• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Space-time Discontinuous Galerkin Method Based on a New Generalized Flux Vector Splitting Method for Multi-dimensional Nonlinear Hyperbolic Systems

    2014-04-16 05:23:25TrapperandBarYoseph

    P.A.Trapperand P.Z.Bar-Yoseph

    1 Introduction

    The Discontinuous Galerkin(DG)method stems from investigations of numerical solution of the linear neutron transport equation, first Reed and Hill(1973)and subsequently by Lesaint and Raviart(1974).Since then the method has been widely developed and analyzed,and used extensively in different fields ranging from computational fluid dynamics and acoustics to electro magnetics and elasticity.For an extensive overview of DG methods see Cockburn,Karniadakis,and Shu(2000),Hesthaven and Warburton(2008),Di Pietro and Ern(2012),and Feng,Karakashian,and Xing(2014),and the references therein.

    DG methods involve discontinuous approximations over finite elements with weakly enforced connectivity.Consequently,these methods can easily handle irregular meshes,complex geometries and polynomial approximations of different degrees in different elements,making them suitable forhp-adaptivity.Moreover,they are stable,locally conservative,high-order accurate and highly parallelizable.The other advantage of these methods lies in their ability to accurately capture discontinuities,sharp gradients and shocks in the solution,making them attractive for high frequency response of the system.

    In this paper we focus on a particular family of DG methods,known as explicit space-time DG,which treat time as an additional element dimension and assume the unknown fields to be discontinuous in time.These methods have another exclusive advantage in that they easily allow for unstructured meshes in the space-time domain(i.e.,different time steps may be used in different elements).This is because the time step is no longer governed by the smallest elements in the mesh via a CFL condition,thus reducing computational cost.This approach was introduced by Bar-Yoseph(1989),who expanded the basic idea of Lesaint and Raviart(1974)to multi-dimensional nonlinear and quasi-linear hyperbolic systems of equations with shock fronts.Flux vector splitting with an alternating sweep in the forward and backward space directions was used.In this algorithm the discontinuities of the split fluxes are weighted along all boundaries,resulting in a physically meaningful up winding effect.

    Bar-Yoseph and Elata(1990)further developed this notion to provide an answer to the efficiency problem by moving the nodes to Gauss points,thus cutting down the number of operations needed.They were also able to reconstruct the exact solution of some problems by using titled elements,thus offering ana posteriorierror study.Bar-Yoseph,Elata,and Israeli(1993)offered a qualitative and quantitative presentation of the stability,dissipation and dispersion of this method.Later,Aharoni and Bar-Yoseph(1992)developed a new approach for the integration of governing nonlinear ODE’s in time.Zrahia and Bar-Yoseph(1994a)further generalized this using the time spectral element method,which is a high-order method with high numerical efficiency and a high degree of accuracy that has been subsequently successfully used[Ben-Tal,Bar-Yoseph,and Flashner(1995,1996);Bar-Yoseph,Fisher,and Gottlieb(1996a,b);Bar-Yoseph(1998);Weill,Shitzer,and Bar-Yoseph(1993);Zrahia and Bar-Yoseph,(1994b);Bar-Yoseph,Moses,Zrahia,and Yarin(1995);Naveh,Bar-Yoseph,and Halevi(1999)].

    The flux vector splitting technique employed in Bar-Yoseph(1989)and Bar-Yoseph and Elata(1990)was developed by Steger and Warming(1981).This technique worked for systems in which the flux vectors are homogeneous functions of degree one of variables,e.g.,Euler equations.Yet not all hyperbolic systems satisfy this property.Among those that do not are shallow water equations and equations of elasticity,for example.In this study we enhance the method first proposed by Bar-Yoseph(1989),Bar-Yoseph and Elata(1990),and Bar-Yoseph,Elata,and Is-raeli(1993)with a new generalized technique for splitting the flux vector that is not limited to its specific properties.specifically,the homogeneity property of the flux vector is no longer required.This technique is based on the flux’s characteristic decomposition,thus extending the scope of applicability of Bar-Yoseph(1989),Bar-Yoseph and Elata(1990),and Bar-Yoseph,Elata,and Israeli(1993)to a wider range of problems,and particularly to equations of elasticity.At this point we should emphasize that this method has a particular advantage for problems in solid mechanics that involve large deformations in soft materials because,due to its Eulerian nature,this method uses a fixed mesh,and as opposed to its Lagrangian counterpart,no element distortions will occur.

    This paper is organized as follows.The mathematical formulation is described in the second section.We present our computational model in the third section,together with a new generalized technique for flux vector splitting.The computational results of various problems based on models of vibrating string and vibrating rod are provided and discussed in the fourth section.The critical time required for solution to reach a breakdown in nonlinear problems is estimated analytically,based on the work of Lax(1964).Finally,the last section offers some conclusions.

    2 Formulation

    Let ??RN+1be an open space-time region with piecewise smooth boundary Γ.Let(x0,x1,...,xN)be the set of Cartesian coordinates of pointxin ?:x0denotes the temporal coordinate t,and(x1,x2,...,xN)are the spatial co-ordinates,where N is the number of space dimensions.denote the canonical basis vectors of RN+1and letbe the inward unit vector normal to Γ(summation convention on repeated indices operates unless specifically stated otherwise).For simplicity,we assume that

    and Γ is an N-dimensional hypersurface,admitting the following decomposition:

    and ? is the empty set.

    We consider the following system ofmfirst-order non-linear differential equations:

    where

    Eq.(3)is a system of balance laws derived forubelonging to an open space ofRm.The flux vectors,fffi∈Rm,i=0(1)N,are non-linear functions ofu.The vector ggg ∈Rmis a source vector.

    System(3)can be also rewritten in a quasi-linear form

    whereAAAi(uuu)=?ufffi,i=0(1)Nare the correspondingm×mJacobian matrices.We assume AAAi( uuu)are defined such that(5)is a first-order hyperbolic system(i.e.it has real eigenvalues).

    The present Initial Boundary Value Problem(IBVP)consists of finding a functionu,which satisfies(3)or(5)subject to the initial condition

    together with boundary conditions of the form

    Here,uuu0andbbbjare given functions andBBBjare given matrices.

    Consider a hypersurfaceS(x)which divides the region ? into two subregions ?+and ??.Let ψ be a tensor-valued function which is continuous in ?+and ??,and has definite limits ψ+and ψ?asxapproaches a point on the hypersurfaceSfrom paths entirely within the regions ?+and ??,respectively.The surface is called a singular surface with respect to ψ if

    A singular surface is said to be a wave front if and only if it coincides with the one induced by physics.Here,ψ+is the region ahead of the"in fl ow"direction,while ψ?is the region behind it.Ifuis discontinuous across a space-time hypersurfaceS,the integrated balance laws imply that the jump inuacrossSsatisfies in whichnis the space-time normal to the singular hypersurface.

    Let L2(?),L2(Γi)denote the Hilbert spaces of real-valued functions,square integrable in the Lebesgue sense on ?,Γirespectively.The inner products formdimensional vector functions can be defined as

    A weak form of the balance laws including jump terms can be written as follows:

    3 Computational model

    Let the given domain ? be replaced by a collection ?hof hyperbrick elements ?h,satisfying certain regularity conditions[Hughes(1987)].Suppose that the temporal and spatial domains are discretized by a uniform mesh of elements,i.e.,h0=htand hi=hx,i=1(1)N,wherehtandhxare the mesh parameters representing the element size in the time and space directions,respectively.Thus,the element aspect ratio can be defined asr=ht/hx.

    We introduce the following space-time finite element space of admissible functions:

    whereQkldenotes the space of polynomials on ?eof degreekin space andlin time,i.e.Vhis the space of piecewise polynomials with no continuity requirement across inter-element boundaries.

    Letnnne=eei,i=0(1)Nbe the unit inward normal vector to the element boundary Γe.The element boundaries are defined by

    where

    here+and?are called the positive and negative element boundaries.

    3.1 Flux Vector Splitting

    Although techniques for multi-dimensional splitting of flux vectors have been more extensively utilized in finite difference computations,they are equally applicable to finite element methods.In order to obtain a numerically stable explicit scheme for solution of(3)or(5),it is useful to split the flux vector according to the direction of propagation of information in the space-time domain,e.g.according to the sign of the wave propagation speed in the differential equation.The theory of multidimensional splitting of flux vectors was developed by Steger and Warming(1981)and later used in Bar-Yoseph(1989),and Bar-Yoseph and Elata(1990).It involves an attempt to systematically stabilize finite difference schemes employed for inviscid gas dynamic equations.The approach was based on the homogeneity property of the Euler equations in combination with specific equations of state,which allowed splitting the Jacobian matrixAAAinto+AAAand?AAAwith respect to positive and negative eigenvalues and acquiring the positive and negative fluxes as a multiplication of the correspondent matrices with the variablesuuu.This is also true for linear systems with constant coefficients.During the last decades,various flux-splitting techniques have proposed[Toro(2009)],mostly developed for the Euler equations of gas dynamics and usually relying on the above homogeneity property.However,not all hyperbolic systems satisfy this property.Among those that do not are shallow water equations and equations of elasticity,for example.

    In this chapter we introduce a generalized technique for flux vector splitting that is based on characteristic decomposition offand that no longer requires the above homogeneity property.Let,∈R1,j=1(1)m,i=1(1)N,be themeigenvalues of the(m×m)Jacobian matrix AAAi,called characteristic speeds,and∈Rm,j=1(1)m,i=1(1)Nthemcorresponding linearly independent right eigenvectors that express the corresponding characteristic directions.Physically,eigenvalues represent speeds of propagation of information.Speeds will be measured as positive in the direction of increasing x and as negative otherwise.

    The total flux vector fffimay be decomposed with respect to characteristic directions in the following way:

    where

    are the flux components associated with the positive and negative direction of xirespectively.It should be noted that in the general case of nonlinear problems,the eigenvalues may change their signs from point to point in the space-time domain.This implies that flux splitting must be consequently performed at each iteration,so the positive and negative sets of fluxes will change their compound accordingly.Further we formulate the positive and negative fluxes in a quasi-linear form,which will be useful later in this paper

    3.2 Discontinuous Galerkin

    Two different types of styles can be used for equations and mathematical expressions.They are:in-line style,and display style.The discontinuous Galerkin finite element method of(5)is obtained by posing the following formulation on a finite dimensional subspaceVhof the space of admissible functions.specifically we seekuuuh∈VVVhsuch that

    whereh(.,.)andhh.,.i denote the discrete inner products,and[[ψ]]=ψin?ψout,ψin,ψoutare the values of ψ at the element boundary on the inside and outside of the element,respectively,anddenotes the element flux.

    Since the approximate solutionuhis uniquely determined by(19),it is possible to computeuhsuccessively on each element ?e∈?h,e=1(1)NE,starting at the’in fl ow’boundary Γ?where the initial boundary conditions are weakly imposed.Here the initial and boundary conditions,equations(6)and(7),are replaced by weak conditions on the flux vector components across Γ?.This means that we have to impose a set of conditions that are combinations of the physical variables instead of the physical variables themselves.We use the standard discontinuous Galerkin method in which the weighting functions vector is the same within the element domain and on the element boundary.

    Alternately,the discontinuous Galerkin method can be generalized by the Petrov-Galerkin method in which not only the jump discontinuity and the residual terms may be weighted by different test functions,but also the test functions and the base functions are different.Recently,Han and Atluri(2014a,b)presented an approach,which blends the(Meshless Local Petrov Galerkin)MLPG Methods of Atluri(1998,2004)and the energy conservation laws of Noether(1918)and Eshelby(1951,1975),and showed that it converges much faster and leads to much better accuracies than the classical FEM based on the global weak forms of the Newtonian Momentum Balance Laws.

    3.3 Computational aspects

    In order to explain how the method works,we review the technique of constructing the element coefficient matrix and the right-hand-side vector,using the proposed scheme;further details may be found in Bar-Yoseph and Elata(1990).

    The base functions are discontinuous both in space and time.We use the Gauss-Lagrange interpolation,where the base functions,are defined at the ngv points of the Gauss-Legendre quadrature of the master element,i.e.,()=δij,i,j+1(1)ngv,where,,...,are the integration point coordinates in each element.

    We emphasize at this point that the approximation space of the Gauss-Lagrange interpolation is exactly the same as for the standard interpolation in which the nodes are located at the corners and midside points of the element(i.e.,the discretization error is the same),but the Gauss-Lagrange interpolation for DG is more computationally efficient[Bar-Yoseph and Elata(1990)].

    Bilinear and biquadratic Lagrangian base functions are used in two dimensions over the master element.Similarly,in three dimensions trilinear and triquadratic Lagrangian bases are used over a brick.

    We apply the Gaussian quadrature formula to define the discreteL2(?e)inner product as

    Similarly,for the surface integral we define the discreteL2()inner product,as applied on the discontinuities in the split flux vectors,as

    where±are the positive and negativemultiplicativematrices ofuwith respect toare the coordinates of the surface Gauss points,are the quadrature weights on,ngs is the number of nodal points per element face,andngsis the number of integration points on an element face.

    Substituting(20-24)into equation(20)yields a matrix equation in the following form:

    whereKKKVis the volume matrix;KKKSis the surface matrix;qrepresents the contribution of adjacent elements to the flux jump conditions;dis the unknown element values ofuh;and,the element surfaces,are singular surfaces with respect touh.As mentioned in section 3.1,in the general case of quasi-linear equations(5)the sign of every characteristic speed can be a function of(x,u).Therefore,it would be more natural to solve(25)by a semi-iterative technique with an alternating sweep in the forward and backwardx-directions.

    The algorithm is composed of two sequential steps.In the first step,using the solution of the previous iteration for imposing weak conditions along the element boundaries,the solution within each element is directly defined by a LU decomposition or an iterative solver.In the second step,the element flux vectors are iteratively updated.Since the solution procedure follows an element-by-element iteration,the problems of bandwidth and front width associated with direct solvers do not arise.Consequently,storage and computation are not influenced by element or node numbering.

    The following examples demonstrate the application of this procedure to linear and quasi-linear problems.

    4 Numerical examples

    In this section we provide examples of different vibrating string and elastic rod models in which discontinuities appear.All problems are solved by bilinear(BL)and biquadratic(BQ)discontinuous finite elements,since LQ and QL elements were found not to be effective[Bar-Yoseph(1989)].Based on the work of Lax(1964),we analytically estimate the critical time required for solution of nonlinear problems to reach a breakdown and compare this to the one obtained from numerical results.In addition,we calculate and analyze the rate of convergence.

    4.1 Nonlinear string

    In the following examples we consider the standing vibrations of a finite,continuous,and nonlinear string[Zabusky(1962)],stretched along thex-axis from 0 toL,fixed at its end points.The reference mass density of the string denoted by ρ0,T0is the tension of the string and φ(x,t)is the deflection of the string in the transversal direction.

    The governing equation is given by

    where

    is the square effective wave speed[Zabusky(1962)],the nonlinearity of interest,is a reference wave speed,and ε and γ are real positive scalars.The initial and boundary conditions are as follows

    The second-order equation(26)may be transformed to the following system of first-order equations

    where

    In general these variables do not have to have a definite physical interpretation but rather some combination of some physical variables.In the case of a vibrating string,choosing them in this way gives them a physical meaning of velocity and slope of the string,respectively.

    The initial and boundary conditions become

    The Jacobian matrix of(29)is

    with the eigenvalues

    and the corresponding eigenvectors

    The total flux of the system can be obtained by integration

    It should be emphasized that the similar flux obtained using the Steger and Warming(1981)technique,is essentially linearized.

    To recapture the displacement φ fromu2we may use the Newton-Cotes numerical integration for every time levelj,in a trapezoidal sense for bilinear elements

    and in a Simpson sense for biquadratic elements

    where φi,jandui2,jare the values at the pointsi,jof the space-time domain andhxis the element size in the space direction,thus obtaining an exact integration of u2.

    4.1.1 Linear spring

    As a first example we consider the simplest case of linear infinite string(γ=0),so(27)becomes

    The analytical solution for this IBVP is given by:

    The expressions for the total flux(35),the right eigenvectors,and the positive and negative flux vectors were obtained using the technique described in section 3.1,and the multiplicative matrices(18)are presented in the Appendix.

    In this particular example the Steger and Warming(1981)splitting technique yields identical results becausefis linear.For this example we use the following parameters,L=1,c0=1.

    In this paper we concentrate only on a posteriori error analysis.In the example problems,the L2error norm is considered

    whereuis the exact solution(or reference solution at dense mesh)anduhis the approximated solution.

    The error as a function of the element aspect ratiorfor different elements is shown in Fig.3a(here htis increased while hxis held fixed;hx=20 for BL and BQ elements).

    Figure 1:Linear spring:(a)displacement,(b)velocity and(c)slope for hx=1/20,r=1.

    Figure 2:Linear spring:slope at t=3.0 for hx=1/5,r=1.

    Figure 3:Linear spring:solution accuracy and convergence in L2norm as function of(a)r,and(b)hx.

    Above a certain value ofr,the error is dominated by the temporal error,and the optimal rate of convergenceh1+1for BL andh1+2for BQ is recovered.Moreover the scheme is unconditionally stable(independent of Courant No.=|c|r).We can use BL or BQ elements with Courant No.=1 without affecting the solution accuracy.The rate of convergence is depicted in Fig.3b(here the element aspect ratioris held fixed=1/2).Again,the optimal rate of convergence is obtained.

    4.1.2 Nonlinear spring withγ=1

    As a second example we consider a nonlinear case with γ=1,so that(27)becomes:

    The expressions for the total flux(35),the right eigenvectors,and the positive and negative flux vectors are obtained with the technique described in section 3.1,and themultiplicativematrices(18)are presented in the Appendix.

    In this example we use the following parameters,ε=0.2,L=1,c0=1.

    The critical time required for a solution to reach a breakdown in non-linear problems can be estimated analytically based on the work of Lax(1964)

    Based on(42)the breakdown is expected to occur in this example atTcr~=4L2?(c0επ2)=2.0264.

    Figure 4:γ=1:(a)displacement,(b)velocity and(c)slope for hx=1/20,r=1.

    Figure 5:γ=1:(a)velocity and(b)slope at t=3.0 for hx=1/32,r=1.

    Figure 6:γ=1:solution accuracy and convergence in L2norm as function of hx.

    Fig.5 shows that biquadratic elements produce a steeper shock front and have less dissipation than bilinear ones.

    Fig.6 shows the rate of convergence in a regular region.Since it is impossible to say anything about the rate of convergence in the vicinity of the shock front[Bar-Yoseph(1989)],in most of the examples the regions away from the shock front(at every regular point)are considered.The examples show that the full rate of convergence is achieved.In the BL case the convergence is even faster than expected:≈2.3.

    4.1.3 Nonlinear spring withγ=2

    As a third example we consider a nonlinear case with γ=2,so that(27)becomes:

    The expressions for the total flux(35),the right eigenvectors,and the positive and negative flux vectors are obtained with the technique described in section 3.1,and themultiplicativematrices(18)are presented in the Appendix.

    For this example we used the following parameters,ε=0.2,L=1,c0=1.

    Based on(42),in this example the breakdown is expected to occur atTcr~=4L2?(c0επ2)=1.0132.

    In this example the breakdown occurs faster than in the previous example.Therefore,we only discuss the solution up untilt=1.0.

    Figure 7:γ=2:(a)displacement,(b)velocity and(c)slope for hx=1/20,r=1.

    Figure 8:γ=2:(a)velocity and(b)slope at t=1.0 for hx=1/20,r=1.

    Figure 9:γ=2:(a)velocity and(b)slope at t=3.0 for hx=1/40,r=1.

    This example again shows that BQ elements produce a steeper shock front but also more wiggles.BL elements produce more dissipation,which damps the waves with the high frequencies that cause those wiggles.Fig.8-9 show that as we refine the mesh,the solution becomes more accurate,producing a steeper shock front and fewer oscillations.

    4.2 Nonlinear elastic rod

    4.2.1 Nonlinear elastic rod with clamped-free boundary conditions

    Next we consider the longitudinal vibration of the clamped-free finite elastic rod of lengthLexposed to initial deflection φ0at the free edge.The reference mass density of the rod is denoted by ρ0,E0is the Young modulus,and φ(x,t)is the deflection of the rod in the longitudinal direction.The governing equation is the same equation(26),as in the previous example,but with a different effective wave speed

    Now the governing equation is transformed,as in section 4.3,to the system of first-order equations as(29)and(30),whereu1andu2are the velocity in the longitudinal direction and the axial strain,respectively.

    The initial and boundary conditions become

    and(44)becomes

    The expressions for the total flux,the right eigenvectors,and the positive and negative flux vectors are obtained with the technique described in section 3.1,and themultiplicativematrices(18)are presented in the Appendix.

    For this example we use the following parameters,L=1,c0=1,φ0=0.2.

    Figure 10:Nonlinear clamped-free elastic rod:(a)displacement,(b)velocity and(c)slope for hx=1/20,r=1.

    Figure 11:Nonlinear clamped-free elastic rod:(a)velocity and(b)strain at t=3.0 for hx=1/20,r=1.

    Figure 12:Nonlinear clamped-free elastic rod:strain in the middle of the rod as a function of time(0≤t≤10),hx=1/20,r=1.

    Fig.12 shows that in this example the BQ elements are absolutely superior to the BL elements:they yield steeper solution profiles with less dissipation and a smaller amount of overshoot(away from boundaries)than in the BL case.The overshoot is greater for the BQ case only untilt=0.5.

    Fig.13 demonstrates the rate of convergence of the problem in the whole spacetime domain.Because there are shock fronts in the solutions for both the linear and the nonlinear cases,we should not expect the full rate of convergence.In all these cases the rate of convergence is≈1.

    In all these examples,10-15 iterations per time level were required for convergence to meet π/10?4error criteria.

    Though the discontinuities in this example are present from the beginning,no breakdown occurs,as can be seen in Fig.10-11.This is compatible with the Lax(1964)prediction,in which for φ,xx(0)=0 the breakdown is not expected to occur,Tcr=∞.

    Figure 13:Nonlinear clamped-free elastic rod:solution accuracy and convergence in L2norm as function of hx(0≤t≤3).

    4.2.2 Nonlinear elastic rod with clamped-clamped boundary conditions

    We still want to examine the emerging breakdown for the rod problem,so we change the initial and boundary conditions as in the vibrating string problem in the previous examples(31).In this example we use the following parameters,ε=0.5,L=1,c0=1,φ0=0.2.

    Figure 14:Nonlinear clamped-clamped elastic rod:(a)displacement,(b)velocity and(c)strain for hx=1/20,r=1.

    Based on(42)the breakdown is expected to occur atTcr~=2(1+ε)L2/(0.2c0επ2)=3.0396.From all these examples we can see that when ε=0 no breakdown will occur.Again it is evident that BQ elements produce a steeper shock front and clearly a greater amount of overshoot.Lower order elements produce more numerical dissipation and therefore can yield solution profiles with a smaller amount of overshoot compared to those of higher order elements.

    Fig.15 also indicates a phase difference between the BL and BQ cases:The average location of the shock front for the BL case is to the right of the one for the BQ case.As we have seen in the previous example,BL elements produce more dispersion errors than BQ elements.Fig.16 shows the rate of convergence in a regular region.Again we can see that the full rate of convergence is achieved.

    Figure 15:Nonlinear clamped-clamped elastic rod:(a)velocity and(b)strain at t=3.0 for hx=1/20,r=1.

    Figure 16:Nonlinear clamped-clamped elastic rod:solution accuracy and convergence in L2norm as function of hx(0≤t≤1).

    5 Concluding remarks

    The main conclusions of this work are as follows:

    1.The space-time discontinuous finite element algorithm enhanced with a new generalized technique for flux vector splitting has been proved to be an efficient algorithm in numerical approximation for IBVP,especially for those solutions that develop shock layers.Moreover,it has also been shown to be valid for problems in elasticity.

    2.The proposed technique for the splitting of flux vectors based on characteristic decomposition is valid for any kind of flux.Its computational efficiency for other types of problems should be further investigated.

    3.Based on a posteriori error analysis we found that for smooth solutions,the optimal rate of convergencehn+1was recovered inL2norm for both linear and nonlinear hyperbolic systems, while in some cases of bilinear elements even a slight super convergence was observed.For regions with discontinuities in the solution,the convergence is slower than optimal.

    4.All the profiles have a typical overshoot,although the wave front is quite crisp.Lower order elements have a greater degree of numerical dissipation and therefore can yield solution profiles with a smaller amount of overshoot compared to those of higher order elements,though higher order elements produce a steeper shock front.

    5.Numerical results demonstrate that the present method may be effective in suppressing spurious oscillations with short wavelength.It is concluded that a proper combination of anh?prefinement strategy can be a viable alternative to schemes equipped with artificial stabilizers.The exact jump conditions can be reconstructed by tilting the element boundaries in the direction of a shock wave front[Bar-Yoseph and Elata(1990)].

    6.The breakdown time in all relevant examples was found to be in agreement with theoretical prediction[Lax(1964)].

    7.This method has a particular advantage for problems in solid mechanics that involve large deformations in soft materials,because this method,being essentially Eulerian,uses the fixed mesh,and contrary to its Lagrangian counterpart,no element distortions will occur.

    Aharoni,D.;Bar-Yoseph,P.(1992):Mixed finite element formulation in the time domain for solution of dynamic problems.Computational Mechanics,vol.9,pp.359–374.

    Atluri,S.N.;Zhu,T.(1998):A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics.Comput.Mech.,vol.22,pp.117-127.

    Atluri,S.N.(2004):The Meshless Local Petrov-Galerkin(MLPG)Method for Domain&Boundary Discretizations.Tech Science Press,665 pages.

    Bar-Yoseph,P.(1989):Space-time discontinuous finite element approximations for multi-dimensional non-linear hyperbolic systems.Computational Mechanics,vol.5,pp.145-160.

    Bar-Yoseph,P.Z.(1998):Novel spectral and finite element method for unsteady heat transfer problems,in:de Vahl Davis,G.,Arinc F.(Eds.),Advances in Computational Heat Transfer.Begell House:New York.

    Bar-Yoseph,P.;Elata,D.(1990):An efficientL2Galerkin finite element method for multi-dimensional nonlinear hyperbolic systems.International Journal for Numerical Methods in Engineering,vol.29,pp.1229-1245.

    Bar-Yoseph,P.;Elata,D.;Israeli,M.(1993):On the generalizedL2Galerkinfinite element method for linear hyperbolic equations.International Journal for Numerical Methods in Engineering,vol.36,pp.679-694.

    Bar-Yoseph,P.Z.;Fisher,D.;Gottlieb,O.(1996a):Spectral element method for nonlinear temporal dynamical systems.Computational Mechanics,vol.18,pp.302–313.

    Bar-Yoseph,P.Z.;Fisher,D.;Gottlieb,O.(1996b):Spectral element method for nonlinear spatio-temporal dynamics of an Euler Bernoulli beam.Computational Mechanics,vol.19,pp.136–151.

    Bar-Yoseph,P.;Moses,E.;Zrahia,U.;Yarin,A.L.(1995):Space-time spectral element methods for one-dimensional nonlinear advection-diffusion problems.Journal of Computational Physics,vol.119,pp.62-74.

    Ben-Tal,A.;Bar-Yoseph,P.Z.;Flashner,H.(1995):Optimal maneuver of a flexible arm by space-time finite element method.AIAA,Journal of Guidance,Control,and Dynamics,vol.18,pp.1459–1462.

    Ben-Tal,A.;Bar-Yoseph,P.Z.;Flashner,H.(1996):Space-time spectral element method for optimal slewing of a flexible beam.International Journal for Numerical Methods in Engineering,vol.39,pp.3101–3121.

    Cockburn,B.;Karniadakis,G.;Shu,C.W.(2000):Discontinuous Galerkin Methods:Theory,Computation and Applications.Lecture Notes in Computational Science and Engineering 11,Springer Verlag:Berlin.

    Di Pietro,D.A.;Ern,A.(2012):Mathematical Aspects of Discontinuous Galerkin Methods.Springer Verlag:Berlin,Heidelberg.

    Eshelby,J.D.(1951):The Force on an Elastic Singularity.Phil.Trans.R.Soc.Lond.A,vol.244,pp.87-112.

    Eshelby,J.D.(1975):The elastic energy-momentum tensor.Journal of Elasticity,vol.5,nos.3-4,pp.321-335.

    Feng,X.;Karakashian,O.;Xing,Y.(2014):Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations:2012 John H.Barrett Memorial Lectures,Springer.

    Han,Z.D.;Atluri,S.N.(2014a):Eshelby Stress Tensor T:a Variety of Conservation Laws for T in Finite Deformation Anisotropic Hyperelastic Solid&Defect Mechanics,and the MLPG-Eshelby Method in Computational Finite Deformation Solid Mechanics-Part I.CMES:Computer Modeling in Engineering&Sciences,vol.97,no.1,pp.1-34.

    Han,Z.D.;Atluri,S.N.(2014b):On the(Meshless Local Petrov-Galerkin)MLPG-Eshelby Method in Computational Finite Deformation Solid Mechanics-Part II.CMES:Computer Modeling in Engineering&Sciences,vol.97,no.3,pp.119-237.

    Hesthaven,J.S.;Warburton,T.(2008):Nodal Discontinuous Galerkin Methods:Algorithms,Analysis,and Applications.Springer Verlag:New York Inc.

    Hughes,T.J.R.(1987):The Finite Element method:Linear Static and Dynamic Finite Element Analysis.Prentice-Hall:Englewood Cliffs,NJ.

    Lax,P.D.(1964):Development of singularities of solutions of nonlinear hyperbolic partial differential equations.Journal of Mathematical Physics,vol.5,pp.611-613.

    Lesaint,P.;Raviart,P.(1974):On a finite element method for solving the neutron transport equation,in:deBoor,C.(Ed.),Mathematical Aspects of finite Elements in Partial Differential Equations.Academic Press:New York,pp.89–145.

    Naveh,Y.;Bar-Yoseph,P.Z.;Halevi,Y.(1999):Nonlinear modeling and control of a unicycle.Dynamics and Control,vol.9,pp.279-296.

    Noether,E.(1918):Invariante Variationsprobleme.G?ttinger Nachrichten,Mathematisch-physikalische Klasse,vol.2,p.235.(English translation by M.A.Tavel,Transport Theory and Statistical Physics,vol.1,p.183,1971).

    Reed,W.H.;Hill,T.R.(1973):Triangular mesh methods for the neutron transport equation.Los Alamos scientific Laboratory Report LA-UR-73-479,Los Alamos,NM.

    Steger,J.L.;Warming,R.F.(1981):Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods.Journal of Computational Physics,vol.40,pp.263-293.

    Toro,E.F.(2009):Riemann Solvers and Numerical Methods for Fluid Dynamics:A practical introduction.Third edition.Springer Verlag.

    Weill,A.;Shitzer,A.;Bar-Yoseph,P.(1993):Finite element analysis of the temperature field around two adjacent cryo-probes.ASME Trans.Journal of Biomechanical Engineering,vol.115,pp.374-379.

    Zabusky,N.J.(1962):Exact Solution for the Vibrations of a Nonlinear Continuous Model String.Journal of Mathematical Physics,vol.3,pp.1028-1039.

    Zrahia,U.;Bar-Yoseph,P.(1994a):Space time spectral element method for solution of second-order hyperbolic equations.Computer Methods in Applied Mechanics and Engineering,vol.116,pp.135–146.

    Zrahia,U.;Bar-Yoseph,P.(1994b):Alternative designs towards thermal optimization of coated valves using space-time finite elements.International Journal of Heat and Fluid Flow,vol.4,pp.189-206.

    Appendix

    In this appendix,for each example,we present the expressions for the total flux(35),right eigenvectors,the positive and the negative flux vectors,obtained with the technique described in the section 3.1,and themultiplicativematrices(18).

    4.1.1.

    4.1.2.

    4.1.3.

    4.2.

    少妇 在线观看| 欧美日本亚洲视频在线播放| 亚洲欧美精品综合久久99| 精品国产乱码久久久久久男人| 悠悠久久av| 国产精品成人在线| 久久国产精品男人的天堂亚洲| 精品国内亚洲2022精品成人| 大香蕉久久成人网| 淫秽高清视频在线观看| 久久久久国产精品人妻aⅴ院| 久久人妻av系列| 精品无人区乱码1区二区| 一级片免费观看大全| 韩国精品一区二区三区| 亚洲一区二区三区不卡视频| 精品久久蜜臀av无| 麻豆国产av国片精品| 亚洲三区欧美一区| 午夜日韩欧美国产| 精品国产乱子伦一区二区三区| 大型av网站在线播放| 国产一区二区在线av高清观看| 99久久久亚洲精品蜜臀av| 中亚洲国语对白在线视频| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| av网站免费在线观看视频| 国产成人欧美| 亚洲国产中文字幕在线视频| 午夜免费观看网址| 国产不卡一卡二| x7x7x7水蜜桃| 日本 av在线| 午夜免费成人在线视频| 香蕉久久夜色| 国产亚洲精品综合一区在线观看 | 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 男女做爰动态图高潮gif福利片 | 国产免费av片在线观看野外av| 日韩中文字幕欧美一区二区| 激情在线观看视频在线高清| 色播在线永久视频| netflix在线观看网站| 天堂影院成人在线观看| 亚洲精品久久午夜乱码| 久久国产精品影院| 国产精品二区激情视频| 高清毛片免费观看视频网站 | 天堂影院成人在线观看| 日韩国内少妇激情av| 悠悠久久av| 国产精品久久久人人做人人爽| 久久久精品欧美日韩精品| 国产av精品麻豆| 欧美乱妇无乱码| 校园春色视频在线观看| 丝袜美足系列| 嫩草影视91久久| 国产av一区二区精品久久| 亚洲狠狠婷婷综合久久图片| 久久久国产成人免费| 色综合欧美亚洲国产小说| 国产精品久久电影中文字幕| 久久人人爽av亚洲精品天堂| 国产成人av激情在线播放| 久久香蕉激情| 亚洲aⅴ乱码一区二区在线播放 | 日本wwww免费看| 免费不卡黄色视频| 国产激情久久老熟女| 精品欧美一区二区三区在线| 久久久久九九精品影院| 亚洲国产毛片av蜜桃av| 久久久久久免费高清国产稀缺| 老司机亚洲免费影院| www.精华液| 老司机福利观看| 亚洲avbb在线观看| aaaaa片日本免费| 别揉我奶头~嗯~啊~动态视频| 国产av又大| 欧美日韩一级在线毛片| 大型av网站在线播放| 亚洲人成电影观看| 99香蕉大伊视频| 久久久久国内视频| 日韩一卡2卡3卡4卡2021年| 成熟少妇高潮喷水视频| 色综合欧美亚洲国产小说| 欧美最黄视频在线播放免费 | 桃红色精品国产亚洲av| 91av网站免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一级片'在线观看视频| 日日夜夜操网爽| 777久久人妻少妇嫩草av网站| 国产一区二区三区视频了| 一区二区三区激情视频| 国产在线观看jvid| 国产一区二区三区视频了| 激情视频va一区二区三区| 国产欧美日韩一区二区三区在线| 国产精品影院久久| 黄色女人牲交| 老汉色av国产亚洲站长工具| 亚洲av电影在线进入| 一边摸一边抽搐一进一小说| 国产精品 国内视频| 在线十欧美十亚洲十日本专区| 成人18禁高潮啪啪吃奶动态图| 免费观看精品视频网站| 黑人欧美特级aaaaaa片| 9191精品国产免费久久| 日韩免费高清中文字幕av| 一二三四在线观看免费中文在| 又紧又爽又黄一区二区| 欧美国产精品va在线观看不卡| 妹子高潮喷水视频| 91字幕亚洲| 国产精品综合久久久久久久免费 | 视频区图区小说| 国产国语露脸激情在线看| 久久草成人影院| 成人精品一区二区免费| 午夜免费成人在线视频| 久久人妻熟女aⅴ| 久久这里只有精品19| 色综合婷婷激情| 曰老女人黄片| 国产在线观看jvid| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 国产精品综合久久久久久久免费 | 亚洲欧美一区二区三区久久| 最好的美女福利视频网| 美女午夜性视频免费| 免费高清在线观看日韩| 精品一区二区三区四区五区乱码| 美国免费a级毛片| 黄色成人免费大全| 99精品欧美一区二区三区四区| 又大又爽又粗| 国产成人av激情在线播放| 亚洲精品在线美女| 99热只有精品国产| 别揉我奶头~嗯~啊~动态视频| 精品第一国产精品| 一进一出抽搐gif免费好疼 | 激情在线观看视频在线高清| 国产精品美女特级片免费视频播放器 | 亚洲性夜色夜夜综合| 国产精品香港三级国产av潘金莲| 视频区欧美日本亚洲| 人人妻人人爽人人添夜夜欢视频| 久久精品人人爽人人爽视色| 亚洲精华国产精华精| 青草久久国产| 午夜老司机福利片| 久久久国产成人精品二区 | 亚洲人成电影免费在线| 看片在线看免费视频| 女同久久另类99精品国产91| 久久天堂一区二区三区四区| a在线观看视频网站| 成人亚洲精品av一区二区 | 国产一卡二卡三卡精品| 满18在线观看网站| 色综合欧美亚洲国产小说| 热99国产精品久久久久久7| 一二三四在线观看免费中文在| 丰满的人妻完整版| 桃红色精品国产亚洲av| 免费在线观看日本一区| 亚洲专区中文字幕在线| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 欧美黑人欧美精品刺激| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区免费欧美| 丝袜在线中文字幕| 久久久久久久午夜电影 | 757午夜福利合集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| av网站免费在线观看视频| 久久久久国产一级毛片高清牌| 精品国产国语对白av| 999精品在线视频| 国产主播在线观看一区二区| 日韩高清综合在线| 窝窝影院91人妻| 神马国产精品三级电影在线观看 | 无人区码免费观看不卡| 91九色精品人成在线观看| 国产男靠女视频免费网站| 中文字幕另类日韩欧美亚洲嫩草| 老司机午夜福利在线观看视频| 色老头精品视频在线观看| 美女大奶头视频| 日本a在线网址| 无人区码免费观看不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人不卡在线观看播放网| 久久人妻熟女aⅴ| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 成年人免费黄色播放视频| 久久久精品欧美日韩精品| 电影成人av| 国产人伦9x9x在线观看| 亚洲国产欧美日韩在线播放| 久久香蕉国产精品| 美女 人体艺术 gogo| 国产亚洲精品综合一区在线观看 | 久久久久国内视频| xxxhd国产人妻xxx| av天堂在线播放| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 手机成人av网站| 国产精品香港三级国产av潘金莲| 一夜夜www| 欧美成人免费av一区二区三区| 手机成人av网站| 欧美老熟妇乱子伦牲交| 后天国语完整版免费观看| 人人妻人人添人人爽欧美一区卜| 国产精品免费一区二区三区在线| 香蕉国产在线看| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线| 人成视频在线观看免费观看| 久久人妻av系列| 不卡一级毛片| www.999成人在线观看| 18禁裸乳无遮挡免费网站照片 | 激情在线观看视频在线高清| 女性生殖器流出的白浆| 夫妻午夜视频| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 国产一区在线观看成人免费| 国产精品偷伦视频观看了| 精品国产国语对白av| 国产精品免费一区二区三区在线| 熟女少妇亚洲综合色aaa.| 激情视频va一区二区三区| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 欧美色视频一区免费| 欧美日韩国产mv在线观看视频| 97碰自拍视频| 久久久久久久精品吃奶| 国产av一区在线观看免费| 国产高清视频在线播放一区| 久久久久久久精品吃奶| av国产精品久久久久影院| 日本免费一区二区三区高清不卡 | 中国美女看黄片| 淫妇啪啪啪对白视频| 日韩欧美国产一区二区入口| 最近最新中文字幕大全免费视频| 精品国产乱子伦一区二区三区| 日本五十路高清| 亚洲人成77777在线视频| 少妇的丰满在线观看| 色播在线永久视频| av视频免费观看在线观看| 国产成人影院久久av| 在线观看免费高清a一片| 国产真人三级小视频在线观看| 大香蕉久久成人网| 看黄色毛片网站| 国产又爽黄色视频| 超色免费av| 真人做人爱边吃奶动态| 午夜a级毛片| 精品国产乱码久久久久久男人| 久久国产精品男人的天堂亚洲| 成人亚洲精品av一区二区 | 啪啪无遮挡十八禁网站| 午夜精品久久久久久毛片777| 天堂影院成人在线观看| 国产成人精品久久二区二区免费| 久久精品91蜜桃| 亚洲成人国产一区在线观看| 91麻豆精品激情在线观看国产 | 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久,| 日韩欧美免费精品| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 欧美成人午夜精品| 亚洲国产看品久久| 男女之事视频高清在线观看| 91国产中文字幕| 午夜成年电影在线免费观看| 国产精品久久久久成人av| av天堂在线播放| 亚洲第一青青草原| 交换朋友夫妻互换小说| 女人精品久久久久毛片| 日日摸夜夜添夜夜添小说| 又紧又爽又黄一区二区| 一a级毛片在线观看| 99国产综合亚洲精品| 18禁黄网站禁片午夜丰满| 亚洲精品国产色婷婷电影| 欧美日韩av久久| 国产不卡一卡二| 国产精品自产拍在线观看55亚洲| 两性夫妻黄色片| 成人18禁在线播放| 国产精品一区二区精品视频观看| 国产三级黄色录像| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 中文字幕人妻丝袜制服| 亚洲 欧美一区二区三区| 丁香欧美五月| 久久久久久久久久久久大奶| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸 | 免费在线观看亚洲国产| 成人特级黄色片久久久久久久| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 日本 av在线| 久久这里只有精品19| 亚洲人成网站在线播放欧美日韩| 精品国产乱码久久久久久男人| 精品日产1卡2卡| 亚洲精品国产区一区二| 99国产精品一区二区蜜桃av| 欧美最黄视频在线播放免费 | 亚洲av电影在线进入| 国产av一区在线观看免费| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 亚洲av熟女| 真人做人爱边吃奶动态| 免费在线观看完整版高清| 久9热在线精品视频| 欧美不卡视频在线免费观看 | 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| av中文乱码字幕在线| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频| 热re99久久精品国产66热6| 国产av精品麻豆| xxxhd国产人妻xxx| 另类亚洲欧美激情| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 欧美+亚洲+日韩+国产| 久久精品91无色码中文字幕| 亚洲一区二区三区不卡视频| 老汉色av国产亚洲站长工具| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 12—13女人毛片做爰片一| 国产精品二区激情视频| 99热国产这里只有精品6| 少妇 在线观看| 久久中文字幕一级| 国产精品电影一区二区三区| 黄色女人牲交| 久久久国产成人精品二区 | 国产精品成人在线| 老司机在亚洲福利影院| 国内毛片毛片毛片毛片毛片| 真人做人爱边吃奶动态| 成年人免费黄色播放视频| av天堂久久9| 国产精品影院久久| av福利片在线| 又紧又爽又黄一区二区| 久久香蕉国产精品| 国产区一区二久久| 欧美人与性动交α欧美软件| 日韩欧美三级三区| 十分钟在线观看高清视频www| 欧美人与性动交α欧美软件| 88av欧美| 亚洲欧美激情综合另类| 日韩国内少妇激情av| 一级a爱片免费观看的视频| 人成视频在线观看免费观看| 免费久久久久久久精品成人欧美视频| 日日夜夜操网爽| 纯流量卡能插随身wifi吗| 欧美成人性av电影在线观看| 午夜成年电影在线免费观看| 久久久久久免费高清国产稀缺| 黄色视频不卡| 国产激情久久老熟女| 国产熟女午夜一区二区三区| av网站免费在线观看视频| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 久久久国产成人免费| 亚洲国产欧美日韩在线播放| 国产精品美女特级片免费视频播放器 | 国产成人av激情在线播放| 国产91精品成人一区二区三区| 正在播放国产对白刺激| 长腿黑丝高跟| 韩国av一区二区三区四区| 久久中文字幕一级| 精品福利观看| 日韩av在线大香蕉| 国产亚洲av高清不卡| 亚洲五月婷婷丁香| 亚洲 国产 在线| 操出白浆在线播放| 亚洲精品一区av在线观看| 国产精品亚洲av一区麻豆| 国产又色又爽无遮挡免费看| 搡老乐熟女国产| 岛国视频午夜一区免费看| 亚洲色图综合在线观看| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站 | 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 久久性视频一级片| 久久人人97超碰香蕉20202| 一区在线观看完整版| 欧美日韩黄片免| 国产精品成人在线| 老司机靠b影院| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 99久久精品国产亚洲精品| 国产深夜福利视频在线观看| 婷婷丁香在线五月| 亚洲激情在线av| 精品一区二区三区av网在线观看| 天堂√8在线中文| 99久久99久久久精品蜜桃| 大陆偷拍与自拍| netflix在线观看网站| 国产精品九九99| 91九色精品人成在线观看| 亚洲av第一区精品v没综合| 亚洲精品一卡2卡三卡4卡5卡| 成年人黄色毛片网站| 999久久久国产精品视频| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 欧美成人免费av一区二区三区| 亚洲国产看品久久| 成人影院久久| 视频区欧美日本亚洲| 成人永久免费在线观看视频| 久久亚洲真实| 妹子高潮喷水视频| 精品国产一区二区久久| 在线观看一区二区三区| 久久热在线av| 淫秽高清视频在线观看| 手机成人av网站| 91国产中文字幕| 97碰自拍视频| 午夜久久久在线观看| 国产精品免费一区二区三区在线| 男男h啪啪无遮挡| 黄频高清免费视频| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 999久久久国产精品视频| www国产在线视频色| 两个人免费观看高清视频| 看免费av毛片| 精品免费久久久久久久清纯| 黄网站色视频无遮挡免费观看| 久99久视频精品免费| 成人三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 国产黄a三级三级三级人| 中文字幕精品免费在线观看视频| www.www免费av| 一进一出抽搐gif免费好疼 | 国产一卡二卡三卡精品| 国产成人精品久久二区二区免费| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 成人国语在线视频| a级片在线免费高清观看视频| av国产精品久久久久影院| 欧美日韩乱码在线| 国产亚洲av高清不卡| 一进一出抽搐动态| 国产一区在线观看成人免费| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清 | 一夜夜www| 成人特级黄色片久久久久久久| 久久这里只有精品19| 久久亚洲精品不卡| 久久青草综合色| 男女之事视频高清在线观看| 亚洲 欧美 日韩 在线 免费| 国产97色在线日韩免费| 亚洲精品一二三| 国产精品野战在线观看 | 中文亚洲av片在线观看爽| 欧美日韩一级在线毛片| 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 多毛熟女@视频| 午夜福利欧美成人| 多毛熟女@视频| 一进一出好大好爽视频| 成人影院久久| 国产精品一区二区三区四区久久 | 欧美黑人精品巨大| 亚洲精品国产色婷婷电影| 18禁国产床啪视频网站| 亚洲欧美日韩高清在线视频| 亚洲中文av在线| 国产成人免费无遮挡视频| 国产成人精品在线电影| 91九色精品人成在线观看| 少妇裸体淫交视频免费看高清 | 国产精品免费视频内射| 超色免费av| 老司机靠b影院| 午夜老司机福利片| 国产av在哪里看| 十分钟在线观看高清视频www| 丁香欧美五月| 午夜久久久在线观看| 欧美午夜高清在线| 国产日韩一区二区三区精品不卡| 天堂动漫精品| 丝袜美足系列| 少妇裸体淫交视频免费看高清 | 色综合站精品国产| 精品福利观看| x7x7x7水蜜桃| 欧美老熟妇乱子伦牲交| 91九色精品人成在线观看| 99riav亚洲国产免费| 亚洲伊人色综图| 成人18禁高潮啪啪吃奶动态图| 日韩视频一区二区在线观看| 亚洲专区国产一区二区| 性少妇av在线| 亚洲av美国av| 无限看片的www在线观看| 久久午夜亚洲精品久久| 美女午夜性视频免费| 久久青草综合色| 亚洲黑人精品在线| 久久欧美精品欧美久久欧美| 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 精品电影一区二区在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av日韩精品久久久久久密| 麻豆成人av在线观看| 欧美丝袜亚洲另类 | 日本a在线网址| 老汉色∧v一级毛片| 欧美中文综合在线视频| 国产免费现黄频在线看| 亚洲男人的天堂狠狠| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产乱子伦一区二区三区| 国产成人精品久久二区二区91| 国产高清视频在线播放一区| 国产精品永久免费网站| 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费电影在线观看| 中出人妻视频一区二区| 女生性感内裤真人,穿戴方法视频| 少妇 在线观看| 免费不卡黄色视频| 亚洲熟妇中文字幕五十中出 | 青草久久国产| 男女下面进入的视频免费午夜 | tocl精华| 99re在线观看精品视频| 中文字幕av电影在线播放| 视频在线观看一区二区三区| 男女午夜视频在线观看| 搡老乐熟女国产| 黄色视频,在线免费观看| 动漫黄色视频在线观看| 国产单亲对白刺激| 女性生殖器流出的白浆| 日韩中文字幕欧美一区二区| 老司机午夜福利在线观看视频| 久久久久久久午夜电影 | 国产成人一区二区三区免费视频网站|