• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Semi-Analytic Meshless Method for Solving Twoand Three-Dimensional Elliptic Equations of General Form with Variable Coefficients in Irregular Domains

    2014-04-16 03:38:21YuReutskiy
    關(guān)鍵詞:咳嗽聲響聲匕首

    S.Yu.Reutskiy

    1 Introduction

    In this paper we present a novel semi-analytic meshless method for numerical solv

    ing 2D and 3D elliptic PDEs of the general form:

    Here the coefficientsare smooth enough functions,ai(x)provide the elliptic type of the PDE andis the domain of a general form.

    We supplement(1)with the boundary condition:

    where the boundary operatorwill be de fined separately in each case.

    Such problems often arise in many branches of applied science.Thus,during the last decades many numerical techniques have been developed in this field.In particular,there has been an increasing interest in the idea of meshless or mesh-free numerical methods for solving partial differential equations(PDEs).These methods are nowadays the main stream in numerical computations,as strongly advocated by many researchers,for example,Zhu,Zhang and Atluri(1998a,b);Atluri and Zhu(1998a,b);Atluri,Liu,and Kuo(2009);Atluri and Shen(2002);Cho,Golberg,Muleshkov,and Li(2004);Jin(2004);Li,Lu,Huang and Cheng(2007);Liu(2007a,b);Tsai,Lin,Young and Atluri(2007);Young,Chen,Chen and Kao(2007)In[Tsai,Liu and Yeih(2010)]the fictitious time integration method(FTIM)previously developed by Liu and Atluri(2008a,b)is combined with the method of fundamental solutions and the Chebyshev polynomials to solve Poisson-type PDEs.In this connection we should also note the MLPG method reviewed by Sladek,Stanak,Han,Sladek and Atluri(2013)which is a fundamental base for the derivation of many meshless formulations.In the last decade,a broad community of researchers and scientists contributed to the development and implementation of the MLPG method in a wide range of scientific disciplines.

    For the past two decades radial basis functions(RBFs)have played an important role in the development of meshless methods for solving PDEs:Kansa(1990a,b);Kansa and Hon(2000);Golberg and Chen(1997);Golberg,Chen and Bowman(1999);Power(2002);Larsson and Fornberg(2003);Li,Cheng and Chen(2003);Cheng and Cabral(2005).A significant place among these techniques is taken up by methods based on the use of particular solutions.

    In this approach,RBFs have been used to approximate the particular solution corresponding to the givenfand the original inhomogeneous PDE has been converted into a homogeneous one,so that one can apply the MFS or other boundary methods developed by Golberg and Chen(1997);Golberg,Chen and Bowman(1999);Cheng(2000).This is the so-called two-stage scheme:Note that similar technique has been developed with the use of the Chebishev polynomials instead of the RBFs by Cheng(2000);Golberg,Muleshkov,Chen and Cheng(2003);Cheng,Ahtes,and Ortner(1994);Tsai(2008)and for the spline approximation offby Tsai,Cheng and Chen(2009).

    The scheme which combines the MFS and RBFs approximation has been proposed for further improvement of the MFS for solving PDEs with variable coefficients.This is the so-called one-stage scheme or the MFS-MPS technique[Chen,Fan and Monroe(2008)]:Recently this technique has been transformed into the method of approximate particular solutions(MAPS)Chen,Fan and Wen(2010,2011).Applying it to the problem

    The information on the recent development of the MFS can be found in[Fu,Chen,and Yang(2009,2013)]and in proceedings cited in Chen,Fan and Monroe(2008).Similar to Kansa’s approach the unknownspiare determined by the collocation at the inner points of the solution domain and by the collocation of the boundary conditions.The collocation at the inner points is performed for equation(8)and this technique utilizes expansion(6)to approximate the boundary condition(4).More detailed information on the method can be found in the original papers cited above.In[Li,Chen and Tsai(2012)]the MAPS is applied for solving the Cauchy problems of elliptic partial differential equations with variable coefficients.The recent developments and advances on the RBF technique can be found in[Huang(2007);Cheng(2012);Chen,Hon and Schaback(2014)].

    In Reutskiy(2012,2013)the semi-analytic meshless method(SAMM)was proposed for solving the equation

    Similar to MPS it uses the particular solutions corresponding to the RBFs placed in the right hand side of the PDE.Let the basis functions?m(x)be such thatFcan be approximated by the linear combination

    It is assumed that there exist analytic solutionscorresponding to the basis functions?m(x),which satisfy the equations:and the homogeneous boundary condition.The exact solution

    is considered as an approximate solution of the boundary value problem(9),(2).We name this method as the indirect scheme of SAMM.See Reutskiy(2012,2013)for more detailed information.

    In this paper we present the direct scheme of the SAMM which is as follows.Letug(x)be a smooth enough function in ? and let it satisfy the boundary condition

    Let?m(x)be system of basis functions on ? which satisfy the homogeneous boundary condition:

    We seek an approximate solution in the form:

    (cf.(11))which satisfies the boundary condition(2)with any choice of the free parametersq1,...,qM.The unknown free parameters are determined by substituting(15)in(1)and collocation at the inner points of ?.Thus,the new direct scheme of the SAMM saves the key idea of the previous indirect scheme:the approximation of the boundary conditions and approximation of the PDE inside domain are algorithmically divided.

    The outline of this paper is as follows.The main algorithm of the method is described in Section 2.The numerical implementation of the algorithm for 2D and 3D problems is presented in Section 3.In particular,the method is applied to the PDE with variable coefficients in the main operator part.Finally,in Section 4,we give a short conclusion.

    2 Main algorithm

    Throughout the paper we use the following RBFs:

    1)the conical radial basis functions

    Using these RBFs,we denote

    and de fine the basis functions as:

    where the centersξmare placed inside the solution domain ? andthe correcting functions ωm(x)are chosen to satisfy the boundary condition(14):

    It is important to note that contrary to the indirect SAMM here the functionsandug(x)should not necessarily satisfy any equation inside the solution domain.Thus,to approximate the correcting functionsωm(x)and the functionwe can use any complete in ? system of functions.

    When we have the basis functionswe substitutein the initial equation(1).Then we find the coefficientsby collocation inside the solution domain.be collocation points distributed inside the solution domain ?.As a result of the collocation,we get the system ofNlinear equations for

    All the terms in(18)can be obtained in the analytic form using the explicit expressions forφm,ωmandug.We take the number of the collocation pointsNto be approximately 2M.As a result we obtain an overdetermined linear system which can be solved by the standard least squares procedure.After determiningwe get the approximate solutionuM(x,q)(15).

    3 Numerical results

    3.1 Two-dimensional problems

    The functions

    form a complete orthogonal system inand

    form a complete orthogonal system in the square

    Choosingαlarge enough to satisfy ???α,we look for the correcting functions in the form:

    The number of terms in the sum(21)and the number of the unknownspm,kis:KI=the number of the different trigonometric products

    withk1+k2≤I.We use 15≤I≤24 and so 120≤KI≤300 in all the calculations presented in this section.Using the collocation procedure,we get the linear system:

    In the same way we look for the functionugin the form:

    and obtain the system

    We take the number of the collocation pointsK1to be approximately 2KI.

    To validate the numerical accuracy,we calculate the following root mean square(RMS)errorserms:

    The same RMS errorex,rmsis used for thexderivative of the solution.We useNt=1000 test points randomly distributed inside ?.We also use the maximum absolute erroremaxto estimate the accuracy of the calculations.

    Example 1.Consider the equation:

    The computational domain is a star-shape domain with the boundary de fined by the parametric equation:

    where(ρ,θ)are the polar coordinates.The domain is shown in Fig.1.

    The functionsf(x)andg(x)correspond to the exact solution

    一杭趴在雪螢的胸前安靜了。雪螢感到大腿上有一點(diǎn)濕。但她沒(méi)有多想,右手伸向提包的拉鏈,以咳嗽聲掩蓋拉鏈輕微的響聲,迅速拿出匕首,高高地舉起。

    The data placed in Table 1 show the maximum absolute errorsemaxand the RMS errors in the solution of(26),(27)using MQ RBFs as the basis functions.The same problem was considered by Chen,Fan and Wen(2011)using the method of particular solutions(MPS)and Kansa’s method.The better results in solution this BVP presented there are:ni=317,nb=150:erms=8.95×10-6,ex,rms=9.98×10-5-for the MPS anderms=6.64×10-7,ex,rms=1.21×10-3-for Kansa’s method.

    Figure 1:Example 1.The star-shape domain.The collocation points xnfor approximation PDE are shown inside the domain and the collocation points yifor approximation the correcting functions ωmare placed on the boundary ? ?.

    It should be noted that determination of the optimal shape parametercoptis a difficult problem in the framework of the presented method.As it is shown in Fig.2,the curveerms(c)is not monotonic and has many local minimums.The data placed in Table 1 correspond to some of these local minimums.However,there are quite enough other values of 0<c<1 which correspond to very close values oferms.For example,forM=50:erms(0.097)=1.054×10-7,erms(0.204)=1.050×10-7,erms(0.228)=1.040×10-7.

    Figure 2:Example 1.The star-shape domain.The RMS errors ermsas functions of the MQ shape parameter c with different M.

    The bottom part of the table contains the data corresponding to the small parameterγ=0.001 as a multiplier before the Laplace operator.Such problems are more difficult for numerical simulation.The numerical experiments carried out show that the proposed meshless scheme is very stable for a large range of values ofγ.In addition no fictitious source points are required in this version of the direct scheme of the SAMM.The data obtained by using the RBFsandas the basis functions are placed in Table 2.They show that the use of RBFsprovides approximately the same accuracy of the calculation as MQ.But they do not require any efforts for optimization.

    Example 2Consider the following Poisson equation

    The exact solution is given byThe data obtained by using the RBFsas the basis functions are placed in Table 3.This problem was also studied by Wei,Chen and Fu(2013)using the singular boundary method.The better result obtained there iserms~10-5.

    Example 3.Consider the equation with variable coefficients in the main operator part:

    Table 1:Example 1.The maximum absolute errors emaxand RMS errors erms,ex,rms in the solution of the BVP(26),(27)with MQ RBFs.

    is shown in Fig.3.

    The functionsf(x)andg(x)correspond to the exact solution:

    Table 2:Example 1.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(26),(27)by using the RBFs ψand

    Table 2:Example 1.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(26),(27)by using the RBFs ψand

    ?

    The data obtained by using the RBFsas the basis functions are placed in Table 4.

    Consider the same equation(31)in the gear wheel shape domain depicted in Fig.4.

    The boundary of the computational domain is defined by the parametric equation:

    Here we taken=12.The functionsf(x)andg(x)correspond to the exact solution:

    The data obtained by using the RBFsas the basis functions are placed in Table 5.

    Example 4.Consider the convection-diffusion equation as follows:

    Table 3:Example 2.The maximum absolute errors emaxand RMS errors ermsin the solution of the BVP with the mixed boundary conditions(28),(29),(30)by the direct scheme of SAMM by using the RBFs as the basis functions.

    Table 3:Example 2.The maximum absolute errors emaxand RMS errors ermsin the solution of the BVP with the mixed boundary conditions(28),(29),(30)by the direct scheme of SAMM by using the RBFs as the basis functions.

    ?

    The computational domain is a peanut shape domain with the boundary de fined by the parametric equation:

    where(ρ,θ)are polar coordinates.The domain is shown in Fig.5.

    The boundary conditions are of the two types:

    where??Dand??Nare the boundaries subjected to Dirichlet and Neumann boundary conditions respectively.The portion of boundary above thex1axis has the Dirithlet boundary condition and the other portion of the boundary has the Neumann boundary condition.The functionsf(x),gD(x)andgN(x)correspond to the exact solution:

    Figure 3:Example 3.The ameba-shape domain.The collocation points xnfor approximation PDE are shown inside the domain and the collocation points yifor approximation the correcting functions ωmare placed on the boundary ? ?.

    The data placed in Table 6 show the RMS errors in the solution of(33),(34),(35)by using the RBFsas the basis functions.The same problem was considered by Chen at all Chen,Fan and Wen(2011)using the method of particular solutions(MPS)and Kansa’s method.The better results in solution this BVP presented there are:ni=317,nb=150:erms=8.95×10-6,ex,rms=9.98×10-5-for the MPS anderms=6.64×10-7,ex,rms=1.21×10-3-for Kansa’s method.The right part of the table contains the data corresponding to the small parameterγ=0.001 as a multiplier before the Laplace operator.Such problems are more difficult for numerical simulation.

    Table 4:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(31),(32)by using the RBFs

    Table 4:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(31),(32)by using the RBFs

    ?

    3.2 Three dimensional case

    The functions

    form a complete orthogonal system in the cube

    Choosingαlarge enough to satisfy ???α,we look for the correcting functions in the form:

    The number of terms in the sum(36)and the number of unknownspm,kis:KI=the number of the different trigonometric products

    Figure 4:Example 3.The gear wheel shape domain.The collocation points xnfor approximation PDE are shown inside the domain.

    withk1+k2+k3≤I.We useI=14 and soKI=364 in the calculations presented in this section.Using the collocation procedure we get the linear system:and obtain the system

    Table 5:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rms in the solution of the BVP(31),(32)in the gear wheel shape domain by using the RBFs

    Table 5:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rms in the solution of the BVP(31),(32)in the gear wheel shape domain by using the RBFs

    ?

    Figure 5:Example 4.The peanut shape domain.The collocation points xnfor approximation PDE are shown inside the domain.

    Table 6:Example 4.RMS errors ermsin the solution of the BVP(33),(34),(35)by using the RBFs

    Table 6:Example 4.RMS errors ermsin the solution of the BVP(33),(34),(35)by using the RBFs

    ?

    The solution domain is a sphere with the radiusR=1.The functionsfandgcorrespond to the exact solution:

    Some results of the calculations are shown in Table 7.The parameterα=11.0 is used in all the data presented in the table.

    Consider the same PDE(40)with the mixed boundary conditions on the sphere:

    Here??Nis the surface of the top hemispherez>0 and??Dcorresponds toz<0.The functionsf(x),gD(x)andgN(x)correspond to the exact solution(42).

    To calculate the RMS errorsemax,erms,ex,rmswe use the formula(25)withNt=1000 except the caseM=500,whereNt=2000 the test points are used.

    Table 7:Example 5.3D problem.RMS errors ermsin the solution of(40),(41)by using the RBFs

    Table 7:Example 5.3D problem.RMS errors ermsin the solution of(40),(41)by using the RBFs

    ?

    Table 8:Example 5.3D problem.The maximum absolute errors emaxand the RMS errors erms,ex,rmsin the solution of the BVP(40),(43),(44)in the sphere domain by using the RBFs

    Table 8:Example 5.3D problem.The maximum absolute errors emaxand the RMS errors erms,ex,rmsin the solution of the BVP(40),(43),(44)in the sphere domain by using the RBFs

    ?

    4 Conclusion

    This paper presents a new version of the semi-analytic meshless method for solving PDEs with variable coefficients in irregular domains.The key idea of the pre-vious indirect version Reutskiy(2012,2013)is saved here:to divide satisfaction of boundary conditions and satisfaction of the governing PDE inside the domain.The new version extends the sphere of applicability of the developed technique.

    While the indirect scheme permits using only such RBFswhich have the analytic solution,the novel direct scheme allows to use any smooth enough functions as the basis functions.As it is demonstrated in Example 3 and Example 5,the novel direct scheme is applicable to the PDEs with the variable coefficients in the main operator part.Besides,using the new direct scheme we can get rid of the singularities inherent to MFS and of the fictitious boundary for their placement.

    The method introduced in this paper can be easily extended on to nonlinear PDEs,3D problems and time dependent problems.This will be the subject of further studies.

    Abbasbandy,S.;Shivanian,E.(2011):Predictor homotopy analysis method and its application to some nonlinear problems.Commun.Nonlinear Sci.Numer.Simul.,vol.16,pp.2456–2468.

    Atluri,S.N.;Liu,C.-S.;Kuo,C.L.(2009):A modified Newton method for solving non-linear algebraic equations.Journal of Marine Science and Technology,vol.17,pp.238–247.

    Atluri,S.N.;Shen,S.(2002):The meshless local Petrov-Galerkin(MLPG)method:a simple&less-costly alternative to the finite element;boundary element methods.CMES:Computer Modeling in Engineering&Sciences,vol.3,pp.11–51.

    Atluri,S.N.;Zhu,T.L.(1998a):A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics.Computational Mechanics,vol.22,pp.117–127.

    Atluri,S.N.;Zhu,T.L.(1998b):A new meshless local Petrov-Galerkin(MLPG)approach to nonlinear problems in computer modeling and simulation.Computational Modeling and Simulation in Engineering,vol.3,pp.187–196.

    Chen,C.S.;Fan,C.M.;Monroe,J.(2008):The method of fundamental solutions for solving elliptic partial differential equations with variable coefficients,in:C.S.Chen,A.Karageorghis,Y.S.Smyrlis(Eds.),The Method of Fundamental Solutions–A Meshless Method.Dynamic Publishers,Inc.,Atlanta.

    Chen,C.S.;Fan,C.M.;Wen,P.H.(2010):The method of particular solutions for solving certain partial differential equations.Num.Meths Part.Diff.Eqs.,vol.33,pp.DOI:10.1002/num.20631.

    Chen,C.S.;Fan,C.M.;Wen,P.H.(2011):The method of approximate particular solutions for solving elliptic problems with variable coefficients.Int.J.Comp.Meth,vol.8,pp.545–559.

    Chen,C.S.;Hon,Y.C.;Schaback,R.A.(2005):Scientific Computing with Radial Basis Functions.Department of Mathematics,University of Southern Mississippi,Hattiesburg,MS 39406,USA,preprint.

    Chen,W.;Fu,Z.J.;Chen,C.S.(2014):Recent Advances in Radial Basis Function Collocation Methods.SpringerVerlag.

    Cheng,A.H.-D.(2000):Particular solutions of Laplacian,Helmholtz-type,and polyharmonic operators involving higher order radial basis functions.Engineering Analysis with Boundary Elements,vol.24,pp.531–538.

    Cheng,A.H.-D.(2012):Multiquadric and its shape parameter-A numerical investigation of error estimate,condition number,and round-off error by arbitrary precision computation.Engineering Analysis with Boundary Elements,vol.36,pp.220–239.

    Cheng,A.H.-D.;Ahtes,H.;Ortner,N.(1994):Fundamental solutions of product of Helmholtz and polyharmonic operators.Engineering Analysis with Boundary Elements,vol.14,pp.187–191.

    Cheng,A.H.-D.;Cabral,J.J.S.P.(2005):Direct solution of ill-posed boundary value problems by radial basis function collocation method.Int.J.Num.Meth.Engng.,vol.64,pp.45–64.

    Cho,H.A.;Golberg,M.A.;Muleshkov,A.S.;Li,X.(2004):Trefftz methods for time-dependent partial differential equations.CMES:Computer Modeling in Engineering&Sciences,vol.1,pp.1–37.

    Fu,Z.J.;Chen,W.;Yang,W.(2009):Winkler plate bending problems by a truly boundary-only boundary particle method.Computational Mechanics,vol.44(6),pp.757–763.

    Fu,Z.J.;Chen,W.;Yang,W.(2013):Boundary particle method for Laplace transformed time fractional diffusion equations.Journal of Computational Physics,vol.235,pp.52–66.

    Golberg,M.A.;Chen,C.S.(1997):Discrete Projection Methods for Integral Equations.Computational Mechanics Publications,Southampton.

    Golberg,M.A.;Chen,C.S.;Bowman,H.(1999):Some recent results and proposals for the use of radial basis functions in the BEM.Engineering Analysis with Boundary Elements,vol.23,pp.285–296.

    Golberg,M.A.;Muleshkov,A.S.;Chen,C.S.;Cheng,A.H.-D.(2003):Polynomial particular solutions for certain partial differential operators.Num.Meth.Part.Diff.Eqs.,vol.19,pp.112–133.

    Huang C.S.;Lee C.F.;Cheng,A.H.-D.(2007):Error estimate,optimal shape factor,and high precision computation of multiquadric collocation method.Engineering Analysis with Boundary Elements,vol.31(7),pp.614–623.

    Jin,B.(2004):A meshless method for the Laplace;biharmonic equations subjected to noisy boundary data.CMES:Computer Modeling in Engineering&Sciences,vol.6,pp.253–261.

    Kansa,E.(1990a):Multiquadrics–a scattered data approximation scheme with application to computational fluid dynamics,part I.Surface approximations and partial derivative estimates.Comput.Math.Appl.,vol.19,pp.127–45.

    Kansa,E.(1990b):Multiquadrics–a scattered data approximation scheme with application to computational fluid dynamics,part II.Solutions to parabolic,hyperbolic and elliptic partial differential equations.Comput.Math.Appl.,vol.19,pp.147–161.

    Kansa,E.;Hon,Y.(2000):Circumventing the ill-conditioning problem with multiquadric radial basis functions:applications to elliptic partial differential equations.Comput.Math.Appl.,vol.39,pp.123–137.

    Larsson,E.;Fornberg,B.(2003):A numerical study of some radial basis function based solution methods for elliptic PDEs.Comput.Math.Appl.,vol.46,pp.891–902.

    Li,J.;Cheng,A.H.-D.;Chen,C.S.(2003):A comparison of efficiency and error convergence of multiquadric collocation method and finite element method.Engineering Analysis with Boundary Elements,vol.27,pp.251–257.

    Li,M.;Chen,W.;Tsai,C.C.(2012):A regularization method for the approximate particular solution of nonhomogeneous Cauchy problems of elliptic partial differential equations with variable coefficients.Engineering Analysis with Boundary Elements,vol.36,pp.274–280.

    Li,Z.C.;Lu,T.T.;Huang,H.T.;Cheng,A.H.-D.(2007):Trefftz,collocation and other boundary methods–A comparison.Numerical Method for Partial Differential Equations,vol.23,pp.93–144.

    Liu,C.-S.(2009):Fictitous time integration method for a quasilinear elliptic boundary value problem,de fined in an arbitrary plane domain.CMC:Computers,Materials&Continua,vol.11,pp.15–32.

    Liu,C.-S.;Atluri,S.N.(2008a):A novel time integration method for solving a large system of non-linear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.31,pp.71–83.

    Liu,C.-S.;Atluri,S.N.(2008b):A fictitious time integration method(FTIM)for solving mixed complementarity problems with applications to non-linear optimization.CMES:Computer Modeling in Engineering&Sciences,vol.34,pp.155–178.

    Liu,C.-S.(2006):The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions.CMES:Computer Modeling in Engineering&Sciences,vol.13,pp.149–163.

    Liu,C.-S.(2007a):A meshless regularized integral equation method for Laplace equation in arbitrary interior or exterior plane domains.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.99–109.

    Liu,C.-S.(2007b):A MRIEM for solving the Laplace equation in the doublyconnected domain.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.145–161.

    Power,H.(2002):A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations.Comput.Math.Appl.,vol.43,pp.551–583.

    Reutskiy,S.Yu.(2012):A novel method for solving one-,two-and three dimensional problems with nonlinear equation of the Poisson type.CMES:Computer Modeling in Engineering&Sciences,vol.87(4),pp.355–386.

    Reutskiy,S.Yu.(2013):Method of particular solutions for nonlinear Poisson-type equations in irregular domains.Engineering Analysis with Boundary Elements,vol.37(2),pp.401–408.

    Sladek,J.;Stanak,P.;Han,Z-D.;Sladek,V.;Atluri,S.N.(2013):Applications of the MLPG Method in Engineering&Sciences:A Review.CMES:Computer Modeling in Engineering&Sciences,vol.92(5),pp.423–475.

    Tsai,C.C.(2008):Particular solutions of Chebyshev polynomials for polyharmonic and poly-Helmholtz equations.CMES:Computer Modeling in Engineering&Sciences,vol.27,pp.151–162.

    Tsai,C.C.;Cheng,A.H.-D.;Chen,C.S.(2009):Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators.Engineering Analysis with Boundary Elements,vol.33,pp.514–521.

    Tsai,C.C.;Liu,C.-S.;Yeih,W.C.(2010):A Fictitous time integration method of fundamental solutions with Chebyshev polynomials for solving Poissone-type nonlinear PDEs.CMES:Computer Modeling in Engineering&Sciences,vol.56,pp.131–151.

    Tsai,C.C.;Lin,Y.C.;Young,D.L.;Atluri,S.N.(2007):Investigations on the accuracy and condition number for the method of fundamental solutions.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.103–114.

    Wei,X.;Chen,W.;Fu,Z.-J.(2013):Solving inhomogeneous problems by singular boundary method.Journal of Marine Science and Technology,vol.21(1),pp.8–14.

    Young,D.L.;Chen,K.H.;Chen,J.T.;Kao,J.H.(2007):A modified method of fundamental solutions with source on the boundary for solving Laplace equations with circular and arbitrary domains.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.197–222.

    Zhu,T.;Zhang,J.;Atluri,S.N.(1998a):A meshless local boundary integral equation(LBIE)method for solving nonlinear problems.Computational Mechanics,vol.22,pp.174–186.

    Zhu,T.;Zhang,J.;Atluri,S.N.(1998b):A meshless numerical method based on the local boundary integral equation(LBIE)to solve linear and non-linear boundary value problems.Engineering Analysis of Boundary Element,vol.23,pp.375–389.

    猜你喜歡
    咳嗽聲響聲匕首
    匕首槍:槍與劍的完美結(jié)合
    軍事文摘(2023年10期)2023-06-09 09:13:58
    爸爸的咳嗽聲
    爸爸的咳嗽聲
    爸爸的咳嗽聲
    回鄉(xiāng)記
    風(fēng)聲鶴唳
    不同意
    投之以“匕首”,報(bào)之以一笑
    乾隆與黃氏響聲丸
    匕首
    意林(2007年23期)2007-05-14 16:48:23
    免费搜索国产男女视频| 真人做人爱边吃奶动态| 一个人看的www免费观看视频| 国产乱人视频| 十八禁网站免费在线| 母亲3免费完整高清在线观看| 亚洲欧美激情综合另类| 9191精品国产免费久久| 亚洲精品亚洲一区二区| 久久久国产精品麻豆| 毛片女人毛片| 男女那种视频在线观看| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 中文字幕熟女人妻在线| av片东京热男人的天堂| 搞女人的毛片| 国产真人三级小视频在线观看| 久久久国产精品麻豆| 成人性生交大片免费视频hd| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 亚洲自拍偷在线| 90打野战视频偷拍视频| 日韩有码中文字幕| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 乱人视频在线观看| 国产麻豆成人av免费视频| 欧美性猛交黑人性爽| 一区二区三区免费毛片| 亚洲av成人精品一区久久| 99久久九九国产精品国产免费| 亚洲自拍偷在线| 欧美一区二区亚洲| 桃色一区二区三区在线观看| 欧美绝顶高潮抽搐喷水| 3wmmmm亚洲av在线观看| 久久亚洲真实| 蜜桃久久精品国产亚洲av| 免费看光身美女| 亚洲乱码一区二区免费版| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 国产精品亚洲美女久久久| 人人妻,人人澡人人爽秒播| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 制服人妻中文乱码| 日韩人妻高清精品专区| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 亚洲国产欧美网| 91字幕亚洲| 久久香蕉国产精品| 可以在线观看的亚洲视频| 免费在线观看日本一区| av天堂在线播放| 九九热线精品视视频播放| 国产精品美女特级片免费视频播放器| 国产激情偷乱视频一区二区| av天堂在线播放| 极品教师在线免费播放| 精品日产1卡2卡| 在线十欧美十亚洲十日本专区| 亚洲国产精品999在线| 少妇裸体淫交视频免费看高清| 99热6这里只有精品| 日日夜夜操网爽| 国产99白浆流出| 88av欧美| 一级作爱视频免费观看| 欧美乱色亚洲激情| 久久精品夜夜夜夜夜久久蜜豆| 欧美黑人巨大hd| 亚洲国产中文字幕在线视频| 欧美最新免费一区二区三区 | 成人av一区二区三区在线看| 少妇的逼好多水| 麻豆成人午夜福利视频| 免费在线观看日本一区| 色在线成人网| 亚洲av熟女| 精品久久久久久成人av| 婷婷精品国产亚洲av| 国产主播在线观看一区二区| 毛片女人毛片| 久久精品国产综合久久久| 午夜免费成人在线视频| 色播亚洲综合网| 99久久成人亚洲精品观看| 精品不卡国产一区二区三区| 国产成人福利小说| 最新在线观看一区二区三区| 网址你懂的国产日韩在线| 午夜免费观看网址| 熟女人妻精品中文字幕| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 舔av片在线| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 久久精品国产自在天天线| 夜夜爽天天搞| 国产色爽女视频免费观看| 亚洲人成网站在线播放欧美日韩| 老汉色av国产亚洲站长工具| 国产麻豆成人av免费视频| 国产av麻豆久久久久久久| 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 国产高清有码在线观看视频| av黄色大香蕉| 伊人久久大香线蕉亚洲五| 最近视频中文字幕2019在线8| 国内精品久久久久久久电影| 色老头精品视频在线观看| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 成人亚洲精品av一区二区| 国语自产精品视频在线第100页| 日韩欧美一区二区三区在线观看| 欧美日韩福利视频一区二区| 白带黄色成豆腐渣| 五月玫瑰六月丁香| 精品熟女少妇八av免费久了| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| 最近最新免费中文字幕在线| 脱女人内裤的视频| 一a级毛片在线观看| 欧美成人一区二区免费高清观看| 天堂av国产一区二区熟女人妻| 国产高潮美女av| 久久久久久国产a免费观看| 免费看十八禁软件| 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 18禁国产床啪视频网站| 中国美女看黄片| 窝窝影院91人妻| 麻豆久久精品国产亚洲av| 床上黄色一级片| 日本黄色片子视频| 全区人妻精品视频| 欧美性感艳星| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 欧美性猛交黑人性爽| 99久久综合精品五月天人人| 亚洲国产高清在线一区二区三| 一二三四社区在线视频社区8| 久99久视频精品免费| 国产精品电影一区二区三区| 欧美bdsm另类| 一级作爱视频免费观看| 国产精品国产高清国产av| 久久精品国产清高在天天线| 国产视频内射| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 校园春色视频在线观看| 99视频精品全部免费 在线| 一二三四社区在线视频社区8| 亚洲成人久久爱视频| 欧美+日韩+精品| 综合色av麻豆| 在线播放国产精品三级| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 国产又黄又爽又无遮挡在线| 亚洲成人精品中文字幕电影| av女优亚洲男人天堂| 国产探花极品一区二区| 国产精品日韩av在线免费观看| 久99久视频精品免费| 欧美乱色亚洲激情| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 成人av一区二区三区在线看| 18美女黄网站色大片免费观看| 久久久精品大字幕| 精品人妻1区二区| 免费搜索国产男女视频| 久久久久免费精品人妻一区二区| 九九久久精品国产亚洲av麻豆| 欧美色视频一区免费| 亚洲午夜理论影院| 色吧在线观看| 少妇的丰满在线观看| 动漫黄色视频在线观看| 国产精品精品国产色婷婷| 高清在线国产一区| 色在线成人网| 在线观看日韩欧美| 中文亚洲av片在线观看爽| 亚洲av日韩精品久久久久久密| 99久久综合精品五月天人人| 波多野结衣高清无吗| 亚洲黑人精品在线| 国产亚洲精品一区二区www| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | 中文字幕高清在线视频| 91麻豆精品激情在线观看国产| 国产美女午夜福利| 成人特级黄色片久久久久久久| 综合色av麻豆| 欧美一级a爱片免费观看看| 国产三级在线视频| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 有码 亚洲区| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 观看美女的网站| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 久99久视频精品免费| 老司机在亚洲福利影院| 一个人免费在线观看电影| 两个人看的免费小视频| 在线观看一区二区三区| 夜夜夜夜夜久久久久| 午夜福利在线观看免费完整高清在 | 变态另类丝袜制服| 成人18禁在线播放| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久久久免 | 男人舔奶头视频| 男女视频在线观看网站免费| 韩国av一区二区三区四区| 亚洲av美国av| 精品日产1卡2卡| 好男人电影高清在线观看| 免费看十八禁软件| 99久久九九国产精品国产免费| 国产亚洲欧美在线一区二区| 久久国产精品人妻蜜桃| 午夜福利欧美成人| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| 国产精品 国内视频| 午夜免费男女啪啪视频观看 | netflix在线观看网站| 久久中文看片网| 首页视频小说图片口味搜索| 久久欧美精品欧美久久欧美| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 日本a在线网址| 看免费av毛片| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 波多野结衣高清无吗| 桃红色精品国产亚洲av| 成年版毛片免费区| 两个人视频免费观看高清| 成人欧美大片| 亚洲av成人av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产高清激情床上av| 国产视频内射| 日韩欧美国产一区二区入口| 日韩亚洲欧美综合| 动漫黄色视频在线观看| a在线观看视频网站| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 观看免费一级毛片| 欧美午夜高清在线| 亚洲第一电影网av| 丁香欧美五月| 国产单亲对白刺激| 午夜福利18| 国产欧美日韩一区二区精品| 国产极品精品免费视频能看的| 狠狠狠狠99中文字幕| 看黄色毛片网站| 亚洲,欧美精品.| 欧美中文综合在线视频| 亚洲成人中文字幕在线播放| 两人在一起打扑克的视频| 一进一出抽搐gif免费好疼| 日韩高清综合在线| 亚洲色图av天堂| 制服丝袜大香蕉在线| 天堂av国产一区二区熟女人妻| 久久中文看片网| 亚洲久久久久久中文字幕| 精品久久久久久,| 国产精品嫩草影院av在线观看 | 制服人妻中文乱码| 欧美午夜高清在线| 亚洲精品乱码久久久v下载方式 | 99精品在免费线老司机午夜| 亚洲av免费在线观看| 欧美极品一区二区三区四区| 成人三级黄色视频| 国产亚洲欧美98| 成人国产一区最新在线观看| 在线观看日韩欧美| 午夜福利高清视频| 国产美女午夜福利| 国产乱人视频| 国产淫片久久久久久久久 | 一卡2卡三卡四卡精品乱码亚洲| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽| 床上黄色一级片| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 18禁国产床啪视频网站| 久9热在线精品视频| 中文资源天堂在线| 久久国产精品人妻蜜桃| 色综合亚洲欧美另类图片| 国产精品久久久久久久久免 | 成人国产一区最新在线观看| 亚洲人成电影免费在线| 亚洲成人久久性| 成人无遮挡网站| 国产精品国产高清国产av| 性色av乱码一区二区三区2| 中文字幕av在线有码专区| 变态另类丝袜制服| a级一级毛片免费在线观看| 国产av不卡久久| 国产成人a区在线观看| 国产精品一及| 久久伊人香网站| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 91av网一区二区| 国产精品亚洲av一区麻豆| 国产精品久久久久久亚洲av鲁大| 热99re8久久精品国产| 我的老师免费观看完整版| 亚洲精华国产精华精| 国产免费男女视频| 中文字幕熟女人妻在线| 亚洲一区二区三区不卡视频| 国产一区二区三区在线臀色熟女| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 啦啦啦观看免费观看视频高清| 久久中文看片网| 制服人妻中文乱码| 波多野结衣高清作品| 久久人妻av系列| 丰满的人妻完整版| 午夜久久久久精精品| 欧美午夜高清在线| 亚洲av成人精品一区久久| 亚洲av美国av| 99精品在免费线老司机午夜| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清成人免费视频www| 综合色av麻豆| 成人永久免费在线观看视频| 最近最新中文字幕大全免费视频| 亚洲av二区三区四区| 亚洲精品影视一区二区三区av| 亚洲av二区三区四区| 欧美黑人巨大hd| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久人妻精品电影| 伊人久久精品亚洲午夜| 久久6这里有精品| 亚洲最大成人中文| 亚洲精华国产精华精| 亚洲专区国产一区二区| 国产成人影院久久av| 亚洲成人免费电影在线观看| 欧美色视频一区免费| 91久久精品电影网| 亚洲人成伊人成综合网2020| 2021天堂中文幕一二区在线观| 成年免费大片在线观看| 国产av在哪里看| 亚洲一区高清亚洲精品| 国产成人系列免费观看| 久久草成人影院| 欧美bdsm另类| 中文在线观看免费www的网站| 亚洲,欧美精品.| 高潮久久久久久久久久久不卡| 国产成年人精品一区二区| 夜夜躁狠狠躁天天躁| 波多野结衣高清作品| 99精品在免费线老司机午夜| 噜噜噜噜噜久久久久久91| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 白带黄色成豆腐渣| 黄片大片在线免费观看| 久久久久久九九精品二区国产| 国产成人av教育| 国产精品久久久久久亚洲av鲁大| 蜜桃亚洲精品一区二区三区| 草草在线视频免费看| 制服人妻中文乱码| 国产一区二区激情短视频| 午夜视频国产福利| 欧美一区二区亚洲| 精品福利观看| 欧美乱妇无乱码| 日韩免费av在线播放| 亚洲欧美激情综合另类| 国产不卡一卡二| 尤物成人国产欧美一区二区三区| 十八禁网站免费在线| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 一个人看的www免费观看视频| 99riav亚洲国产免费| 日本黄色视频三级网站网址| 51国产日韩欧美| 99国产极品粉嫩在线观看| 国产成人欧美在线观看| 国产精品久久久久久精品电影| 欧美大码av| 国产国拍精品亚洲av在线观看 | 岛国视频午夜一区免费看| 美女被艹到高潮喷水动态| 中文字幕熟女人妻在线| 婷婷亚洲欧美| 俺也久久电影网| 日韩欧美 国产精品| 亚洲人成伊人成综合网2020| 午夜福利欧美成人| 亚洲人成网站高清观看| 一个人免费在线观看的高清视频| 国产探花极品一区二区| 午夜老司机福利剧场| 两个人的视频大全免费| 国产日本99.免费观看| www日本黄色视频网| av黄色大香蕉| 久久久久久国产a免费观看| 国产午夜精品论理片| 久久亚洲真实| 亚洲成人久久性| e午夜精品久久久久久久| 男人舔女人下体高潮全视频| 精品一区二区三区av网在线观看| 欧美性猛交黑人性爽| 99国产精品一区二区三区| 中国美女看黄片| 两个人的视频大全免费| 又爽又黄无遮挡网站| avwww免费| 国产成人a区在线观看| 欧美性猛交黑人性爽| 日本熟妇午夜| 国产亚洲精品久久久com| 国内少妇人妻偷人精品xxx网站| 亚洲一区高清亚洲精品| 国产欧美日韩一区二区三| 夜夜躁狠狠躁天天躁| 国产色婷婷99| 听说在线观看完整版免费高清| 亚洲va日本ⅴa欧美va伊人久久| 老鸭窝网址在线观看| 日本黄大片高清| 日本撒尿小便嘘嘘汇集6| 精品国产三级普通话版| 99精品在免费线老司机午夜| 18禁美女被吸乳视频| 欧美区成人在线视频| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 在线观看午夜福利视频| 一区二区三区高清视频在线| 亚洲精品456在线播放app | 757午夜福利合集在线观看| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 亚洲国产中文字幕在线视频| 99在线人妻在线中文字幕| 国产精品99久久久久久久久| 一区二区三区免费毛片| 又粗又爽又猛毛片免费看| 成人亚洲精品av一区二区| 中文字幕人妻丝袜一区二区| 亚洲成av人片在线播放无| 狠狠狠狠99中文字幕| 欧美三级亚洲精品| 国产69精品久久久久777片| 他把我摸到了高潮在线观看| 人人妻人人看人人澡| 两个人视频免费观看高清| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 久久中文看片网| 欧美日韩中文字幕国产精品一区二区三区| 国内精品一区二区在线观看| 好男人在线观看高清免费视频| 无遮挡黄片免费观看| 一本精品99久久精品77| 成人特级av手机在线观看| 色老头精品视频在线观看| 真人一进一出gif抽搐免费| 亚洲欧美日韩无卡精品| 国产综合懂色| 深爱激情五月婷婷| 一区二区三区激情视频| 成人鲁丝片一二三区免费| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 午夜福利视频1000在线观看| 欧美又色又爽又黄视频| 尤物成人国产欧美一区二区三区| 亚洲av电影在线进入| 亚洲专区国产一区二区| 国内精品久久久久久久电影| 久久久久久大精品| 国产精品1区2区在线观看.| 成人av在线播放网站| 日本与韩国留学比较| 欧美大码av| 欧美性猛交╳xxx乱大交人| 黄色成人免费大全| 久久久久性生活片| 免费av毛片视频| 在线播放无遮挡| 午夜老司机福利剧场| av中文乱码字幕在线| www.熟女人妻精品国产| 天天添夜夜摸| 亚洲成人免费电影在线观看| 欧美黄色淫秽网站| 国产高清视频在线观看网站| 熟妇人妻久久中文字幕3abv| 好男人在线观看高清免费视频| 啦啦啦免费观看视频1| 国产成人av激情在线播放| 亚洲av第一区精品v没综合| 我的老师免费观看完整版| 老司机福利观看| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 国产淫片久久久久久久久 | 国产av不卡久久| 国产毛片a区久久久久| 国产欧美日韩一区二区精品| 在线观看一区二区三区| 午夜视频国产福利| 一区二区三区免费毛片| 最好的美女福利视频网| 国产成人av激情在线播放| 日日干狠狠操夜夜爽| 午夜福利高清视频| 黄色丝袜av网址大全| 欧美性感艳星| 老汉色∧v一级毛片| 校园春色视频在线观看| 丰满乱子伦码专区| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 亚洲精品色激情综合| 欧美日韩瑟瑟在线播放| 黄色片一级片一级黄色片| 亚洲国产精品999在线| 欧美最黄视频在线播放免费| 老鸭窝网址在线观看| 午夜免费成人在线视频| 精品一区二区三区av网在线观看| 女人十人毛片免费观看3o分钟| 日韩欧美 国产精品| svipshipincom国产片| 国产精品精品国产色婷婷| 999久久久精品免费观看国产| 午夜福利成人在线免费观看| 综合色av麻豆| 亚洲电影在线观看av| 色av中文字幕| 国产一区二区亚洲精品在线观看| 小说图片视频综合网站| 免费看日本二区| 亚洲国产欧美人成| 国产亚洲精品久久久久久毛片| 蜜桃亚洲精品一区二区三区| 女生性感内裤真人,穿戴方法视频| av天堂中文字幕网| 欧美中文日本在线观看视频| 久久香蕉国产精品| 亚洲人成网站在线播放欧美日韩| 老司机午夜福利在线观看视频| 天堂√8在线中文| 在线观看66精品国产| www国产在线视频色| 琪琪午夜伦伦电影理论片6080| 亚洲成人免费电影在线观看| 色av中文字幕| 乱人视频在线观看| 两个人的视频大全免费| 黄色丝袜av网址大全| 男女之事视频高清在线观看| 亚洲一区二区三区色噜噜| 国产久久久一区二区三区| 日韩欧美免费精品| 免费在线观看影片大全网站| 亚洲第一电影网av| 一夜夜www| 欧美又色又爽又黄视频| 国产色婷婷99|