• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solution of Two-dimensional Linear and Nonlinear Unsteady Schr?dinger Equation using“Quantum Hydrodynamics”Formulation with a MLPG Collocation Method

    2014-04-16 05:23:29LoukopoulosandBourantas

    V.C.Loukopoulosand G.C.Bourantas

    1 Introduction

    The meshless(or meshfree)methods are being actively developed as a powerful numerical tool for various engineering and physical applications.The primary reason for the significant interest in meshless computational procedures is that most of the established numerical techniques,such as the Finite Element Method(FEM),the Finite Volume Method(FVM),the Finite Difference Method(FDM)and the Spectral Method(SP)require a mesh.The automatic generation of a good quality mesh poses a significant problem in the analysis of practical engineering systems.Moreover,the simulation and the analysis of certain types of problems(like dynamic crack propagation,pulsatile and transient flows)often require an expensive remeshing operation.Meshless techniques overcome these difficulties,associated with the meshing and re-meshing procedures,by eliminating the mesh altogether.Interpolation is performed in terms of nodal points scattered at the spatial domain using functions having compact support.A weighted residual technique is used to generate the discrete set of equations corresponding to the governing partial differential equations[Liu(2003),Liu and Gu(2005)].

    Since the meshless methods emerged as a potential alternative for solutions in computational mechanics,a variety of such approaches have appeared.Over the last decades,several meshfree methods have been proposed since the prototype of the meshfree methods,the Smoothed Particle Hydrodynamics(SPH),was born[Gingold and Monaghan(1977)].These methods include the Diffuse Approximation Method(DAM)[Nayroles,Touzot and Villon(1991)],that is closely related to the Moving Least Squares method;the Diffuse Element Method(DEM)[Nayroles,Touzot and Villon(1992)],developed by the Moving Least Squares approximation,and the Element Free Galerkin method(EFG)[Lu,Belytschko and Gu(1994)];the Reproducing Kernel Particle Method(RKPM)[Liu,Jun and Zhang(1995),Liu,Jun,Li,Adee and Belytschko(1995)],which is used to improve the SPH approximation;the Partition of Unity Finite Element Method(PUFEM)[Melenk and Babuska(1996)];thehp-Clouds[Duarte and Oden(1996)];the Moving Least-Square Reproducing Kernel Method(MLSRK)[Liu,Li and Belytschko(1996)];the meshless Local Boundary Integral Equation Method(LBIE)[Zhu,Zhang and Atluri(1998)];the Meshless Local Petrov–Galerkin method(MLPG)[Atluri,Kim and Cho(1999),Atluri and Shen(2002)];the Finite Point method(FPM)[Onate,Idelsohn,Zienkiewicz and Taylor(1995)];the meshless point collocation methods(MPC)[Aluru(2000)],and more.

    The present paper is referred to the numerical computation of the two-dimensional(2D)time-dependent Schr?dinger equation.Linear Schr?dinger equation is written as

    in some continuous domain with suitable initial Dirichlet and Neumann boundary conditions and an arbitrary potential functionV(x,y).The corresponding initial condition is given by

    and the boundary conditions by

    wherei=is the unit imaginary number,Tis the final time,h,sandgare known functions,and??=??D∪??N,where??Dand??Nare the Dirichlet and the Neumann parts of the boundary?? andnnnis the unit outward vector to??.This type of partial equation models many physical problems and find applications in quantum mechanics and various quantum dynamics calculations[Arnold(1998),Hajj(1985),Ixaru(1997)],in electromagnetic wave propagation and the design of certain optoelectronic devices[Levy,(2000),Huang,Xu,Chu and Chaudhuri(1992)],and finally,in underwater acoustics[Tappert(1977)].The time-dependent Schr?dinger equation can be represented in a hydrodynamical form,called a quantum hydrodynamic(QHD)equation,a formulation which is analogous to the equations of irrotational motion in a classical fluid[Gasser,Lin and Markowich(2000),Kalita,Chhabra and Kumar(2006)].In this formulation,system(1)is replaced by a system of partial differential equations in terms of particle density and velocity potential,by separating the real and imaginary parts of a general solution

    obtained by expressing ψ as ψ=u+iυ,whereuand υ are real-values functions.There have been numerous attempts to develop numerical schemes for equations(1)or the system(2).In[Simos(2008),Simos(2007)]trigonometrically- fitted methods were utilized for the numerical solution of the Schr?dinger equation.The authors of[Kalita,Chhabra and Kumar(2006),Subasi(2002)]studied models similar to the present problem using finite-difference techniques.Finite-difference methods are well-known as the first technique for solving partial differential equations(PDEs).In[Dehghan(2002)]explicit finite difference methods were used for solving the governing equations,while in[Dehghan(1999)]the need of using a large amount of CPU time in implicit finite-difference schemes limit the applicability of these methods.Furthermore,these methods provide the solution of the problem on mesh points only,and the accuracy of the techniques is reduced in non-smooth and non-regular domains.Thus,alternative computational methods,such as global Radial Basis Functions[Dehghan and Shokri(2007)],were used for the numerical solution of the Eq.(1).In the present paper we investigate a different approach to find the solution of linear and nonlinear Schr?dinger equation.We present a numerical scheme to solve the two-dimensional(2D)time-dependent Schr?dinger equation using the Collocation method,while we approximate the solution directly using Moving Least Squares.Actually,the meshless point collocation(MPC)method is a case of MLPG when the collocation Dirac’s Delta function is used as the test function[Atluri and Shen(2002)].To test the robustness,the accuracy and the efficiency of the proposed scheme,it is applied to four examples having analytical solutions,with our results exhibiting very good agreement with the analytical ones.Additionally,our results are compared with a meshless collocation and radial basis function method using multiquadrics(MQ)and the Thin Plate Splines(TPS).The layout of the paper is as follows.In Section 2 we present the methodology for the implementation of the Moving Least Squares approximation for the solution of QHD equations.In Section 3 we apply this technique on the two-dimensional(2D)time-dependent Schr?dinger equation.The results of the numerical experiments are presented in Section 4,while Section 5 is dedicated to a brief conclusion.

    2 Moving Least Squares Approximation

    2.1 Methodology

    In the moving least-squares technique,the approximationuh(xxx)is expressed as the inner product of a vector of the polynomial basis,ppp(xxx)and a vector of the coefficients,aaa(xxx)

    whereppp(xxx)∈RRRm,aaa(xxx)∈RRRmandmis the number of monomials in the polynomial basis(in the present studym=6).The local character of the moving least-squares(MLS)approximation can be viewed as a generalization of the traditional leasts-quares approximation,in which the vectoraaais not a function ofxxx.

    Equation(3)is commonly referred to as the global least-squares approximation.In addition,there exists a unique local approximation associated with each point in the domain.In order to determine the form ofaaa(xxx),a weighted discrete error norm,

    is constructed and sequentially minimized.Here,wI(xxx)denotes the weight function,wI(xxx)≡w(xxx?xxxI),associated with nodeI,and the quantity in brackets is the difference between the local approximation at nodeIand the data at nodesI,that isui,andnis the number of nodes in the support ofwI(xxx).The minimization of Eq.(4)with respect toaaa(xxx)determinesaaa(xxx).The local approximation associated with pointxxxis used only in the minimization process and is equivalent to the global approximation at the single pointxxx.Compact support of the weight functions gives the moving least-squares method its local character.

    2.2 Shape functions and their derivatives

    The minimization of Eq.(4),

    results in the linear system

    whereUUUsis a vector containing the nodal data,=[u1,u2,...,un],and

    whereAAA∈RRRm×mandBBB∈RRRm×n.The matrixAAAmust be inverted at every sampling point.Substitution of the solution of(Eq.(6))into the global approximation(Eq.(3)),completes the least-squares approximation,

    Here,the spatial dependence has been lumped into one row matrix, ?(xxx)and,therefore,the approximation takes the form of a product of a matrix of shape functions with a vector of nodal data.Derivatives of the shape functions may be calculated by applying the product rule to

    In order to obtain the spatial derivatives of the approximation function,uh(xx x),it is necessary to obtain the derivatives of the MLS shape functions,?i(xx x),

    The derivative of the shape function is given as

    wherexj=x,y,zand

    2.3 Weight Function

    The weight function is non-zero over a small neighborhood ofxxxi,called the support domain of nodei.The choice of the weight functionW(xxx?xxxi)affects the resulting approximationuh(xxxi)inherently.In the present paper a Gaussian weight function is used[Liu(2003),Bourantas,Skouras and Nikiforidis(2009)],yet the support domain does not have a standard point density value.Instead,a constant number of nodes are used for the approximation of the field function.

    whereI=1,2,3,...,qare the nodes that produce the support domain of nodexi,andwitha0a prescribed constant(oftena0=0.2).

    3 Collocation formulation

    3.1 General description

    The Meshless Point Collocation method is a MFree“strong-form”description method.The“strong-form”of the governing equations and the boundary conditions are used and discretized by collocation techniques.The aforementioned formulations possess the following attractive advantages.They are truly meshless and the implementing procedure is straightforward,while the algorithms and the implementation can be kept simple,particularly when handling problems with Dirichlet boundary conditions solely.Under these conditions,these methods are highly efficient computationally,even with the application of polynomial approximation functions,and the solution can be systematically obtained with increased accuracy,compared to FEM,FVM,FDM,or other computational methods.In general,MFree strong-form methods may still suffer from some local stability and accuracy issues,depending on the problem[Liu and Gu(2005)].However,these local restrictions are now systematically avoided with the utilization of specific nodal distributions(Type-I)and proper local point cloud refinement procedures,in accordance with[Bourantas,Skouras and Nikiforidis(2009),Kim and Liu(2006)],even for natural or mixed type boundary conditions.The robustness of these methods has,however,been an issue especially for scattered set of points.The stability and the convergence of the collocation methods are ensured by the resulting linear or linearized algebraic system.If the latter possesses some attractive features then both the stability and the convergence are ensured.In fact,the robustness of the collocation methods can be improved by understanding the possible sources of errors.specifically,the errors could arise because of the way the meshless approximation functions and their derivatives have been constructed for a scattered set of points or because of the way the discretization of the governing equations has been performed.When the meshless approximation functions and its derivatives do not satisfy certain conditions(referred to as the positivity conditions)for a given point distribution,it is possible to get large numerical errors when using collocation methods.To satisfy the positivity conditions,the weighting function used in the construction of the approximation functions can play an important role.These studies suggest that positivity conditions can be important when using meshless collocation methods.Additionally,the convergence of the discrete Laplacian operator for Dirichlet boundary conditions has been proved when a regular grid(named Type-I)is used.Thus,both the stability and the convergence of the meshless point collocation method,using MLS approximation and regular nodal distribution are ensured.

    Collocation method using MLS may be considered as a special case of the“weak–form”methods[Atluri,(2004)].Moreover,this collocation method may be considered as a“weak-solution”,with a Dirac delta function as the test(weight)function[Atluri,Liu and Han(2006)].The weighted residual method provides a flexible mathematical framework for the construction of a variety of numerical solution schemes for the differential equations arising in the field of both science and engineering.Its application,in conjunction with the Moving Least Square(MLS)approximation method, yields powerful solution algorithms for the governing equations.

    3.2 Time-dependent Meshless Point Collocation method

    The collocation scheme using the Moving Least Squares approximation used in the present work and applied for the spatial discretization of the unsteady homogeneous diffusion equation will be discussed next,along with the explicit Euler,θ-weighted time-stepping scheme used for temporal discretization.

    Consider the governing equations of the unsteady problem

    with the aforementioned boundary and initial conditions.By the MLS approximation one getsfor the unknown function,uq(xxx)=for the partialx,yderivative andthe secondx,ypartial derivative.Additionally,we setndas the number of nodes in the interior,nbas the number of nodes on the boundary,and the final number of nodes asN(N=nd+nb).The first equation,Eq.(15)can be written as

    From the notation described above and using the Euler’s θ-weighted time-stepping scheme for temporal discretization,for the interior nodes one gets

    Multiplying both parts by δtone gets

    In matrix notation, for all points, incorporating the boundary conditions atnbboundary nodes one has

    whereGVis the operator defining the boundary conditions for velocity(Dirichlet type on??).

    These equations can be written in a more compact manner by setting

    Regarding the second Eq.(16)and following the same procedure described for Eq.(15)one can derive(in matrix notation)

    whereGBis the operator defining the boundary conditions for the induced magnetic field on??.Once again,the above equations can be written in more compact form by setting

    The final system of the QHD coupled partial differential equations can be written as

    Finally,setting

    the discretized PDEs of QHD fl ow are summed as

    4 Numerical experiments

    In order to examine the validity and the effectiveness of the proposed scheme,four representative case studies were examined[Dehghan and Shokri(2007),Dehghan,and Mirzaei(2008),Dehghan,and Mirzaei(2008)];thee cases for the linear Schr?dinger equation with and without the potential function present,and a fourth one for nonlinear Schr?dinger equation.

    Example 1

    Initially,we consider the case with potentialV=0 at the Schr?dinger equation,in the spatial domain(0,1)×(0,1)and initial conditions[Dehghan,and Mirzaei(2008)]

    which generates the exact solution

    The Dirichlet boundary conditions were extracted from the analytical solution.Table 1 presents the relative error of both real and imaginary parts,defined asfort=5 andt=20 sec.The meshless point method with MLS approximation depends on several parameters that have to be chosen properly in order to achieve convergence and accuracy.These parameters include the proper

    nodal distribution,the number of nodes in the support domain,and the user-defined variables used in the weight function.For our investigation purposes we use a regular nodal distribution of Type-I[Kim and Liu(2006)],which ensures the fulfillment of the so-called positivity conditions[Jin,Li and Aluru(2004)].Additionally,we set the user-defined parameter α0at the weight function to be α0=0.2,the number of nodes in the support domain 10,and time stepdt=0.05.As pointed out elsewhere[Bourantas,Skouras and Nikiforidis(2009)],when the number of nodes in the total domain is increased,the accuracy is improved.This also is depicted at the Table 1.

    The MLS approximation is obtained by a special least-squares method[Liu and Gu(2005)].The function obtained by the MLS approximation is a smooth curve(or surface),which does not pass through the nodal values inherently.Therefore,the MLS shape functions do not,in general,satisfy the Kronecker delta condition.Thus,when the nodes in the support domain increase,the Gaussian weight function loses its local character(delta function property),resulting in truncated errors which decrease the accuracy of the numerical results.Thus,in Table 2,we present the dependence of the accuracy from the number of nodes in the support domain.To do that,we used a constant grid of 31×31 nodes and altered the number of nodes at the support domain.The results obtained show the very good accuracy of the proposed scheme when the number of the nodes in the support domain is kept small.Moreover,in Fig.1,plots are presented for numerical and exact solutions for the real and imaginary part att=20,using a 21×21 regular grid and 10 nodes in the support domain.

    Table 1:Relative errors att=5 andt=20 for different grids,dt=0.05 for support domain 10.

    Example 2

    As a second example,we consider the Schr?dinger equation in the spatial domain(0,1)×(0,1),with potential function[Dehghan and Shokri(2007),Dehghan,and

    Table 2:Relative errors at t=5 and t=20 for different number of nodes in the support domain,dt=0.05.

    Figure 1:Plots of numerical and exact solutions for the real and imaginary part at t=20,using a 21×21 regular grid and 10 nodes in the support domain.

    Mirzaei(2008)]

    V(x,y)=3?2tanh2x?2tanh2y.

    Initial and boundary conditions are defined as

    and

    The analytical solution is given by

    Table 3 presents the maximum absolute error for the real and the imaginary parts of the solution at different times up tot=1,using meshless point collocation method with MLS approximation.For comparison purposes,numerical results are also presented using meshless collocation method with global Radial Basis Functions approximation using multiquadrics(MQ)and thin plate splines(TPS)respectively[Dehghan and Shokri(2007)].These results were obtained fordx=dy=0.1,anddt=0.001.The maximum relative error,ε,defined as ε=Max(x,y)∈??was also reported.The total number of nodes was 121(11×11),the number of nodes in the support domain was set to 10,ensuring the inversion of the moment matrix,AAA(xxx),and the parameter α0was set to α0=0.2[Liu(2003)].

    At Table 4 the CPU time(in seconds)is presented,in order to demonstrate the efficiency of the meshless point collocation method.The shape functions are not pre-defined,and they must be constructed before the numerical solution of the resulting algebraic system.Thus,in our in-house code,the numerical procedure contains two parts; first comes the construction of the shape functions and,then,the solution of the resulting linear system.

    Figure 2:Plots of numerical and exact solutions for the real and imaginary part at t=1,using a 11×11 grid.

    In Fig.2 the graphs of the real part and the imaginary parts of the numerical and the analytical solutions using MLS are shown at timet=1,withdx=dy=0.1,

    dt=0.001.Note that there is no essential divergence between the exact solution and the numerical solution in Fig.2,for the given accuracy.

    Table 3:Maximum absolute error of multiquadrics and thin plate spline based scheme at different times with dx=dy=0.1,dt=0.001 and c=0.7 for MQ.For every value of t,the first and second rows of data correspond to the use of MQ,TPS as the radial basis function respectively and the third for the MPC.

    Table 4:CPU time in seconds for shape construction and solution of the resulting transient,linear system.

    One can notice that,for coarse grids,as in the case of 121 nodes,the numerical results obtained by the meshless point collocation with MLS approximation are less accurate than those obtained by the global multiquadrics Radial Basis Function.Although full-domain RBF methods are highly flexible and can exhibit high-order convergence rates[Madych and Nelson(1990)],in their basic implementation the fully-populated matrix systems produced lead to poor numerical conditioning as the size of the dataset increases.This problem is described by Schaback[Schaback(1993)]as the“uncertainty relation”,in which better conditioning is associated with worse accuracy,and worse conditioning is associated with improved accuracy.With increasingly large datasets and increasingly fl at basis functions,this problem becomes more pronounced.Thus,global RBF are not appropriate for real world applications,were the number of the degrees of freedom(nodes)are large.On the other hand,MLS approximation,being a localized-type approximation,uses a small number of neighboring nodes for interpolation.This makes the MLS approximation more suitable for many applications arising in science and engineering.Furthermore,the small number of nodes used makes the method computationally time and memory saving.This is evident at Table 5 where doubling the nodal distribution density increases the accuracy of the numerical solution by an order of magnitude,while the computational efficiency of the scheme is retained.

    Table 5:Absolute and relative errors at different times for dx=dy=0.05 and 0.025,and dt=0.001.

    Example 3

    Following,we consider the Schr?dinger equation in(0,1)×(0,1)spatial domain and with potential function[Dehghan and Shokri(2007),Dehghan,and Mirzaei(2008)]

    and initial and boundary conditions

    ψ(x,y,0)=x2y2

    and

    ψ(0,y,t)=0,ψ(1,y,t)=y2eit,ψ(x,0,t)=0,ψ(x,1,t)=x2eit,

    The analytical solution is given as

    ψ(x,y,t)=x2y2eit.

    Table 6 presents the maximum absolute error for the real part and imaginary part at different times up tot=1,using MLS approximation and time stepdt=0.05.The results obtained were compared with those obtained using the multiquadrics and the thin plate spline RBF with the same nodal distribution and time step,dt=0.0005[Dehghan and Shokri(2007)].One can observe that,for MPC with MLS approximation of localized type,using a time step two orders lower than the time step used in global RBF,the absolute errors present two orders higher accuracy.

    Finally,in Fig.3,the graphs of the real part and the imaginary parts of the numerical and the analytical solutions using MLS are shown at timet=1,withdx=dy=0.1,dt=0.05.Note that there is no essential divergence between the exact solution and the numerical solution in Fig.2,for the given accuracy.

    Example 4

    Finally,we consider the generalized nonlinear two-dimensional Schr?dinger equation written as[Dehghan,and Mirzaei(2008)]:

    with the initial and boundary conditions

    ψ(x,y,0)=cos(x)cos(y),(x,y)∈?

    and Neumann boundary conditions on all sides of the spatial domain

    Table 6:Maximum absolute error of multiquadrics and thin plate spline-based scheme at different times with dx=dy=0.1,dt=0.0005 and c=0.45 for MQ.For every value of t,the first and second rows of data correspond to the use of MQ and TPS as the radial basis function,respectively and the third for the MPC when dx=dy=0.1,dt=0.05.

    Figure 3:Plots of the exact and the numerical solution at t=1.0.

    The analytical solution is given as

    ψ(x,y,t)=e?itcos(πx)cos(πy).

    The lagging of coefficients method has been utilized to eliminate the non-linearity of the examined problem. The spatial domain of the problem is defined as0≤x,y≤1.The function used in the present problem are defined asC(x,y)=1?2π2,B(x,y)=?1?2π2??1?cos2(πx)cos2(πy)?andp=2.We have to notice that the accuracy of the case under consideration agrees with the exact solution at about two signifi-cant digits and, as the time increases it becomes worse. This is due to the imposition of the Neumann boundary conditions.When using Dirichlet boundary conditions the accuracy of the numerical results increases.Following the aforementioned procedure the final linearized system in matrix notation can be written as

    5 Conclusions

    Figure 4:Analytical and numerical solutions at various time.

    In the present work we used the meshless numerical scheme to solve the two dimensional time-dependent linear and nonlinear Schr?dinger equation using the point collocation method with MLS approximation.For the Schr?dinger equation we developed a fully coupled,transient,and strong-form solver for the real and the imaginary parts of the general solution of the so-called quantum hydrodynamic(QHD)equation.The proposed scheme is applied to four benchmark cases having analytical solutions,with our results exhibiting excellent agreement with all the analytical ones.The numerical results were also compared with those provided by another collocation method,that is,the global Radial Basis Function method.The numerical results provided by the proposed scheme are highly accurate,compared with the ones provided by the multiquadrics and the thin plates splines RBF.Furthermore,in some cases they are also less CPU time and memory consuming.This makes the application of the MLS approximation very attractive for the numerical solution of this kind of physical problems.

    Aluru,N.R.(2000):A point collocation method based on reproducing kernel approximations.International Journal for Numerical Methods in Engineering,vol.47,pp.1083-1121.

    Arnold,A.(1998):Numerically absorbing boundary conditions for quantum evolution equations.VLSI Design,vol.6,pp.313-319.

    Atluri,S.N.;Kim,H.G.;Cho,J.Y.(1999):A critical assessment of the truly Meshless local Petrov–Galerkin(MLPG)methods.Computational Mechanics,vol.24,pp.348-372.

    Atluri,S.N.;Liu,H.T.;Han,Z.D.(2006):Meshless Local Petrov-Galerking(MLPG)Mixed Finite Differences Method for Solid Mechanics.CMES:Computer Modeling in Engineering and Sciences,vol.15,pp.1-16.

    Atluri,S.N.;Shen,S.P.(2002):The Meshless Local Petrov–Galerkin(MLPG)Method,Tech Science Press,Encino USA.

    Atluri,S.N.(2004):The Mesheless Method(MLPG)for Domain&BIE Discretizations,Tech Science Press.

    Bourantas,G.C.;Skouras,E.D.;Nikiforidis,G.C.(2009):Adaptive support domain implementation on the Moving Least Squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description.CMES:Computer Modeling in Engineering and Sciences,vol.43,pp.1-25.

    Dehghan,M.(1999):Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition.Journal of Computational and Applied Mathematics,vol.106,pp.255-269.

    Dehghan,M.(2002):Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition.Nonlinear Analysis:Theory,Methods&Applications,vol.48,pp.637-650.

    Dehghan,M.;Mirzaei,D.(2008):Numerical solution to the unsteady two-dimensional Schr?dinger equation using meshless local boundary integral equation method.International Journal for Numerical Methods in Engineering,vol.76,pp.501-520.

    Dehghan,M.;Mirzaei,D.(2008):The meshless local Petrov–Galerkin(MLPG)method for the generalized two-dimensional non-linear Schrodinger equation.Engineering Analysis with Boundary Elements,vol.32,pp.747–756.

    Dehghan,M.;Shokri,A.(2007):A numerical method for two-dimensional Schr?dinger equation using collocation and radial basis functions.Computers&Mathematics with Applications,vol.54,pp.136-146.

    Duarte,C.A.;Oden,J.T.(1996):An h-p adaptive method using clouds.Computer Methods in Applied Mechanics and Engineering,vol.139,pp.237-262.

    Gasser,I.;Lin,C.K.;Markowich,P.A.(2000):A review of dispersive limits of(non)linear Schr?dinger type equations.Taiwanese Journal of Mathematics,vol.4,pp.501-529.

    Gingold,R.A.;Monaghan,J.J.(1977):Smoothed particle hydrodynamics:theory and application to non-spherical stars.Monthly Notices of the Royal Astronomical Society,vol.181,pp.375-389.

    Hajj,F.Y.(1985):Solution of the Schrodinger equation in two and three dimensions.Journal of Physics B:Atomic,Molecular and Optical Physics,vol.18,pp.1-11.

    Huang,W.;Xu,C.;Chu,S.T.;Chaudhuri,S.K.(1992):The finite-difference vector beam propagation method.Journal of Lightwave Technology,vol.10,pp.295-304.

    Ixaru,L.Gr.(1997):Operations on oscillatory functions.Computer Physics Communications,vol.105,pp.1-9.

    Jin,X.;Li,G.;Aluru,N.R.(2004):Positivity conditions in meshless collocation methods.Computer Methods in Applied Mechanics and Engineering,vol.193,pp.1171-1202.

    Kalita,J.C.;Chhabra,P.;Kumar,S.(2006):A semi-discrete higher order compact scheme for the unsteady two dimensional Schr?dinger equation.Journal of Computational and Applied Mathematic,vol.197,pp.141-149.

    Kim,D.W.;Liu,W.K.(2006):Maximum principle and convergence analysis for the meshfree point collocation method.SIAM Journal on Numerical Analysis,vol.44,pp.515-539.

    Levy,M.(2000):Parabolic Equation Methods for Electromagnetic Wave Propagation,IEE.

    Liu,G.R.(2003):Meshfree method:Moving beyond the Finite Element Method.CRC Press.

    Liu,G.R.;Gu,Y.T.(2005):An Introduction to Meshfree Methods and Their Programming.Springer:Dordrecht.

    Liu,W.K.;Jun,S.;Zhang,Y.F.(1995):Reproducing kernel particle methods.International Journal for Numerical Methods in Fluids,vol.20,pp.1081-1106.

    Liu,W.K.;Li,S.;Belytschko,T.(1996):Moving least square reproducing kernel methods(I)methodology and convergence.Computer Methods in Applied Mechanics and Engineering,vol.143,pp.422-433.

    Liu,W.K.;Jun,S.;Li,S.;Adee,J.;Belytschko,T.(1995):Reproducing kernel particle methods for structural dynamics.International Journal for Numerical Methods in Engineering,vol.38,pp.1655-1679.

    Lu,Y.Y.;Belytschko,T.;Gu,L.(1994):A new implementation of the element free Galerkin method.Computer Methods in Applied Mechanics and Engineering,vol.113,pp.397-414.

    Madych,W.;Nelson,S.(1990):Multivariate interpolation and conditionally positive definite functions II.Mathematics of Computation,vol.44,pp.211-230.

    Melenk,J.M.;Babuska,I.(1996):The partition of unity finite element method:basic theory and applications.Computer Methods in Applied Mechanics and Engineering,vol.139,pp.289-314.

    Nayroles,B.;Touzot,G.;Villon,P.(1991):The diffuse approximations.C.R.Acad.Sci.Paris Ser.II,vol.313,pp.133-138.

    Nayroles,B.;Touzot,G.;Villon,P.(1992):Generalizing the finite element method:diffuse approximation and diffuse elements.Computational Mechanics,vol.10,pp.307-318.

    Onate,E.;Idelsohn,S.;Zienkiewicz,O.;Taylor,R.L.(1995):A finite point method in computational mechanics application to convective transport and fluid fl ow.International Journal for Numerical Methods in Engineering,vol.39,pp.3839-3866.

    Schaback,R.(1993):Comparisons of radial basis function interpolants,in:Multivariate Approximation:From CAGD to Wavelets,World scientific,Singapore.

    Simos,T.E.(2007):Stabilization of a four-step exponentially- fitted method and its application to the Schrodinger equation.International Journal of Modern Physics,vol.18,pp.315-328.

    Simos,T.E.(2008):A family of four-step trigonometrically- fitted methods and its application to the Schr?dinger equation.Journal of Mathematical Chemistry,vol.44,pp.447-466.

    Subasi,M.(2002):On the finite-difference schemes for the numerical solution of two dimensional Schr?dinger equation.Numerical Methods for Partial Differential Equations,vol.18,pp.752-758.

    Tappert,F.D.(1977):The parabolic approximation method.In:J.B.Keller,J.S.Papadakis(Eds.),Wave Propagation and Underwater Acoustics,in:Lecture Notes in Physics,vol.70,Springer,Berlin,pp.224-287.

    Zhu,T.;Zhang,J.;Atluri,S.N.(1998):A meshless local boundary integral equation(LBIE)method for solving nonlinear problems.Computational Mechanics,vol.22,pp.174-186.

    午夜免费激情av| 人妻久久中文字幕网| 又爽又黄a免费视频| 国产伦理片在线播放av一区 | 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 99热6这里只有精品| 日本一本二区三区精品| 免费观看在线日韩| 亚洲精品日韩av片在线观看| 免费看美女性在线毛片视频| 欧美3d第一页| 久久久久久久久久成人| 亚洲精品成人久久久久久| 激情 狠狠 欧美| 一本久久精品| 午夜激情欧美在线| 麻豆精品久久久久久蜜桃| 日本黄色片子视频| 国产日韩欧美在线精品| 在线播放无遮挡| 九草在线视频观看| 亚洲在久久综合| 中国美白少妇内射xxxbb| 国产高清三级在线| 国产亚洲精品av在线| 伊人久久精品亚洲午夜| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久久丰满| 日韩一区二区三区影片| 九九爱精品视频在线观看| 国产日韩欧美在线精品| 国产伦一二天堂av在线观看| 人体艺术视频欧美日本| 久久欧美精品欧美久久欧美| 最新中文字幕久久久久| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 嘟嘟电影网在线观看| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 国产精品女同一区二区软件| 国产日本99.免费观看| 赤兔流量卡办理| 12—13女人毛片做爰片一| av又黄又爽大尺度在线免费看 | 亚州av有码| 精品午夜福利在线看| 国产精品爽爽va在线观看网站| 我要看日韩黄色一级片| 毛片一级片免费看久久久久| 好男人在线观看高清免费视频| 免费看av在线观看网站| 联通29元200g的流量卡| 特级一级黄色大片| 在线天堂最新版资源| 91午夜精品亚洲一区二区三区| 男女下面进入的视频免费午夜| 国产国拍精品亚洲av在线观看| 天美传媒精品一区二区| 禁无遮挡网站| 国产精品一二三区在线看| 国产大屁股一区二区在线视频| 久久久a久久爽久久v久久| 精品国内亚洲2022精品成人| 国产成人一区二区在线| 免费观看在线日韩| 自拍偷自拍亚洲精品老妇| 免费av毛片视频| 免费观看人在逋| 日韩欧美精品免费久久| 欧美色欧美亚洲另类二区| 日本一本二区三区精品| 国产毛片a区久久久久| 亚洲av中文av极速乱| 久久精品国产清高在天天线| 国产精品日韩av在线免费观看| 国产精品女同一区二区软件| 一本久久精品| 啦啦啦啦在线视频资源| 国产 一区 欧美 日韩| 久久久久国产网址| 国产女主播在线喷水免费视频网站 | 国产成人午夜福利电影在线观看| 人妻制服诱惑在线中文字幕| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| 国产成人91sexporn| 免费大片18禁| 日本欧美国产在线视频| 久久草成人影院| 国产色婷婷99| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 成人国产麻豆网| 中文字幕熟女人妻在线| 色播亚洲综合网| 午夜福利在线观看吧| 人人妻人人澡欧美一区二区| 久久久久久伊人网av| 欧美日韩乱码在线| 午夜免费激情av| 一级av片app| 小蜜桃在线观看免费完整版高清| 精品熟女少妇av免费看| 久久久久久久久大av| 欧美激情在线99| 麻豆成人午夜福利视频| 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| kizo精华| 在线观看免费视频日本深夜| 日本与韩国留学比较| 国产高清激情床上av| 亚洲av成人av| 毛片一级片免费看久久久久| 国产人妻一区二区三区在| 久久精品国产亚洲av天美| 久久久久久久久中文| 日本黄大片高清| 亚洲欧美成人综合另类久久久 | 我的女老师完整版在线观看| 免费大片18禁| 少妇熟女欧美另类| 99热精品在线国产| 欧美三级亚洲精品| 精品国产三级普通话版| а√天堂www在线а√下载| 久久人人爽人人片av| 国产探花极品一区二区| 久久久久久伊人网av| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 91aial.com中文字幕在线观看| 91在线精品国自产拍蜜月| 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| 亚洲av一区综合| 国产精品久久电影中文字幕| 国产高潮美女av| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 男人舔奶头视频| 综合色丁香网| 国产成人精品一,二区 | 啦啦啦啦在线视频资源| av.在线天堂| 亚洲欧洲日产国产| 亚洲不卡免费看| av.在线天堂| 综合色av麻豆| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区精品小视频在线| 我要看日韩黄色一级片| 真实男女啪啪啪动态图| 国产午夜精品久久久久久一区二区三区| 91久久精品国产一区二区成人| 观看免费一级毛片| 国产爱豆传媒在线观看| 亚洲av一区综合| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 综合色丁香网| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 春色校园在线视频观看| 国产精品99久久久久久久久| av又黄又爽大尺度在线免费看 | 高清毛片免费看| 精品熟女少妇av免费看| 亚洲av熟女| 日韩欧美国产在线观看| 免费av不卡在线播放| 一进一出抽搐gif免费好疼| 精品久久久噜噜| 成人永久免费在线观看视频| 12—13女人毛片做爰片一| 久久久久久久久大av| 欧美性猛交╳xxx乱大交人| 欧美色视频一区免费| 最近最新中文字幕大全电影3| 日本成人三级电影网站| 91麻豆精品激情在线观看国产| 亚洲最大成人手机在线| 久久久a久久爽久久v久久| 成人亚洲欧美一区二区av| av免费观看日本| 青青草视频在线视频观看| 成年免费大片在线观看| 91麻豆精品激情在线观看国产| 18禁在线无遮挡免费观看视频| 中文在线观看免费www的网站| 中文字幕av成人在线电影| 国产一区二区亚洲精品在线观看| 亚洲精品国产av成人精品| 国产久久久一区二区三区| 国产精品一区二区三区四区免费观看| 成人三级黄色视频| 18禁在线播放成人免费| 国产麻豆成人av免费视频| 免费人成在线观看视频色| 国产精品一区二区性色av| 五月玫瑰六月丁香| 久久午夜亚洲精品久久| 国产成人a区在线观看| 永久网站在线| 国产一区亚洲一区在线观看| 高清毛片免费观看视频网站| 国产精品麻豆人妻色哟哟久久 | 日本一二三区视频观看| 日本在线视频免费播放| 国语自产精品视频在线第100页| 男女下面进入的视频免费午夜| 99国产精品一区二区蜜桃av| 亚洲图色成人| 国产精品一区二区在线观看99 | 桃色一区二区三区在线观看| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 综合色av麻豆| 秋霞在线观看毛片| 免费av观看视频| 久久99精品国语久久久| 我要搜黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产白丝娇喘喷水9色精品| 亚洲成人精品中文字幕电影| 亚洲精品国产成人久久av| 成人性生交大片免费视频hd| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 一个人观看的视频www高清免费观看| 女的被弄到高潮叫床怎么办| 亚洲最大成人中文| 五月伊人婷婷丁香| 国产黄色小视频在线观看| 麻豆av噜噜一区二区三区| 国内精品一区二区在线观看| 草草在线视频免费看| 亚洲av免费高清在线观看| 免费观看精品视频网站| 午夜福利在线观看免费完整高清在 | 丝袜美腿在线中文| 中文字幕制服av| 变态另类成人亚洲欧美熟女| 我的女老师完整版在线观看| 六月丁香七月| 国产精品永久免费网站| 在线天堂最新版资源| 亚洲国产欧洲综合997久久,| 麻豆国产av国片精品| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 黄色视频,在线免费观看| 免费看av在线观看网站| 看免费成人av毛片| av免费观看日本| 亚洲va在线va天堂va国产| 日韩欧美在线乱码| 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| 欧美潮喷喷水| 亚洲精品自拍成人| 我要搜黄色片| 女的被弄到高潮叫床怎么办| 亚洲丝袜综合中文字幕| 12—13女人毛片做爰片一| 狂野欧美激情性xxxx在线观看| 久久99热6这里只有精品| 老熟妇乱子伦视频在线观看| 色吧在线观看| 亚洲最大成人手机在线| 亚洲精华国产精华液的使用体验 | 国产单亲对白刺激| 国产白丝娇喘喷水9色精品| 久久婷婷人人爽人人干人人爱| 人妻系列 视频| 国内精品美女久久久久久| 国产成人a∨麻豆精品| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧洲综合997久久,| 丝袜喷水一区| 久久中文看片网| 亚洲人成网站在线播| 国产精品久久久久久亚洲av鲁大| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 69人妻影院| 人人妻人人看人人澡| 精品午夜福利在线看| 色尼玛亚洲综合影院| 深夜a级毛片| 国产黄色视频一区二区在线观看 | 哪里可以看免费的av片| 中文在线观看免费www的网站| 国产一区二区在线观看日韩| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 日韩高清综合在线| 在线a可以看的网站| 91在线精品国自产拍蜜月| 中文字幕av在线有码专区| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 亚州av有码| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 女人十人毛片免费观看3o分钟| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 老女人水多毛片| 热99在线观看视频| 国产91av在线免费观看| avwww免费| 久久精品国产99精品国产亚洲性色| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 麻豆久久精品国产亚洲av| 日韩欧美精品免费久久| 国产亚洲精品久久久久久毛片| 亚洲国产精品成人综合色| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 特级一级黄色大片| 国产黄片视频在线免费观看| 一级毛片久久久久久久久女| 亚洲国产精品国产精品| 国内少妇人妻偷人精品xxx网站| 69人妻影院| 日韩视频在线欧美| 精品人妻视频免费看| 久久九九热精品免费| 国产成人一区二区在线| 丰满人妻一区二区三区视频av| 久久精品国产亚洲网站| av福利片在线观看| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 国产高潮美女av| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站高清观看| 欧美日韩在线观看h| 在现免费观看毛片| 内射极品少妇av片p| 亚洲自偷自拍三级| 久久精品国产亚洲网站| 亚洲第一区二区三区不卡| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| 色5月婷婷丁香| 两个人的视频大全免费| 国产精品女同一区二区软件| 十八禁国产超污无遮挡网站| 五月伊人婷婷丁香| 三级毛片av免费| 永久网站在线| 欧美成人a在线观看| 麻豆成人av视频| 97在线视频观看| 国产精品麻豆人妻色哟哟久久 | 亚洲一区高清亚洲精品| 成人毛片60女人毛片免费| 国模一区二区三区四区视频| 精品少妇黑人巨大在线播放 | 五月玫瑰六月丁香| 一级av片app| 国产精品久久久久久久电影| 69av精品久久久久久| 99精品在免费线老司机午夜| 亚洲欧洲国产日韩| 成人性生交大片免费视频hd| 久久鲁丝午夜福利片| 久久精品影院6| 晚上一个人看的免费电影| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 中文字幕av在线有码专区| 久久精品国产清高在天天线| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| а√天堂www在线а√下载| a级一级毛片免费在线观看| 精品一区二区免费观看| 亚洲一区高清亚洲精品| 国产精品一区二区性色av| 免费人成视频x8x8入口观看| 欧美日本视频| 国产一区二区激情短视频| av在线老鸭窝| 久久精品国产亚洲av香蕉五月| 久久草成人影院| 欧美又色又爽又黄视频| 禁无遮挡网站| 日本黄色视频三级网站网址| 在线免费十八禁| 国产精品综合久久久久久久免费| 成人性生交大片免费视频hd| 日本五十路高清| 男人狂女人下面高潮的视频| 婷婷六月久久综合丁香| 99热这里只有是精品50| 欧美一区二区国产精品久久精品| 国产午夜精品论理片| 精品免费久久久久久久清纯| .国产精品久久| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 日韩亚洲欧美综合| 日日啪夜夜撸| 国产精品久久久久久久久免| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 99国产精品一区二区蜜桃av| 三级男女做爰猛烈吃奶摸视频| 性色avwww在线观看| 永久网站在线| 秋霞在线观看毛片| 欧美bdsm另类| 国产 一区 欧美 日韩| АⅤ资源中文在线天堂| 免费av观看视频| 一夜夜www| 国语自产精品视频在线第100页| 午夜免费激情av| 一进一出抽搐gif免费好疼| 99热全是精品| 精华霜和精华液先用哪个| 别揉我奶头 嗯啊视频| 99热只有精品国产| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| 国产伦在线观看视频一区| 一级二级三级毛片免费看| 成人永久免费在线观看视频| 毛片一级片免费看久久久久| 午夜福利在线观看免费完整高清在 | 日韩成人伦理影院| 欧美zozozo另类| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 九九在线视频观看精品| 久99久视频精品免费| 日韩精品青青久久久久久| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 一本精品99久久精品77| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 99久久无色码亚洲精品果冻| 日本黄大片高清| 韩国av在线不卡| 97人妻精品一区二区三区麻豆| 国产久久久一区二区三区| 亚洲国产欧洲综合997久久,| 国产伦在线观看视频一区| 性插视频无遮挡在线免费观看| 天堂中文最新版在线下载 | 国产精品一区二区性色av| 99热全是精品| 久久这里只有精品中国| 精品国内亚洲2022精品成人| 免费看美女性在线毛片视频| 欧美日韩综合久久久久久| 国产真实乱freesex| 久久99蜜桃精品久久| 亚洲人成网站在线播| 亚洲精品色激情综合| 看黄色毛片网站| 日日干狠狠操夜夜爽| 国产精品久久久久久久电影| 韩国av在线不卡| 国内揄拍国产精品人妻在线| 国产成人a区在线观看| 我要看日韩黄色一级片| 国产精品1区2区在线观看.| 久久久国产成人免费| 日本与韩国留学比较| 久久久久久久久久久丰满| 亚洲内射少妇av| 久久精品国产亚洲av涩爱 | 国产三级中文精品| 欧美成人精品欧美一级黄| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日撸夜夜添| 欧美高清成人免费视频www| 69av精品久久久久久| 亚洲一区二区三区色噜噜| 色视频www国产| 精品久久久久久久久亚洲| 国产在视频线在精品| 一级毛片电影观看 | 少妇被粗大猛烈的视频| 久久精品国产99精品国产亚洲性色| av在线观看视频网站免费| 亚洲成a人片在线一区二区| 午夜福利在线在线| 韩国av在线不卡| 日本与韩国留学比较| 一级av片app| 久久国产乱子免费精品| 国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| 国产一级毛片在线| 亚洲成人中文字幕在线播放| 国产一级毛片在线| 黄片wwwwww| 九九爱精品视频在线观看| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| 久久这里只有精品中国| 国产乱人偷精品视频| 高清日韩中文字幕在线| 国产大屁股一区二区在线视频| 亚州av有码| 联通29元200g的流量卡| 国产黄a三级三级三级人| 一级毛片aaaaaa免费看小| 国产精品日韩av在线免费观看| 国产av麻豆久久久久久久| 亚洲精品粉嫩美女一区| 午夜视频国产福利| 亚洲最大成人av| 国产精品99久久久久久久久| 亚洲国产精品成人综合色| 夫妻性生交免费视频一级片| 成人无遮挡网站| 国产精品久久久久久久电影| 久久午夜亚洲精品久久| 男女啪啪激烈高潮av片| 欧美色欧美亚洲另类二区| 久久国产乱子免费精品| 极品教师在线视频| 男女下面进入的视频免费午夜| 成年av动漫网址| 日韩精品有码人妻一区| 又爽又黄a免费视频| 国产成人91sexporn| 国产大屁股一区二区在线视频| 国产私拍福利视频在线观看| 国产精品麻豆人妻色哟哟久久 | 国产欧美日韩精品一区二区| 综合色av麻豆| 伦精品一区二区三区| 成人午夜高清在线视频| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| 日韩欧美 国产精品| 能在线免费观看的黄片| 日日啪夜夜撸| 91精品国产九色| 草草在线视频免费看| 乱码一卡2卡4卡精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美色欧美亚洲另类二区| avwww免费| 亚洲欧美日韩高清在线视频| 国产精品精品国产色婷婷| 少妇高潮的动态图| 99riav亚洲国产免费| 成年女人看的毛片在线观看| 久久人人爽人人片av| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 亚洲av.av天堂| 中文字幕久久专区| 色综合站精品国产| 亚洲无线观看免费| 欧美在线一区亚洲| 麻豆久久精品国产亚洲av| 性欧美人与动物交配| 色综合亚洲欧美另类图片| 国产伦精品一区二区三区四那| 亚洲av第一区精品v没综合| 九九在线视频观看精品| 国产黄色视频一区二区在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产欧洲综合997久久,| 亚洲欧美成人精品一区二区| 欧美激情在线99| 国产一级毛片七仙女欲春2| 美女高潮的动态| 99久久中文字幕三级久久日本| 天堂av国产一区二区熟女人妻| 日本爱情动作片www.在线观看| 日本成人三级电影网站| 能在线免费观看的黄片| 日韩中字成人| 亚洲在线观看片| 日韩成人av中文字幕在线观看| 日本成人三级电影网站| 热99re8久久精品国产| 26uuu在线亚洲综合色| 国内精品久久久久精免费| 我要看日韩黄色一级片| 日韩,欧美,国产一区二区三区 | 免费观看的影片在线观看| 在线观看av片永久免费下载| 国产91av在线免费观看| 九色成人免费人妻av| 国产毛片a区久久久久| 1024手机看黄色片| 国产 一区精品| 内地一区二区视频在线| 国产一区二区三区av在线 | 日韩一本色道免费dvd| 久久草成人影院|