产精品人妻蜜桃| 亚洲av美国av| 亚洲 欧美一区二区三区| 男女床上黄色一级片免费看| 色视频在线一区二区三区| 久久中文看片网| 亚洲精品国产色婷婷电影| 国产主播在线观看一区二区| 男女高潮啪啪啪动态图| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| av网站在线播放免费| 精品国产一区二区三区四区第35| 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 老司机午夜福利在线观看视频 | 美女高潮喷水抽搐中文字幕| 天堂8中文在线网| 精品乱码久久久久久99久播| 91老司机精品| 日本黄色日本黄色录像| 啦啦啦在线免费观看视频4| 十八禁网站免费在线| 一级毛片女人18水好多| 19禁男女啪啪无遮挡网站| 看免费av毛片| av有码第一页| 欧美日韩国产mv在线观看视频| 美女脱内裤让男人舔精品视频| 色播在线永久视频| 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看 | 建设人人有责人人尽责人人享有的| 18在线观看网站| 久久久精品区二区三区| 69精品国产乱码久久久| 黑人巨大精品欧美一区二区蜜桃| 日本撒尿小便嘘嘘汇集6| 精品人妻1区二区| 成人国产av品久久久| h视频一区二区三区| 一级片'在线观看视频| 精品一区二区三卡| 欧美国产精品一级二级三级| 国产不卡av网站在线观看| 制服人妻中文乱码| 99国产精品免费福利视频| 国产av国产精品国产| 日韩制服丝袜自拍偷拍| 亚洲成av片中文字幕在线观看| 十八禁网站网址无遮挡| 国产精品久久久久久人妻精品电影 | 精品少妇久久久久久888优播| 天天影视国产精品| 亚洲五月婷婷丁香| 丝袜在线中文字幕| 18禁黄网站禁片午夜丰满| 老熟女久久久| 中文精品一卡2卡3卡4更新| 久久狼人影院| 国产高清videossex| 国产一卡二卡三卡精品| 淫妇啪啪啪对白视频 | 一级毛片电影观看| 黄片小视频在线播放| xxxhd国产人妻xxx| 精品国产一区二区三区久久久樱花| 午夜福利影视在线免费观看| 99国产精品一区二区蜜桃av | 老司机亚洲免费影院| a在线观看视频网站| 亚洲五月色婷婷综合| 久久性视频一级片| 亚洲精品国产区一区二| 精品久久久久久电影网| 搡老岳熟女国产| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 男男h啪啪无遮挡| 日韩视频一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 五月天丁香电影| 麻豆av在线久日| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区精品| 亚洲av成人不卡在线观看播放网 | 亚洲国产精品999| 窝窝影院91人妻| 成在线人永久免费视频| 亚洲午夜精品一区,二区,三区| 免费看十八禁软件| 12—13女人毛片做爰片一| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 一本综合久久免费| 国产精品 国内视频| 在线观看www视频免费| 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 人妻久久中文字幕网| 欧美午夜高清在线| 窝窝影院91人妻| 精品少妇久久久久久888优播| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 亚洲精品自拍成人| 女人被躁到高潮嗷嗷叫费观| 日韩中文字幕视频在线看片| 国产一卡二卡三卡精品| 亚洲国产欧美网| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 国产色视频综合| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看 | 亚洲 欧美一区二区三区| 国产男女超爽视频在线观看| 精品少妇内射三级| videosex国产| 啦啦啦在线免费观看视频4| 国产欧美日韩精品亚洲av| 欧美久久黑人一区二区| 国产伦理片在线播放av一区| 美女扒开内裤让男人捅视频| 新久久久久国产一级毛片| 久久中文字幕一级| 欧美另类一区| 免费少妇av软件| 少妇的丰满在线观看| 老熟女久久久| 久久这里只有精品19| 伊人久久大香线蕉亚洲五| 制服诱惑二区| 国产精品一二三区在线看| 亚洲av国产av综合av卡| 亚洲五月色婷婷综合| 1024视频免费在线观看| 一级a爱视频在线免费观看| 国产成人精品无人区| 99国产精品一区二区三区| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 啦啦啦啦在线视频资源| 亚洲av男天堂| 国产伦理片在线播放av一区| 国产在视频线精品| 久久九九热精品免费| 十八禁高潮呻吟视频| 正在播放国产对白刺激| 国产av精品麻豆| 97精品久久久久久久久久精品| 视频区图区小说| 亚洲精品久久成人aⅴ小说| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 精品乱码久久久久久99久播| 无限看片的www在线观看| 久久精品亚洲av国产电影网| 国产亚洲精品第一综合不卡| 国产精品一区二区免费欧美 | 在线 av 中文字幕| 国产av又大| 啦啦啦免费观看视频1| 人人澡人人妻人| 精品国产乱码久久久久久男人| 一区二区三区激情视频| 亚洲免费av在线视频| kizo精华| 一本久久精品| 国产精品偷伦视频观看了| 天天躁狠狠躁夜夜躁狠狠躁| 日本av手机在线免费观看| 亚洲国产精品一区二区三区在线| 久久精品久久久久久噜噜老黄| 欧美97在线视频| 中文字幕av电影在线播放| 69av精品久久久久久 | 亚洲精品粉嫩美女一区| 午夜激情av网站| 中文字幕人妻熟女乱码| 成人国产一区最新在线观看| 久久久精品国产亚洲av高清涩受| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| 久久人人97超碰香蕉20202| 美女主播在线视频| 国产又爽黄色视频| 国产成人免费无遮挡视频| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| 欧美精品av麻豆av| 精品国产一区二区三区久久久樱花| 久久久精品区二区三区| 成人三级做爰电影| 成人亚洲精品一区在线观看| 亚洲专区国产一区二区| 亚洲免费av在线视频| 99国产精品免费福利视频| 曰老女人黄片| 99久久国产精品久久久| 黄片小视频在线播放| 免费日韩欧美在线观看| 欧美日韩一级在线毛片| 国产又色又爽无遮挡免| 我要看黄色一级片免费的| 最黄视频免费看| 人妻 亚洲 视频| 王馨瑶露胸无遮挡在线观看| 大香蕉久久成人网| 国产日韩欧美在线精品| 国精品久久久久久国模美| 母亲3免费完整高清在线观看| www.自偷自拍.com| 91大片在线观看| 国产有黄有色有爽视频| 国产高清视频在线播放一区 | 在线天堂中文资源库| 午夜激情av网站| 女人精品久久久久毛片| 欧美日本中文国产一区发布| 欧美日韩精品网址| 国产97色在线日韩免费| 国产一区二区三区综合在线观看| a 毛片基地| 少妇人妻久久综合中文| 人人妻人人爽人人添夜夜欢视频| 亚洲av成人一区二区三| 男女下面插进去视频免费观看| 秋霞在线观看毛片| 免费观看a级毛片全部| 老熟女久久久| 在线av久久热| 久久狼人影院| 淫妇啪啪啪对白视频 | 久久精品久久久久久噜噜老黄| 午夜福利视频在线观看免费| 久久综合国产亚洲精品| 中文字幕人妻丝袜制服| 亚洲欧美激情在线|