• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation

    2014-04-16 05:23:23ShuklaMohammadTamsirVineetSrivastavaandJaiKumar

    H.S.Shukla,Mohammad Tamsir,Vineet K.Srivastavaand Jai Kumar

    1 Introduction

    The fractional calculus theory has a great attention in engineering and allied sciences[Hilfer(2000);Carpinteri,and Mainardi(1997);Miller,and Ross(1993);Oldham,and Spanier(1974);Podlubny(1999)].For instance,there are several physical phenomena which can be explained successfully by developing the models using fractional calculus theory.Fractional differential equations have achieved much more attention because of the fractional order systems converges to the integer order equations.In the recent years,the fractional differentiation has a wide range of application in the mathematical modeling of real world physical problems,for instance:in earthquake modeling,measurement of viscoelastic material properties,the traffic fl ow model, fluid fl ow model with fractional derivatives etc.In this paper,we consider the one dimensional time-fractional Cauchy reaction-diffusion equation(Kumar(2013))given by subject to the initial condition(IC):u(x,0)=u0(x),whereis the diffusion coefficient,uandpdenote the concentration and the reaction parameter,respectively.

    The classical Cauchy-reaction diffusion equations(i.e.,Eq.(1)with α=1)describe a wide variety of nonlinear systems in physics,chemistry,ecology,biology and engineering[(Britton(1998);Cantrell,and Cosner(2003);Grindrod(1996);Smoller(1994)].The approximate series solutions of classical Cauchy reaction-diffusion equation were obtained by using several analytical approaches,namely,Adomian decomposition method(ADM)by[Lesnic(2007)],and[Lesnic(2005)],Variational Iteration Method(VIM)by[Dehghan,and Shakeri(2008)],Homotopy Analysis Method(HAM)by[Bataineh,Noorani,and Hashim(2008)],Homotopy Perturbation Method(HPM)by[Yildirim(2009)].RDTM by[Sohail,and Mohyud-Din(2012)].[Wang,and He(2008)]applied VIM for a nonlinear reaction-diffusion process.

    There was no scheme available for analytical solutions for linear or nonlinear fractional order differential equations,before the nineteenth century.Recently,the fractional order multi-dimensional diffusion equation was solved using a Modified Homotopy Perturbation Method(M-HPM)by[Kumar(2013)].The major disadvantage of aforesaid approaches is that they require a very complicated and huge calculation.To overcome from such type of the drawbacks,the fractional reduced differential transform method(FRDTM)given by[Keskin,and Oturanc(2010)]has been employed.The FRDTM is the most easily implemented analytical method which provides the exact solution for both linear and nonlinear fractional differential equations,is very effective,reliable and efficient,and very powerful analytical approach,refer[Gupta(2011);Srivastava,Awasthi,and Tamsir(2013);Srivastava,Awasthi,and Kumar(2014);Srivastava,Kumar,Awasthi,and Singh(2014)].In this paper,our main aim is to present approximate analytical solutions of time fractional model of Cauchy-reaction diffusion equations of order α(0<α≤1)in series form converges to the exact solution rapidly,using FRDTM.Some other applications of fractional derivatives can be seen in[Chen,Liu,Li,and Sun(2014);Pang,Chen,and Sze(2014);Chen,Han,and Liu(2014);Li(2014)].

    The rest of the paper is organized as follows:in Section 2,basic preliminaries and notations on fractional calculus theory are revisited that are used for further study.Section 3 presents the basic of FRDTM are what we use to find the exact solution of the time-fractional Cauchy-reaction diffusion equation.In Section 4,exact solu-tions of four test problems time-fractional Cauchy reaction-diffusion problems are presented and compared with the exact solutions available in the literature.Section 5 is the conclusion of the article.

    2 Fractional Calculus Theory

    In this section,the basic definitions and notations are revisited that will be used for further ongoing study.In fractional integrals and derivatives,several definitions are proposed but the first major contribution to give a proper and most meaningful definition goes to Liouville[Millar and Ross(1993)].

    definition 2.1A real valued function f(x)∈R,x>0 is said to be in the spaceCμ,μ∈R if there exists a real number q(>μ)such thatf(x)=xqg(x),where g(x)∈C[0,∞),and is said to be in the spaceCmμif f(m)∈Cμ,m∈N.

    definition 2.2For any given function f∈R,the Riemann-Liouville fractional integeral operator[Grindrod(1996)]of order α≥0,is defined by

    In his work,[Caputo,and Mainardi(1971)]proposed a Modified fractional differentiation operator Dαon the theory of visco-elasticity by overcoming the discrepancy of Riemann-Liouville derivative[Millar,and Ross(1993)]while modeling the real world problems using the fractional differential equations.They further,demonstrated that their proposed Caputo fractional derivative allow the utilization of initial and boundary conditions involving integer order derivatives,a straightforward physical interpretations.

    definition 2.3The fractional derivative off(x)∈R,in the Caputo sense[Grindrod(1996)]is defined as

    for m?1<α≤m,m∈N,x>0,f∈.

    The basic properties of the Caputo fractional derivative can be given by the following

    Lemma 2.1If m?1<α≤m,m∈N and f∈,μ≥-1,then we have In the present work,the Caputo fractional derivative is considered because it allows the traditional initial and boundary conditions to be included in the formulation of the physical problems.For further important characteristics of fractional derivatives,one can refer[Hilfer(2000);Carpinteri,and Mainardi(1997);Miller,and Ross(1993);Oldham,and Spanier(1974);Podlubny(1999)].

    3 Fractional Reduced Differential Transform Method(FRDTM)

    In this section,the basic properties of the fractional reduced differential transform method are described.Letw(x,t)be a function of two variables,which can be represented as a product of two single-variable functions,that is w(x,t)=F(x)G(t).Using the properties of the one-dimensional differential transform(RDT)method,w(x,t)can be written as

    whereW(i,j)=F(i)G(j)is referred to as the spectrum ofw(x,t).

    LetRDandR?1Ddenotes operators for fractional reduced differential transform(FRDT)and inverse FRDT,respectively.The basic definition and properties of the FRDTM is described below.

    definition 3.1If w(x,t)is analytic and continuously differentiable with respect to space variablexand time variabletin the domain of interest,then thet-dimensional spectrum function

    is referred to as the FRDT function of w(x,t),where α is a parameter which describes the order of time-fractional derivative.Throughout the paper,w(x,t)(lowercase)is used for the original function and Wk(x)(uppercase)stands for the fractional reduced transformed function.

    The inverse FRDT ofWk(x)is defined by

    From Eq.(6)and(7),it can be found that

    In particular,fort=0,Eq.(8)reduces to

    From the above discussion,it is found that the FRDTM is a special case of the power series expansion of a function.

    Lemma 3.1and the convolution?denotes the fractional reduced differential transform version of the multiplication,then the fundamental operations of the FRDT are illustrated in Table I,where Γ is the well knownGama functiondefined byC,is the continuous extension to the factorial function [Srivastava, Awasthi, and Tamsir(2013)].

    Table 1:Basic properties of the FRDTM.

    definition 3.1The Mittag-Leffler functionEα(z)with α>0 is defined by the following series representation,is valid in the whole complex plane[Mainardi(1994)]

    Which is an advanced form of exp(z).In particular,

    4 Numerical experiments

    This section describes FRDTM explained in Section 3 by giving four numerical examples to validate the reliability and efficiency of FRDTM for the time fractional-order Cauchy-reaction diffusion equation.The approximate analytical solutions of the four numerical examples are obtained by considering first twenty terms in the series and 40 grid points.

    Example 4.1:Consider the time fractional-order Cauchy-reaction diffusion equation(1)with υ=1,p(x,t)=?1 as given in(Kumar(2013))

    with the initial condition

    The following recurrence relation is obtained by implementing FRDTM in Eq.(10)

    Next,applying FRDTM in the initial condition(11),we obtain

    Using Eq.(13)into Eq.(12),we get the values ofUk(x)successively as follows

    Applying inverse FRDTM of Uk(x),we obtain

    where Eα(?tα)is the well known as Mittag-Leffler function.Thus,it is demonstrated that the exact solutions for the Cauchy-reaction diffusion equation(10)subject to the initial conditione?x+xhave a complete agreement with that of using M-HPM[Kumar(2013)].In particular,for α→1 in Eq.(10),we obtain

    Eq.(15)is the exact solution for the classical Cauchy-reaction diffusion equation(10)with α=1.

    Fig.1 depicts the comparison between the exact solutions and the approximate analytical solution at t=1.Fig.2 depicts the concentration profiles of u in three dimension(3D)and its contour form(b)at different time levelst≤1 with the diffusion coefficient υ=1.Fig.3 depicts the concentration profilesuin two dimension(2D)att≤1 with the differential values of the fractional coefficients α≤1 and υ=1

    Figure 1:Comparison of the approximate concentration in Example 4.1 with the exact concentrations.

    Figure 2:Concentration profiles of u in 3D(a)and contour form(b)of Example 4.1 at different time levels t≤1 with the diffusion coefficient υ=1.

    Figure 3:Concentration profiles of u in Example 4.1 in 2D at t=1 for different values of α.

    Example 4.2:Consider the time fractional-order Cauchy-reaction diffusion equation(1)with υ=1,p(x,t)=?(1+4x2),as given in(Kumar(2013))

    subject to the initial condition

    The following recurrence relation is obtained by implementing FRDTM in Eq.(16)

    Applying the FRDTM on the initial condition(17),we have

    Using Eq.(19)into Eq.(18),one can get the values of Uk(x)successively

    Applying inverse FRDTM onUk(x),we obtain

    The exact solution(21)have a complete agreement with the exact solution obtained using M-HPM[6].In particular,for α→1 in Eq.(16),we haveu(x,t)=ex2+t.Thus,the exact solutions for the Cauchy-reaction diffusion equation(16)with α=1 have complete agreement with the exact solution obtained in[Kumar(2013)]using M-HPM.

    The comparison between the exact solutions and the approximate solution att=1 is shown in Fig.4 while Fig.5 shows the concentration profiles of u in 3D,and its contour form(b)at different time levelst≤1 with the diffusion coefficient υ=1.Fig.6 shows the concentration profiles u in 2D at t≤1 with the differential values of the fractional coefficients α≤1 and υ=1.

    Figure 4:Comparison of the approximate concentration in Example 4.2 with the exact concentrations.

    Example 4.3:Consider the time fractional-order Cauchy-reaction diffusion equation(1)with υ=1,p(x,t)=2t,given[Kumar(2013)]as

    Figure 5:Concentration profiles of u in 3D(a)and contour form(b)of Example 4.2 at different time levels t≤1 with the diffusion coefficient υ=1.

    Figure 6:Concentration profiles of u in Example 4.2 in 2D at t=1 for different values of α.

    subject to the initial condition

    The following recurrence relation is obtained by implementing FRDTM in Eq.(22)

    Next,on taking FRDTM of the initial condition(23),we obtain

    Using Eq.(25)into Eq.(24),we obtain

    where the coefficientsa0ksare obtained by solving the following recurrence relation

    Applying the inverse FRDTM on Uk(x),we obtain

    In particular,for α=1 in Eq.(22),the exact solution given in Eq.(28)becomesu(x,t)=ex+t+t2,which is in complete agreement to the exact solutions of the given Cauchy-reaction diffusion Eq.(24)for α=1 with those obtained by ADM[Lesnic,D.(2005,2007)],RDTM[Lesnic,D.(2005)],M-HPM[Kumar(2013)],and RDTM[Sohail,M.;Mohyud-Din,S.T.(2012)].

    Fig.7 shows the comparison between the exact solutions and the approximate analytical solution att=1.Fig.8 depicts the concentration profiles ofuin 3D,and its contour form(b)at different time levelst≤1 with the diffusion coefficient υ=1,whereas Fig.9 depicts the concentration profiles u in 2D at t≤1 with α=0.8 and υ=1.

    Example 4.4:Consider the time fractional-order Cauchy-reaction diffusion equation(1)with υ=1,p(x,t)=?4x2+2t?2,given as in[6]

    with the initial condition

    The following recurrence relation is obtained by implementing FRDTM in Eq.(29)

    Figure 7:Comparison of the approximate concentration in Example 4.3 with the exact concentrations.

    Figure 8:Concentration profiles of u in 3D(a)and contour form(b)of Example 4.3 at different time levels t≤1 with the diffusion coefficient υ=1.

    Next,applying FRDTM on the initial condition(30),we obtain

    Using Eq.(32)into Eq.(31),one can obtain the values ofUk(x)successively as

    Figure 9:Concentration profiles of u in Example 4.3 in 2D at different time levels t≤1 for α=0.8.

    In particular,for α=1 in Eq.(29),the exact solutions(35)becomes

    The similar exact solution was obtained by[Kumar(2013)]using a Modified HPM.Further,it is found that the exact solutions of the given Cauchy-reaction diffusion Eq.(24)for α=1 have complete agreement to with that of obtained by using[Lesnic,D.(2005,2007)],RDTM[Lesnic,D.(2005)],M-HPM[Kumar(2013)],and RDTM[Sohail,M.;Mohyud-Din,S.T.(2012)].Fig.10 gives the comparison between the exact solutions and the approximate analytical solution at t=1.Fig.11 depicts the concentration profiles ofuin 3D,and its contour form(b)at different time levelst≤1 with the diffusion coefficient υ=1.Fig.12 shows the concentration profiles u in 2D at t≤1 with the differential values of the fractional coefficients α≤1 and υ=1.

    Figure 10:Comparison of the approximate concentration in Example 4.4 with the exact concentrations.

    Figure 11:Concentration profiles of u in 3D(a)and contour form(b)of Example 4.2 at different time levels t≤1 with the diffusion coefficient υ=1.

    5 Conclusions

    In this study,the FRDTM has been implemented successfully to find out the analytical solution of the time-fractional order Cauchy-reaction diffusion equation.The obtained solutions by FRDTM is an infinite power series for appropriate initial condition,and provides the approximate solution without any transformation,perturbation,discretization,or any other restrictive conditions.Four examples are carried out to study the accurateness and effectiveness of the technique.The computed solutions by the method are in excellent agreement with those obtained[Kumar[2013)]using M-HPM.However,the performed computations depicts that the implemented method is very easy to use to solve the problems as compared to MHPM.The advantage of this technique is that it needs small size of calculation contrary to the Modified homotopy perturbation method.Further,in particular,for the associated classical Cauchy reaction-diffusion problems of the aforesaid examples(that is,for α=1)the exact solutions have a complete agreement with the solutions obtained by using M-HPM,ADM,VIM,HAM,HPM,RDTM available in the literature.

    Figure 12:Concentration profiles of u in Example 4.4 in 2D at t=0.1 for different values of α.

    Bataineh,A.S.;Noorani,M.S.M.;Hashim,I.(2008):The homotopy analysis method for Cauchy reaction-diffusion problems.Physics Letters A,vol.372,pp.613-618.

    Britton,N.F.(1998):Reaction-Diffusion Equations and their Applications to Biology.Academic Press/Harcourt Brace Jovanovich Publishers,New York.

    Cantrell,R.S.;Cosner,C.(2003):Spatial ecology via reaction-diffusion equations in Biology,Wiley Series in Mathematical and Computational.Wiley,Chichester.

    Carpinteri,A.;Mainardi,F.(1997):Fractals and Fractional Calculus in Continuum Mechanics.Springer Verlag,Wien,New York.

    Caputo,M.;Mainardi,F.(1971):Linear models of dissipation in an elastic solids.Rivista Del Nuovo Cimento,vol.1,pp.161-198.

    Chen,Y.;Han,X.;Liu,L.(2014)Numerical Solution for a Class of Linear System of Fractional Differential Equations by the Haar Wavelet Method and the Conver-gence Analysis.CMES:Computer Modeling in Engineering&Sciences,vol.97,no.5,pp.391-405.

    Chen,Y.;Liu,L.;Li,X;Sun,Y.(2014):Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials.CMES:Computer Modeling in Engineering&Sciences,vol.97,no.1,pp.81-100.

    Dehghan,M.;Shakeri,F.(2008):Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem.J.Comput.Appl.Math.,vol.214,pp.435-446.

    Grindrod,P.(1996):The Theory and Applications of Reaction-Diffusion Equations.Oxford Applied Mathematics and Computing Science Series,second ed.,The Clarendon Press/Oxford Univ.Press,New York.

    Gupta,P.K.(2011):Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method.Comp.Math.Appl.,vol.58,pp.2829-2842.

    Hilfer,R.(2000):Applications of fractional calculus in physics.World scientific,Singapore.

    Keskin,Y.;Oturanc,G.(2010):Reduced differential transform method:a new approach to fractional partial differential equations.Nonlinear Sci.Lett.A,vol.1,no.2,pp.61-72.

    Kumar,S.(2013):A new fractional modeling arising in engineering sciences and its analytical approximate solution.Alexandria Eng.J.,vol.52,no.4,pp.813-819.Lesnic,D.(2007):The decomposition method for Cauchy reaction-diffusion problems.Appl.Math.Lett.,vol.20,pp.412-418.

    Lesnic,D.(2005):The decomposition method for Cauchy advection-diffusion problems.Comput.Math.Appl.,vol.49,pp.525–537.

    Li,B.(2014):Numerical Solution of Fractional Fredholm-Volterra Integro-Differential Equations by Means of Generalized Hat Functions Method.CMES:Computer Modeling in Engineering&Sciences,vol.99,no.2,pp.105-122.

    Mainardi,F.(1994):On the initial value problem for the fractional diffusion-waveequation.World scientific,Singapore.

    Millar,K.S.;Ross,B.(1993):An introduction to the fractional calculus andfractional differential equations.Wiley,New York.

    Oldham,K.B.;Spanier,J.(1974):The Fractional Calculus.Academic Press,New York.

    Pang,G.;Chen,W;Sze,K.Y.(2014):Differential Quadrature and Cubature Methods for Steady-State Space-Fractional Advection-Diffusion Equations.CMES:Computer Modeling in Engineering&Science,.vol.97,no.4,pp.299-322.

    Podlubny,I.(1999):Fractional Differential Equations.Academic Press,San Diego.

    Smoller,J.(1994):Shock Waves and Reaction-Diffusion Equations.Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences),vol.258,second ed.,Springer,New York.

    Sohail,M.;Mohyud-Din,S.T.(2012):On Cauchy Reaction-Diffusion Problems.International Journal of Modern Applied Physics,vol.1,no.2,pp.76-82.

    Srivastava,V.K.;Awasthi,M.K.;Tamsir,M.(2013):RDTM solution of Caputo time fractional-order hyperbolic Telegraph equation.AIP Advances,vol.3,032142.

    Srivastava,V.K.;Awasthi,M.K.;Kumar,S.(2014):Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method.Egyptian Journal of Basic and Applied Sciences,vol.1,no.1,pp.60-6.

    Srivastava,V.K.;Kumar,S.;Awasthi,M.K.;Singh,B.K.(2014):Two dimensional Time Fractional-Order Biological Population Model and its solution by Fractional RDTM.Egyptian Journal of Basic and Applied Sciences,vol.1,no.1,pp.71-76.

    Wang,S.Q.;He,J.H.(2008):Variational iteration method for a nonlinear reaction-diffusion process.International.Journal of Chemical Reactor Engineering,vol.6,A37.

    Wang,L.;Ma,Y;Yang,Y.(2014):Legendre Polynomials Method for Solving a Class of Variable Order Fractional Differentia Equation.CMES:Computer Modeling in Engineering&Sciences,vol.101,no.2,pp.97-111.

    Yildirim,A.(2009):Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem.Comput.Math.Appl.,vol.57,no.4,pp.612-618

    啦啦啦在线观看免费高清www| 丝袜人妻中文字幕| 九草在线视频观看| 国产白丝娇喘喷水9色精品| 精品国产露脸久久av麻豆| 岛国毛片在线播放| 老司机影院毛片| 大话2 男鬼变身卡| 人体艺术视频欧美日本| 国产一区二区激情短视频 | av国产精品久久久久影院| 美女脱内裤让男人舔精品视频| 天天操日日干夜夜撸| 欧美成人午夜免费资源| 精品国产一区二区三区四区第35| 大陆偷拍与自拍| 日韩一本色道免费dvd| 亚洲欧美成人综合另类久久久| 多毛熟女@视频| 婷婷色综合www| 晚上一个人看的免费电影| 国产精品香港三级国产av潘金莲 | 亚洲视频免费观看视频| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 国产在视频线精品| 亚洲av在线观看美女高潮| 黄片小视频在线播放| 中文字幕人妻丝袜制服| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| 日韩中文字幕欧美一区二区 | 精品人妻一区二区三区麻豆| 久久国产精品大桥未久av| 男人操女人黄网站| xxxhd国产人妻xxx| 香蕉精品网在线| 日韩在线高清观看一区二区三区| 这个男人来自地球电影免费观看 | 9热在线视频观看99| 男女午夜视频在线观看| 黄色配什么色好看| 免费人妻精品一区二区三区视频| 高清av免费在线| 丰满少妇做爰视频| 涩涩av久久男人的天堂| 美女脱内裤让男人舔精品视频| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 丝瓜视频免费看黄片| 欧美+日韩+精品| 2022亚洲国产成人精品| av天堂久久9| 黄色视频在线播放观看不卡| 午夜福利一区二区在线看| 制服丝袜香蕉在线| 午夜激情久久久久久久| 女性被躁到高潮视频| 亚洲美女搞黄在线观看| 国产男女超爽视频在线观看| 精品一区二区免费观看| 丰满少妇做爰视频| 免费少妇av软件| 国产av精品麻豆| 精品国产乱码久久久久久小说| 欧美少妇被猛烈插入视频| 日本欧美国产在线视频| 国产淫语在线视频| 欧美精品一区二区大全| 熟女少妇亚洲综合色aaa.| 我要看黄色一级片免费的| 亚洲美女搞黄在线观看| 你懂的网址亚洲精品在线观看| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 国产欧美日韩一区二区三区在线| 久久女婷五月综合色啪小说| 十分钟在线观看高清视频www| 久久韩国三级中文字幕| videos熟女内射| 午夜福利在线免费观看网站| 99久久中文字幕三级久久日本| 丝袜美足系列| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜制服| √禁漫天堂资源中文www| 久久久久网色| 久久精品熟女亚洲av麻豆精品| 日本-黄色视频高清免费观看| av片东京热男人的天堂| 曰老女人黄片| 日韩精品免费视频一区二区三区| 免费人妻精品一区二区三区视频| av在线播放精品| 午夜精品国产一区二区电影| 欧美日韩一区二区视频在线观看视频在线| 精品久久久久久电影网| av电影中文网址| 亚洲图色成人| 永久网站在线| 少妇的丰满在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲伊人色综图| 国产成人精品福利久久| av在线老鸭窝| 久久女婷五月综合色啪小说| 午夜激情久久久久久久| 国产亚洲一区二区精品| 国产成人精品福利久久| 精品久久久久久电影网| 老司机影院成人| 美女午夜性视频免费| 中文字幕人妻丝袜制服| av一本久久久久| 秋霞在线观看毛片| 成年人免费黄色播放视频| 男人操女人黄网站| 9191精品国产免费久久| 老熟女久久久| av网站免费在线观看视频| 有码 亚洲区| 亚洲欧美一区二区三区国产| 在线精品无人区一区二区三| 亚洲av成人精品一二三区| 99久久综合免费| av线在线观看网站| 亚洲av日韩在线播放| 大码成人一级视频| 欧美成人午夜精品| 精品酒店卫生间| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 成年动漫av网址| 男女啪啪激烈高潮av片| 啦啦啦视频在线资源免费观看| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 国产男女内射视频| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 亚洲五月色婷婷综合| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 日本欧美国产在线视频| 亚洲久久久国产精品| 看非洲黑人一级黄片| 亚洲国产欧美网| 国产精品麻豆人妻色哟哟久久| 大话2 男鬼变身卡| 观看美女的网站| 飞空精品影院首页| 香蕉丝袜av| av免费在线看不卡| 国产精品免费视频内射| 亚洲精品美女久久av网站| av福利片在线| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美一区视频在线观看| 国产黄频视频在线观看| 夜夜骑夜夜射夜夜干| 男女无遮挡免费网站观看| 麻豆av在线久日| 久久青草综合色| 97在线人人人人妻| 婷婷色麻豆天堂久久| 天堂8中文在线网| 999久久久国产精品视频| 精品国产乱码久久久久久男人| 又粗又硬又长又爽又黄的视频| 亚洲欧美精品综合一区二区三区 | √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 在线天堂中文资源库| 国产一区二区在线观看av| 2021少妇久久久久久久久久久| 亚洲精品久久成人aⅴ小说| 免费高清在线观看视频在线观看| 9191精品国产免费久久| 18禁国产床啪视频网站| 日韩一卡2卡3卡4卡2021年| 亚洲av免费高清在线观看| 午夜福利一区二区在线看| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 国产精品.久久久| 国产精品亚洲av一区麻豆 | 国产av一区二区精品久久| 一区在线观看完整版| 咕卡用的链子| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 少妇 在线观看| 不卡视频在线观看欧美| 欧美中文综合在线视频| 久久久久网色| 国产精品不卡视频一区二区| 精品国产一区二区久久| 久久韩国三级中文字幕| 欧美在线黄色| 26uuu在线亚洲综合色| av电影中文网址| av视频免费观看在线观看| 哪个播放器可以免费观看大片| 欧美日韩国产mv在线观看视频| 久久婷婷青草| 观看av在线不卡| 超碰成人久久| 国产欧美亚洲国产| 男女高潮啪啪啪动态图| 男女午夜视频在线观看| av免费观看日本| 中文字幕精品免费在线观看视频| 亚洲,欧美精品.| 人人妻人人澡人人看| 2021少妇久久久久久久久久久| 深夜精品福利| 亚洲内射少妇av| 18禁动态无遮挡网站| 欧美xxⅹ黑人| 精品卡一卡二卡四卡免费| 另类亚洲欧美激情| 一本—道久久a久久精品蜜桃钙片| 少妇人妻精品综合一区二区| 久久久久精品人妻al黑| 国产精品 欧美亚洲| 纯流量卡能插随身wifi吗| 成人毛片60女人毛片免费| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 香蕉国产在线看| 又黄又粗又硬又大视频| 国产成人精品福利久久| 亚洲情色 制服丝袜| 亚洲精品一区蜜桃| 一区在线观看完整版| 成年人午夜在线观看视频| 亚洲精品美女久久久久99蜜臀 | 视频区图区小说| 欧美日韩精品网址| 亚洲av电影在线进入| 激情五月婷婷亚洲| 丁香六月天网| 久久精品国产自在天天线| 中文乱码字字幕精品一区二区三区| www.av在线官网国产| 色哟哟·www| 久久人人97超碰香蕉20202| 性高湖久久久久久久久免费观看| 国产精品一区二区在线不卡| 欧美在线黄色| 中国三级夫妇交换| 久久精品国产亚洲av天美| 丝袜人妻中文字幕| 夜夜骑夜夜射夜夜干| 久久毛片免费看一区二区三区| 日本wwww免费看| 少妇 在线观看| 香蕉丝袜av| 久久青草综合色| 人妻 亚洲 视频| 精品一区二区三区四区五区乱码 | 免费av中文字幕在线| av在线app专区| 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的| 日本-黄色视频高清免费观看| av国产精品久久久久影院| 赤兔流量卡办理| av免费在线看不卡| 国产在线一区二区三区精| 这个男人来自地球电影免费观看 | 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 天天躁夜夜躁狠狠躁躁| 欧美日韩精品成人综合77777| 国产精品99久久99久久久不卡 | 亚洲综合色惰| 18禁观看日本| 免费人妻精品一区二区三区视频| 精品少妇一区二区三区视频日本电影 | 1024香蕉在线观看| 国产男女内射视频| 亚洲国产看品久久| 爱豆传媒免费全集在线观看| 男人舔女人的私密视频| 哪个播放器可以免费观看大片| 久久精品夜色国产| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 亚洲在久久综合| 国产精品免费大片| 免费少妇av软件| 欧美精品国产亚洲| 亚洲第一av免费看| 日韩三级伦理在线观看| 新久久久久国产一级毛片| 亚洲天堂av无毛| 最近的中文字幕免费完整| 欧美激情高清一区二区三区 | 国产爽快片一区二区三区| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区| 亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 叶爱在线成人免费视频播放| 亚洲婷婷狠狠爱综合网| 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 欧美变态另类bdsm刘玥| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 国产精品欧美亚洲77777| 精品亚洲成a人片在线观看| 婷婷色综合大香蕉| 纯流量卡能插随身wifi吗| 黄片无遮挡物在线观看| 亚洲三区欧美一区| 丝袜人妻中文字幕| 三级国产精品片| 日韩av不卡免费在线播放| 超碰成人久久| 满18在线观看网站| 成年人午夜在线观看视频| 日本免费在线观看一区| 人妻人人澡人人爽人人| 色网站视频免费| 啦啦啦在线免费观看视频4| 欧美人与善性xxx| 激情五月婷婷亚洲| kizo精华| 国产高清国产精品国产三级| 久久精品aⅴ一区二区三区四区 | 丁香六月天网| 爱豆传媒免费全集在线观看| 巨乳人妻的诱惑在线观看| 色吧在线观看| 日本91视频免费播放| 精品一区二区免费观看| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| 黑人巨大精品欧美一区二区蜜桃| 成人国产麻豆网| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 熟妇人妻不卡中文字幕| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 精品亚洲乱码少妇综合久久| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| 国产一区亚洲一区在线观看| 午夜影院在线不卡| 国产一区亚洲一区在线观看| 精品视频人人做人人爽| av网站在线播放免费| 国产免费又黄又爽又色| 久久久久国产一级毛片高清牌| av在线老鸭窝| 大片电影免费在线观看免费| 两个人免费观看高清视频| 大片电影免费在线观看免费| av视频免费观看在线观看| 欧美国产精品一级二级三级| 亚洲第一av免费看| 日本午夜av视频| 精品久久久精品久久久| 黑人欧美特级aaaaaa片| 国产无遮挡羞羞视频在线观看| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 午夜免费男女啪啪视频观看| av免费在线看不卡| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 国产亚洲午夜精品一区二区久久| 18禁动态无遮挡网站| 满18在线观看网站| 日本av手机在线免费观看| 欧美在线黄色| 久久精品国产自在天天线| 最近2019中文字幕mv第一页| 日韩,欧美,国产一区二区三区| 久久久久国产一级毛片高清牌| 久久精品国产亚洲av天美| 制服诱惑二区| av电影中文网址| 国产一区二区三区综合在线观看| 亚洲精品乱久久久久久| 国产精品免费视频内射| 久久久久久久久久人人人人人人| 久久久国产一区二区| 乱人伦中国视频| 久久免费观看电影| 久久精品国产综合久久久| 深夜精品福利| 国产精品 欧美亚洲| 在线亚洲精品国产二区图片欧美| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 一级a爱视频在线免费观看| 日韩,欧美,国产一区二区三区| 久久久精品94久久精品| 99久久人妻综合| 欧美精品一区二区免费开放| 亚洲一区中文字幕在线| 岛国毛片在线播放| 国产精品三级大全| 久久精品国产鲁丝片午夜精品| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 日韩精品有码人妻一区| 九色亚洲精品在线播放| 亚洲成人av在线免费| 制服人妻中文乱码| 久久婷婷青草| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡 | 久久久国产精品麻豆| 国产成人a∨麻豆精品| 午夜福利在线免费观看网站| www日本在线高清视频| 精品人妻偷拍中文字幕| 国产亚洲一区二区精品| 日韩不卡一区二区三区视频在线| tube8黄色片| 亚洲综合色网址| 午夜福利一区二区在线看| 久久热在线av| 黄色配什么色好看| 婷婷色综合www| 亚洲精品aⅴ在线观看| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 久久精品国产亚洲av天美| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 欧美少妇被猛烈插入视频| 高清视频免费观看一区二区| 99久久综合免费| 欧美xxⅹ黑人| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 午夜精品国产一区二区电影| 爱豆传媒免费全集在线观看| 国产成人午夜福利电影在线观看| 观看美女的网站| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 毛片一级片免费看久久久久| 在线看a的网站| 一级a爱视频在线免费观看| 久久99蜜桃精品久久| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 免费少妇av软件| 国产人伦9x9x在线观看 | 99久国产av精品国产电影| 中文字幕制服av| 少妇人妻 视频| 久久久国产欧美日韩av| 国产精品三级大全| 捣出白浆h1v1| 欧美人与性动交α欧美软件| 日韩av不卡免费在线播放| 亚洲精品中文字幕在线视频| 精品久久久久久电影网| 久久精品aⅴ一区二区三区四区 | 蜜桃在线观看..| 人人妻人人添人人爽欧美一区卜| 午夜福利在线免费观看网站| 777久久人妻少妇嫩草av网站| 大香蕉久久成人网| 日日啪夜夜爽| 国产精品三级大全| 久久久久国产网址| 国产精品熟女久久久久浪| 亚洲人成电影观看| 男人舔女人的私密视频| 2018国产大陆天天弄谢| 国产探花极品一区二区| 高清欧美精品videossex| 亚洲av国产av综合av卡| 黑人巨大精品欧美一区二区蜜桃| 久久久国产一区二区| 深夜精品福利| 日韩免费高清中文字幕av| 亚洲一区二区三区欧美精品| 欧美成人午夜免费资源| 日本猛色少妇xxxxx猛交久久| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 久久久亚洲精品成人影院| 蜜桃国产av成人99| 女人精品久久久久毛片| 亚洲精品一二三| 国产1区2区3区精品| 波野结衣二区三区在线| 一二三四在线观看免费中文在| 午夜av观看不卡| 亚洲少妇的诱惑av| 丰满乱子伦码专区| 国产成人精品福利久久| 亚洲国产精品成人久久小说| 最黄视频免费看| 国产色婷婷99| 成人漫画全彩无遮挡| 久久久久久久久久久免费av| 国产成人aa在线观看| 免费观看a级毛片全部| 欧美精品高潮呻吟av久久| 国产视频首页在线观看| 亚洲一级一片aⅴ在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产人伦9x9x在线观看 | 国产 精品1| 哪个播放器可以免费观看大片| 国产精品麻豆人妻色哟哟久久| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 久久久久国产精品人妻一区二区| 国产欧美日韩综合在线一区二区| 午夜福利乱码中文字幕| 美女福利国产在线| 91午夜精品亚洲一区二区三区| 久久久久久人人人人人| 中文精品一卡2卡3卡4更新| 精品少妇黑人巨大在线播放| 我要看黄色一级片免费的| 国产精品成人在线| videos熟女内射| 精品第一国产精品| 美女脱内裤让男人舔精品视频| 日韩一区二区三区影片| 少妇人妻久久综合中文| 搡女人真爽免费视频火全软件| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 久久久久久人人人人人| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看| 曰老女人黄片| 亚洲欧美成人综合另类久久久| 考比视频在线观看| 午夜91福利影院| 超色免费av| av在线老鸭窝| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 欧美亚洲日本最大视频资源| 国产一区亚洲一区在线观看| 日韩,欧美,国产一区二区三区| 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| 免费看不卡的av| 国产免费一区二区三区四区乱码| av在线观看视频网站免费| 丝袜喷水一区| 我的亚洲天堂| 男女免费视频国产| 国产爽快片一区二区三区| 男女国产视频网站| 人体艺术视频欧美日本| 精品国产超薄肉色丝袜足j| 国产精品人妻久久久影院| 99re6热这里在线精品视频| 国产片特级美女逼逼视频| 男人操女人黄网站| 亚洲精品久久成人aⅴ小说| 午夜日韩欧美国产| 一区二区三区精品91| 国产日韩欧美在线精品| 一二三四中文在线观看免费高清| 视频在线观看一区二区三区| 日本91视频免费播放| xxxhd国产人妻xxx| 电影成人av| 亚洲少妇的诱惑av| 午夜免费鲁丝| 天天躁夜夜躁狠狠久久av| 男女午夜视频在线观看| 午夜免费鲁丝| 电影成人av| 国产野战对白在线观看| 久久青草综合色| 日韩av不卡免费在线播放| 丁香六月天网| av在线播放精品| 麻豆av在线久日| 亚洲国产毛片av蜜桃av| 久久青草综合色| 视频在线观看一区二区三区| 欧美av亚洲av综合av国产av | 久久人人97超碰香蕉20202| av天堂久久9| 满18在线观看网站| av线在线观看网站| 天堂8中文在线网| 亚洲av欧美aⅴ国产| 国产深夜福利视频在线观看| 久久综合国产亚洲精品| 精品福利永久在线观看| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 日韩av在线免费看完整版不卡| tube8黄色片| 少妇猛男粗大的猛烈进出视频| av在线观看视频网站免费| 精品国产一区二区三区四区第35| 亚洲婷婷狠狠爱综合网| 国产 一区精品|