• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Semi-Analytic Meshless Method for Solving Twoand Three-Dimensional Elliptic Equations of General Form with Variable Coefficients in Irregular Domains

    2014-04-16 03:38:21YuReutskiy
    關(guān)鍵詞:咳嗽聲響聲匕首

    S.Yu.Reutskiy

    1 Introduction

    In this paper we present a novel semi-analytic meshless method for numerical solv

    ing 2D and 3D elliptic PDEs of the general form:

    Here the coefficientsare smooth enough functions,ai(x)provide the elliptic type of the PDE andis the domain of a general form.

    We supplement(1)with the boundary condition:

    where the boundary operatorwill be de fined separately in each case.

    Such problems often arise in many branches of applied science.Thus,during the last decades many numerical techniques have been developed in this field.In particular,there has been an increasing interest in the idea of meshless or mesh-free numerical methods for solving partial differential equations(PDEs).These methods are nowadays the main stream in numerical computations,as strongly advocated by many researchers,for example,Zhu,Zhang and Atluri(1998a,b);Atluri and Zhu(1998a,b);Atluri,Liu,and Kuo(2009);Atluri and Shen(2002);Cho,Golberg,Muleshkov,and Li(2004);Jin(2004);Li,Lu,Huang and Cheng(2007);Liu(2007a,b);Tsai,Lin,Young and Atluri(2007);Young,Chen,Chen and Kao(2007)In[Tsai,Liu and Yeih(2010)]the fictitious time integration method(FTIM)previously developed by Liu and Atluri(2008a,b)is combined with the method of fundamental solutions and the Chebyshev polynomials to solve Poisson-type PDEs.In this connection we should also note the MLPG method reviewed by Sladek,Stanak,Han,Sladek and Atluri(2013)which is a fundamental base for the derivation of many meshless formulations.In the last decade,a broad community of researchers and scientists contributed to the development and implementation of the MLPG method in a wide range of scientific disciplines.

    For the past two decades radial basis functions(RBFs)have played an important role in the development of meshless methods for solving PDEs:Kansa(1990a,b);Kansa and Hon(2000);Golberg and Chen(1997);Golberg,Chen and Bowman(1999);Power(2002);Larsson and Fornberg(2003);Li,Cheng and Chen(2003);Cheng and Cabral(2005).A significant place among these techniques is taken up by methods based on the use of particular solutions.

    In this approach,RBFs have been used to approximate the particular solution corresponding to the givenfand the original inhomogeneous PDE has been converted into a homogeneous one,so that one can apply the MFS or other boundary methods developed by Golberg and Chen(1997);Golberg,Chen and Bowman(1999);Cheng(2000).This is the so-called two-stage scheme:Note that similar technique has been developed with the use of the Chebishev polynomials instead of the RBFs by Cheng(2000);Golberg,Muleshkov,Chen and Cheng(2003);Cheng,Ahtes,and Ortner(1994);Tsai(2008)and for the spline approximation offby Tsai,Cheng and Chen(2009).

    The scheme which combines the MFS and RBFs approximation has been proposed for further improvement of the MFS for solving PDEs with variable coefficients.This is the so-called one-stage scheme or the MFS-MPS technique[Chen,Fan and Monroe(2008)]:Recently this technique has been transformed into the method of approximate particular solutions(MAPS)Chen,Fan and Wen(2010,2011).Applying it to the problem

    The information on the recent development of the MFS can be found in[Fu,Chen,and Yang(2009,2013)]and in proceedings cited in Chen,Fan and Monroe(2008).Similar to Kansa’s approach the unknownspiare determined by the collocation at the inner points of the solution domain and by the collocation of the boundary conditions.The collocation at the inner points is performed for equation(8)and this technique utilizes expansion(6)to approximate the boundary condition(4).More detailed information on the method can be found in the original papers cited above.In[Li,Chen and Tsai(2012)]the MAPS is applied for solving the Cauchy problems of elliptic partial differential equations with variable coefficients.The recent developments and advances on the RBF technique can be found in[Huang(2007);Cheng(2012);Chen,Hon and Schaback(2014)].

    In Reutskiy(2012,2013)the semi-analytic meshless method(SAMM)was proposed for solving the equation

    Similar to MPS it uses the particular solutions corresponding to the RBFs placed in the right hand side of the PDE.Let the basis functions?m(x)be such thatFcan be approximated by the linear combination

    It is assumed that there exist analytic solutionscorresponding to the basis functions?m(x),which satisfy the equations:and the homogeneous boundary condition.The exact solution

    is considered as an approximate solution of the boundary value problem(9),(2).We name this method as the indirect scheme of SAMM.See Reutskiy(2012,2013)for more detailed information.

    In this paper we present the direct scheme of the SAMM which is as follows.Letug(x)be a smooth enough function in ? and let it satisfy the boundary condition

    Let?m(x)be system of basis functions on ? which satisfy the homogeneous boundary condition:

    We seek an approximate solution in the form:

    (cf.(11))which satisfies the boundary condition(2)with any choice of the free parametersq1,...,qM.The unknown free parameters are determined by substituting(15)in(1)and collocation at the inner points of ?.Thus,the new direct scheme of the SAMM saves the key idea of the previous indirect scheme:the approximation of the boundary conditions and approximation of the PDE inside domain are algorithmically divided.

    The outline of this paper is as follows.The main algorithm of the method is described in Section 2.The numerical implementation of the algorithm for 2D and 3D problems is presented in Section 3.In particular,the method is applied to the PDE with variable coefficients in the main operator part.Finally,in Section 4,we give a short conclusion.

    2 Main algorithm

    Throughout the paper we use the following RBFs:

    1)the conical radial basis functions

    Using these RBFs,we denote

    and de fine the basis functions as:

    where the centersξmare placed inside the solution domain ? andthe correcting functions ωm(x)are chosen to satisfy the boundary condition(14):

    It is important to note that contrary to the indirect SAMM here the functionsandug(x)should not necessarily satisfy any equation inside the solution domain.Thus,to approximate the correcting functionsωm(x)and the functionwe can use any complete in ? system of functions.

    When we have the basis functionswe substitutein the initial equation(1).Then we find the coefficientsby collocation inside the solution domain.be collocation points distributed inside the solution domain ?.As a result of the collocation,we get the system ofNlinear equations for

    All the terms in(18)can be obtained in the analytic form using the explicit expressions forφm,ωmandug.We take the number of the collocation pointsNto be approximately 2M.As a result we obtain an overdetermined linear system which can be solved by the standard least squares procedure.After determiningwe get the approximate solutionuM(x,q)(15).

    3 Numerical results

    3.1 Two-dimensional problems

    The functions

    form a complete orthogonal system inand

    form a complete orthogonal system in the square

    Choosingαlarge enough to satisfy ???α,we look for the correcting functions in the form:

    The number of terms in the sum(21)and the number of the unknownspm,kis:KI=the number of the different trigonometric products

    withk1+k2≤I.We use 15≤I≤24 and so 120≤KI≤300 in all the calculations presented in this section.Using the collocation procedure,we get the linear system:

    In the same way we look for the functionugin the form:

    and obtain the system

    We take the number of the collocation pointsK1to be approximately 2KI.

    To validate the numerical accuracy,we calculate the following root mean square(RMS)errorserms:

    The same RMS errorex,rmsis used for thexderivative of the solution.We useNt=1000 test points randomly distributed inside ?.We also use the maximum absolute erroremaxto estimate the accuracy of the calculations.

    Example 1.Consider the equation:

    The computational domain is a star-shape domain with the boundary de fined by the parametric equation:

    where(ρ,θ)are the polar coordinates.The domain is shown in Fig.1.

    The functionsf(x)andg(x)correspond to the exact solution

    一杭趴在雪螢的胸前安靜了。雪螢感到大腿上有一點(diǎn)濕。但她沒(méi)有多想,右手伸向提包的拉鏈,以咳嗽聲掩蓋拉鏈輕微的響聲,迅速拿出匕首,高高地舉起。

    The data placed in Table 1 show the maximum absolute errorsemaxand the RMS errors in the solution of(26),(27)using MQ RBFs as the basis functions.The same problem was considered by Chen,Fan and Wen(2011)using the method of particular solutions(MPS)and Kansa’s method.The better results in solution this BVP presented there are:ni=317,nb=150:erms=8.95×10-6,ex,rms=9.98×10-5-for the MPS anderms=6.64×10-7,ex,rms=1.21×10-3-for Kansa’s method.

    Figure 1:Example 1.The star-shape domain.The collocation points xnfor approximation PDE are shown inside the domain and the collocation points yifor approximation the correcting functions ωmare placed on the boundary ? ?.

    It should be noted that determination of the optimal shape parametercoptis a difficult problem in the framework of the presented method.As it is shown in Fig.2,the curveerms(c)is not monotonic and has many local minimums.The data placed in Table 1 correspond to some of these local minimums.However,there are quite enough other values of 0<c<1 which correspond to very close values oferms.For example,forM=50:erms(0.097)=1.054×10-7,erms(0.204)=1.050×10-7,erms(0.228)=1.040×10-7.

    Figure 2:Example 1.The star-shape domain.The RMS errors ermsas functions of the MQ shape parameter c with different M.

    The bottom part of the table contains the data corresponding to the small parameterγ=0.001 as a multiplier before the Laplace operator.Such problems are more difficult for numerical simulation.The numerical experiments carried out show that the proposed meshless scheme is very stable for a large range of values ofγ.In addition no fictitious source points are required in this version of the direct scheme of the SAMM.The data obtained by using the RBFsandas the basis functions are placed in Table 2.They show that the use of RBFsprovides approximately the same accuracy of the calculation as MQ.But they do not require any efforts for optimization.

    Example 2Consider the following Poisson equation

    The exact solution is given byThe data obtained by using the RBFsas the basis functions are placed in Table 3.This problem was also studied by Wei,Chen and Fu(2013)using the singular boundary method.The better result obtained there iserms~10-5.

    Example 3.Consider the equation with variable coefficients in the main operator part:

    Table 1:Example 1.The maximum absolute errors emaxand RMS errors erms,ex,rms in the solution of the BVP(26),(27)with MQ RBFs.

    is shown in Fig.3.

    The functionsf(x)andg(x)correspond to the exact solution:

    Table 2:Example 1.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(26),(27)by using the RBFs ψand

    Table 2:Example 1.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(26),(27)by using the RBFs ψand

    ?

    The data obtained by using the RBFsas the basis functions are placed in Table 4.

    Consider the same equation(31)in the gear wheel shape domain depicted in Fig.4.

    The boundary of the computational domain is defined by the parametric equation:

    Here we taken=12.The functionsf(x)andg(x)correspond to the exact solution:

    The data obtained by using the RBFsas the basis functions are placed in Table 5.

    Example 4.Consider the convection-diffusion equation as follows:

    Table 3:Example 2.The maximum absolute errors emaxand RMS errors ermsin the solution of the BVP with the mixed boundary conditions(28),(29),(30)by the direct scheme of SAMM by using the RBFs as the basis functions.

    Table 3:Example 2.The maximum absolute errors emaxand RMS errors ermsin the solution of the BVP with the mixed boundary conditions(28),(29),(30)by the direct scheme of SAMM by using the RBFs as the basis functions.

    ?

    The computational domain is a peanut shape domain with the boundary de fined by the parametric equation:

    where(ρ,θ)are polar coordinates.The domain is shown in Fig.5.

    The boundary conditions are of the two types:

    where??Dand??Nare the boundaries subjected to Dirichlet and Neumann boundary conditions respectively.The portion of boundary above thex1axis has the Dirithlet boundary condition and the other portion of the boundary has the Neumann boundary condition.The functionsf(x),gD(x)andgN(x)correspond to the exact solution:

    Figure 3:Example 3.The ameba-shape domain.The collocation points xnfor approximation PDE are shown inside the domain and the collocation points yifor approximation the correcting functions ωmare placed on the boundary ? ?.

    The data placed in Table 6 show the RMS errors in the solution of(33),(34),(35)by using the RBFsas the basis functions.The same problem was considered by Chen at all Chen,Fan and Wen(2011)using the method of particular solutions(MPS)and Kansa’s method.The better results in solution this BVP presented there are:ni=317,nb=150:erms=8.95×10-6,ex,rms=9.98×10-5-for the MPS anderms=6.64×10-7,ex,rms=1.21×10-3-for Kansa’s method.The right part of the table contains the data corresponding to the small parameterγ=0.001 as a multiplier before the Laplace operator.Such problems are more difficult for numerical simulation.

    Table 4:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(31),(32)by using the RBFs

    Table 4:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rmsin the solution of the BVP(31),(32)by using the RBFs

    ?

    3.2 Three dimensional case

    The functions

    form a complete orthogonal system in the cube

    Choosingαlarge enough to satisfy ???α,we look for the correcting functions in the form:

    The number of terms in the sum(36)and the number of unknownspm,kis:KI=the number of the different trigonometric products

    Figure 4:Example 3.The gear wheel shape domain.The collocation points xnfor approximation PDE are shown inside the domain.

    withk1+k2+k3≤I.We useI=14 and soKI=364 in the calculations presented in this section.Using the collocation procedure we get the linear system:and obtain the system

    Table 5:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rms in the solution of the BVP(31),(32)in the gear wheel shape domain by using the RBFs

    Table 5:Example 3.The maximum absolute errors emaxand RMS errors erms,ex,rms in the solution of the BVP(31),(32)in the gear wheel shape domain by using the RBFs

    ?

    Figure 5:Example 4.The peanut shape domain.The collocation points xnfor approximation PDE are shown inside the domain.

    Table 6:Example 4.RMS errors ermsin the solution of the BVP(33),(34),(35)by using the RBFs

    Table 6:Example 4.RMS errors ermsin the solution of the BVP(33),(34),(35)by using the RBFs

    ?

    The solution domain is a sphere with the radiusR=1.The functionsfandgcorrespond to the exact solution:

    Some results of the calculations are shown in Table 7.The parameterα=11.0 is used in all the data presented in the table.

    Consider the same PDE(40)with the mixed boundary conditions on the sphere:

    Here??Nis the surface of the top hemispherez>0 and??Dcorresponds toz<0.The functionsf(x),gD(x)andgN(x)correspond to the exact solution(42).

    To calculate the RMS errorsemax,erms,ex,rmswe use the formula(25)withNt=1000 except the caseM=500,whereNt=2000 the test points are used.

    Table 7:Example 5.3D problem.RMS errors ermsin the solution of(40),(41)by using the RBFs

    Table 7:Example 5.3D problem.RMS errors ermsin the solution of(40),(41)by using the RBFs

    ?

    Table 8:Example 5.3D problem.The maximum absolute errors emaxand the RMS errors erms,ex,rmsin the solution of the BVP(40),(43),(44)in the sphere domain by using the RBFs

    Table 8:Example 5.3D problem.The maximum absolute errors emaxand the RMS errors erms,ex,rmsin the solution of the BVP(40),(43),(44)in the sphere domain by using the RBFs

    ?

    4 Conclusion

    This paper presents a new version of the semi-analytic meshless method for solving PDEs with variable coefficients in irregular domains.The key idea of the pre-vious indirect version Reutskiy(2012,2013)is saved here:to divide satisfaction of boundary conditions and satisfaction of the governing PDE inside the domain.The new version extends the sphere of applicability of the developed technique.

    While the indirect scheme permits using only such RBFswhich have the analytic solution,the novel direct scheme allows to use any smooth enough functions as the basis functions.As it is demonstrated in Example 3 and Example 5,the novel direct scheme is applicable to the PDEs with the variable coefficients in the main operator part.Besides,using the new direct scheme we can get rid of the singularities inherent to MFS and of the fictitious boundary for their placement.

    The method introduced in this paper can be easily extended on to nonlinear PDEs,3D problems and time dependent problems.This will be the subject of further studies.

    Abbasbandy,S.;Shivanian,E.(2011):Predictor homotopy analysis method and its application to some nonlinear problems.Commun.Nonlinear Sci.Numer.Simul.,vol.16,pp.2456–2468.

    Atluri,S.N.;Liu,C.-S.;Kuo,C.L.(2009):A modified Newton method for solving non-linear algebraic equations.Journal of Marine Science and Technology,vol.17,pp.238–247.

    Atluri,S.N.;Shen,S.(2002):The meshless local Petrov-Galerkin(MLPG)method:a simple&less-costly alternative to the finite element;boundary element methods.CMES:Computer Modeling in Engineering&Sciences,vol.3,pp.11–51.

    Atluri,S.N.;Zhu,T.L.(1998a):A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics.Computational Mechanics,vol.22,pp.117–127.

    Atluri,S.N.;Zhu,T.L.(1998b):A new meshless local Petrov-Galerkin(MLPG)approach to nonlinear problems in computer modeling and simulation.Computational Modeling and Simulation in Engineering,vol.3,pp.187–196.

    Chen,C.S.;Fan,C.M.;Monroe,J.(2008):The method of fundamental solutions for solving elliptic partial differential equations with variable coefficients,in:C.S.Chen,A.Karageorghis,Y.S.Smyrlis(Eds.),The Method of Fundamental Solutions–A Meshless Method.Dynamic Publishers,Inc.,Atlanta.

    Chen,C.S.;Fan,C.M.;Wen,P.H.(2010):The method of particular solutions for solving certain partial differential equations.Num.Meths Part.Diff.Eqs.,vol.33,pp.DOI:10.1002/num.20631.

    Chen,C.S.;Fan,C.M.;Wen,P.H.(2011):The method of approximate particular solutions for solving elliptic problems with variable coefficients.Int.J.Comp.Meth,vol.8,pp.545–559.

    Chen,C.S.;Hon,Y.C.;Schaback,R.A.(2005):Scientific Computing with Radial Basis Functions.Department of Mathematics,University of Southern Mississippi,Hattiesburg,MS 39406,USA,preprint.

    Chen,W.;Fu,Z.J.;Chen,C.S.(2014):Recent Advances in Radial Basis Function Collocation Methods.SpringerVerlag.

    Cheng,A.H.-D.(2000):Particular solutions of Laplacian,Helmholtz-type,and polyharmonic operators involving higher order radial basis functions.Engineering Analysis with Boundary Elements,vol.24,pp.531–538.

    Cheng,A.H.-D.(2012):Multiquadric and its shape parameter-A numerical investigation of error estimate,condition number,and round-off error by arbitrary precision computation.Engineering Analysis with Boundary Elements,vol.36,pp.220–239.

    Cheng,A.H.-D.;Ahtes,H.;Ortner,N.(1994):Fundamental solutions of product of Helmholtz and polyharmonic operators.Engineering Analysis with Boundary Elements,vol.14,pp.187–191.

    Cheng,A.H.-D.;Cabral,J.J.S.P.(2005):Direct solution of ill-posed boundary value problems by radial basis function collocation method.Int.J.Num.Meth.Engng.,vol.64,pp.45–64.

    Cho,H.A.;Golberg,M.A.;Muleshkov,A.S.;Li,X.(2004):Trefftz methods for time-dependent partial differential equations.CMES:Computer Modeling in Engineering&Sciences,vol.1,pp.1–37.

    Fu,Z.J.;Chen,W.;Yang,W.(2009):Winkler plate bending problems by a truly boundary-only boundary particle method.Computational Mechanics,vol.44(6),pp.757–763.

    Fu,Z.J.;Chen,W.;Yang,W.(2013):Boundary particle method for Laplace transformed time fractional diffusion equations.Journal of Computational Physics,vol.235,pp.52–66.

    Golberg,M.A.;Chen,C.S.(1997):Discrete Projection Methods for Integral Equations.Computational Mechanics Publications,Southampton.

    Golberg,M.A.;Chen,C.S.;Bowman,H.(1999):Some recent results and proposals for the use of radial basis functions in the BEM.Engineering Analysis with Boundary Elements,vol.23,pp.285–296.

    Golberg,M.A.;Muleshkov,A.S.;Chen,C.S.;Cheng,A.H.-D.(2003):Polynomial particular solutions for certain partial differential operators.Num.Meth.Part.Diff.Eqs.,vol.19,pp.112–133.

    Huang C.S.;Lee C.F.;Cheng,A.H.-D.(2007):Error estimate,optimal shape factor,and high precision computation of multiquadric collocation method.Engineering Analysis with Boundary Elements,vol.31(7),pp.614–623.

    Jin,B.(2004):A meshless method for the Laplace;biharmonic equations subjected to noisy boundary data.CMES:Computer Modeling in Engineering&Sciences,vol.6,pp.253–261.

    Kansa,E.(1990a):Multiquadrics–a scattered data approximation scheme with application to computational fluid dynamics,part I.Surface approximations and partial derivative estimates.Comput.Math.Appl.,vol.19,pp.127–45.

    Kansa,E.(1990b):Multiquadrics–a scattered data approximation scheme with application to computational fluid dynamics,part II.Solutions to parabolic,hyperbolic and elliptic partial differential equations.Comput.Math.Appl.,vol.19,pp.147–161.

    Kansa,E.;Hon,Y.(2000):Circumventing the ill-conditioning problem with multiquadric radial basis functions:applications to elliptic partial differential equations.Comput.Math.Appl.,vol.39,pp.123–137.

    Larsson,E.;Fornberg,B.(2003):A numerical study of some radial basis function based solution methods for elliptic PDEs.Comput.Math.Appl.,vol.46,pp.891–902.

    Li,J.;Cheng,A.H.-D.;Chen,C.S.(2003):A comparison of efficiency and error convergence of multiquadric collocation method and finite element method.Engineering Analysis with Boundary Elements,vol.27,pp.251–257.

    Li,M.;Chen,W.;Tsai,C.C.(2012):A regularization method for the approximate particular solution of nonhomogeneous Cauchy problems of elliptic partial differential equations with variable coefficients.Engineering Analysis with Boundary Elements,vol.36,pp.274–280.

    Li,Z.C.;Lu,T.T.;Huang,H.T.;Cheng,A.H.-D.(2007):Trefftz,collocation and other boundary methods–A comparison.Numerical Method for Partial Differential Equations,vol.23,pp.93–144.

    Liu,C.-S.(2009):Fictitous time integration method for a quasilinear elliptic boundary value problem,de fined in an arbitrary plane domain.CMC:Computers,Materials&Continua,vol.11,pp.15–32.

    Liu,C.-S.;Atluri,S.N.(2008a):A novel time integration method for solving a large system of non-linear algebraic equations.CMES:Computer Modeling in Engineering&Sciences,vol.31,pp.71–83.

    Liu,C.-S.;Atluri,S.N.(2008b):A fictitious time integration method(FTIM)for solving mixed complementarity problems with applications to non-linear optimization.CMES:Computer Modeling in Engineering&Sciences,vol.34,pp.155–178.

    Liu,C.-S.(2006):The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions.CMES:Computer Modeling in Engineering&Sciences,vol.13,pp.149–163.

    Liu,C.-S.(2007a):A meshless regularized integral equation method for Laplace equation in arbitrary interior or exterior plane domains.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.99–109.

    Liu,C.-S.(2007b):A MRIEM for solving the Laplace equation in the doublyconnected domain.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.145–161.

    Power,H.(2002):A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations.Comput.Math.Appl.,vol.43,pp.551–583.

    Reutskiy,S.Yu.(2012):A novel method for solving one-,two-and three dimensional problems with nonlinear equation of the Poisson type.CMES:Computer Modeling in Engineering&Sciences,vol.87(4),pp.355–386.

    Reutskiy,S.Yu.(2013):Method of particular solutions for nonlinear Poisson-type equations in irregular domains.Engineering Analysis with Boundary Elements,vol.37(2),pp.401–408.

    Sladek,J.;Stanak,P.;Han,Z-D.;Sladek,V.;Atluri,S.N.(2013):Applications of the MLPG Method in Engineering&Sciences:A Review.CMES:Computer Modeling in Engineering&Sciences,vol.92(5),pp.423–475.

    Tsai,C.C.(2008):Particular solutions of Chebyshev polynomials for polyharmonic and poly-Helmholtz equations.CMES:Computer Modeling in Engineering&Sciences,vol.27,pp.151–162.

    Tsai,C.C.;Cheng,A.H.-D.;Chen,C.S.(2009):Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators.Engineering Analysis with Boundary Elements,vol.33,pp.514–521.

    Tsai,C.C.;Liu,C.-S.;Yeih,W.C.(2010):A Fictitous time integration method of fundamental solutions with Chebyshev polynomials for solving Poissone-type nonlinear PDEs.CMES:Computer Modeling in Engineering&Sciences,vol.56,pp.131–151.

    Tsai,C.C.;Lin,Y.C.;Young,D.L.;Atluri,S.N.(2007):Investigations on the accuracy and condition number for the method of fundamental solutions.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.103–114.

    Wei,X.;Chen,W.;Fu,Z.-J.(2013):Solving inhomogeneous problems by singular boundary method.Journal of Marine Science and Technology,vol.21(1),pp.8–14.

    Young,D.L.;Chen,K.H.;Chen,J.T.;Kao,J.H.(2007):A modified method of fundamental solutions with source on the boundary for solving Laplace equations with circular and arbitrary domains.CMES:Computer Modeling in Engineering&Sciences,vol.19,pp.197–222.

    Zhu,T.;Zhang,J.;Atluri,S.N.(1998a):A meshless local boundary integral equation(LBIE)method for solving nonlinear problems.Computational Mechanics,vol.22,pp.174–186.

    Zhu,T.;Zhang,J.;Atluri,S.N.(1998b):A meshless numerical method based on the local boundary integral equation(LBIE)to solve linear and non-linear boundary value problems.Engineering Analysis of Boundary Element,vol.23,pp.375–389.

    猜你喜歡
    咳嗽聲響聲匕首
    匕首槍:槍與劍的完美結(jié)合
    軍事文摘(2023年10期)2023-06-09 09:13:58
    爸爸的咳嗽聲
    爸爸的咳嗽聲
    爸爸的咳嗽聲
    回鄉(xiāng)記
    風(fēng)聲鶴唳
    不同意
    投之以“匕首”,報(bào)之以一笑
    乾隆與黃氏響聲丸
    匕首
    意林(2007年23期)2007-05-14 16:48:23
    又爽又黄无遮挡网站| 亚洲经典国产精华液单| 99国产极品粉嫩在线观看| 长腿黑丝高跟| 欧美黑人巨大hd| 国产69精品久久久久777片| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 亚洲精品色激情综合| 精品久久久久久久末码| 精品午夜福利视频在线观看一区| 中国美白少妇内射xxxbb| 色哟哟哟哟哟哟| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 一级av片app| 欧美日本视频| 精品久久久久久,| 久久久久久久午夜电影| x7x7x7水蜜桃| 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 我要搜黄色片| 国产单亲对白刺激| 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲 | 九九爱精品视频在线观看| av在线亚洲专区| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久| 给我免费播放毛片高清在线观看| 99热精品在线国产| 国产爱豆传媒在线观看| 乱人视频在线观看| 国产单亲对白刺激| 一个人看的www免费观看视频| 婷婷色综合大香蕉| 亚洲七黄色美女视频| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 亚洲成人中文字幕在线播放| 99久久无色码亚洲精品果冻| 中文字幕人妻熟人妻熟丝袜美| 国语自产精品视频在线第100页| 精华霜和精华液先用哪个| 国产精品女同一区二区软件 | 3wmmmm亚洲av在线观看| 岛国在线免费视频观看| 亚洲欧美精品综合久久99| 欧美+日韩+精品| 国产精品久久久久久亚洲av鲁大| 一级毛片久久久久久久久女| 欧美极品一区二区三区四区| 日本成人三级电影网站| 国产男人的电影天堂91| 国内精品宾馆在线| 天堂av国产一区二区熟女人妻| 1000部很黄的大片| 中文字幕熟女人妻在线| 精品午夜福利视频在线观看一区| 欧美日韩综合久久久久久 | 干丝袜人妻中文字幕| 尾随美女入室| 国产一区二区在线观看日韩| 亚洲国产欧洲综合997久久,| 男插女下体视频免费在线播放| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 久久久久久久久大av| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 免费无遮挡裸体视频| 久久亚洲精品不卡| 日韩高清综合在线| 午夜视频国产福利| 色在线成人网| 精品久久久久久久末码| 真实男女啪啪啪动态图| 嫩草影视91久久| 淫秽高清视频在线观看| 91精品国产九色| 欧美日韩瑟瑟在线播放| 色吧在线观看| 18禁黄网站禁片午夜丰满| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 欧美黑人巨大hd| 天堂影院成人在线观看| 22中文网久久字幕| 我要搜黄色片| 一本精品99久久精品77| 久久精品人妻少妇| 成人午夜高清在线视频| 成人美女网站在线观看视频| 91久久精品电影网| 男女之事视频高清在线观看| 十八禁国产超污无遮挡网站| 神马国产精品三级电影在线观看| 欧美在线一区亚洲| 国内精品久久久久精免费| 成人毛片a级毛片在线播放| 深夜精品福利| 国产精品亚洲美女久久久| 热99在线观看视频| 神马国产精品三级电影在线观看| www日本黄色视频网| 亚洲精品色激情综合| 观看美女的网站| 干丝袜人妻中文字幕| 亚洲国产精品合色在线| 国产精品国产三级国产av玫瑰| 久久久色成人| a级一级毛片免费在线观看| 日韩欧美国产一区二区入口| 一个人免费在线观看电影| 午夜福利成人在线免费观看| 永久网站在线| 乱人视频在线观看| 精品人妻一区二区三区麻豆 | 女同久久另类99精品国产91| 色综合站精品国产| 国产精品久久电影中文字幕| 男女啪啪激烈高潮av片| 变态另类丝袜制服| x7x7x7水蜜桃| 成年版毛片免费区| 国产一区二区激情短视频| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 免费在线观看日本一区| 日本五十路高清| 69人妻影院| 高清在线国产一区| av天堂在线播放| 一区二区三区四区激情视频 | 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 久久99热这里只有精品18| 久久国内精品自在自线图片| 国产精品不卡视频一区二区| 日本 av在线| 淫秽高清视频在线观看| 很黄的视频免费| 直男gayav资源| 国产精品98久久久久久宅男小说| 欧美日韩黄片免| 色噜噜av男人的天堂激情| 国产精品三级大全| 欧美成人a在线观看| 成年女人毛片免费观看观看9| 看片在线看免费视频| 午夜福利高清视频| 国产av不卡久久| 给我免费播放毛片高清在线观看| 成人二区视频| 免费av观看视频| 国产午夜福利久久久久久| 草草在线视频免费看| а√天堂www在线а√下载| xxxwww97欧美| 免费人成在线观看视频色| 国产亚洲精品久久久久久毛片| 五月伊人婷婷丁香| 欧美日韩乱码在线| 51国产日韩欧美| 成人综合一区亚洲| 在线天堂最新版资源| 亚洲av.av天堂| 久久6这里有精品| 最新在线观看一区二区三区| 色5月婷婷丁香| 亚洲精品亚洲一区二区| 国产欧美日韩精品亚洲av| 日韩高清综合在线| 色尼玛亚洲综合影院| 国产乱人伦免费视频| 91av网一区二区| 日本免费a在线| 性欧美人与动物交配| 久久久久久久久中文| 日本黄大片高清| 久久中文看片网| 亚洲黑人精品在线| 精品午夜福利视频在线观看一区| 亚洲,欧美,日韩| 自拍偷自拍亚洲精品老妇| or卡值多少钱| 中文字幕精品亚洲无线码一区| av专区在线播放| 悠悠久久av| 哪里可以看免费的av片| 欧美色视频一区免费| 亚洲av成人精品一区久久| 日韩中文字幕欧美一区二区| 国产精品一及| 国产精华一区二区三区| 十八禁国产超污无遮挡网站| 午夜福利在线观看免费完整高清在 | 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 99热精品在线国产| 亚洲专区中文字幕在线| 成年女人永久免费观看视频| 乱码一卡2卡4卡精品| 免费看a级黄色片| 亚洲精品久久国产高清桃花| 欧美精品啪啪一区二区三区| 亚洲精品国产成人久久av| 日本三级黄在线观看| 免费看光身美女| 亚洲精品成人久久久久久| 免费电影在线观看免费观看| 中国美女看黄片| 亚洲av不卡在线观看| 国产伦一二天堂av在线观看| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 又爽又黄无遮挡网站| 日韩精品中文字幕看吧| 在线观看一区二区三区| 嫩草影院精品99| 18禁黄网站禁片午夜丰满| 赤兔流量卡办理| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产成人久久av| 免费黄网站久久成人精品| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人下体高潮全视频| 一个人观看的视频www高清免费观看| 蜜桃久久精品国产亚洲av| 亚洲专区国产一区二区| 精品乱码久久久久久99久播| 1024手机看黄色片| 可以在线观看毛片的网站| 又粗又爽又猛毛片免费看| 麻豆国产97在线/欧美| 国产真实乱freesex| 日日摸夜夜添夜夜添小说| 波多野结衣高清无吗| 中文字幕熟女人妻在线| 女人被狂操c到高潮| 看免费成人av毛片| 欧美bdsm另类| 日本 欧美在线| 99久久成人亚洲精品观看| 亚洲成人免费电影在线观看| 亚洲av美国av| 一本一本综合久久| 少妇的逼水好多| 国产三级在线视频| 99久久无色码亚洲精品果冻| 亚洲在线观看片| 又粗又爽又猛毛片免费看| 午夜亚洲福利在线播放| 直男gayav资源| 欧美区成人在线视频| 美女高潮喷水抽搐中文字幕| 欧美色视频一区免费| 波多野结衣巨乳人妻| 色在线成人网| 丝袜美腿在线中文| 黄色丝袜av网址大全| 午夜福利在线观看免费完整高清在 | 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 欧美zozozo另类| 老师上课跳d突然被开到最大视频| 精品一区二区三区视频在线观看免费| 精品久久久久久久久av| 成年免费大片在线观看| 亚洲经典国产精华液单| 哪里可以看免费的av片| 久久久色成人| 免费在线观看日本一区| 欧美又色又爽又黄视频| 欧美性感艳星| 日韩欧美在线二视频| 熟女电影av网| 色哟哟·www| 欧美3d第一页| 国产精品98久久久久久宅男小说| 88av欧美| 少妇人妻精品综合一区二区 | a级毛片a级免费在线| 欧美极品一区二区三区四区| 欧美日韩综合久久久久久 | 少妇人妻精品综合一区二区 | 免费看美女性在线毛片视频| 中文字幕免费在线视频6| 亚洲专区国产一区二区| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 一本久久中文字幕| 精品久久久久久久人妻蜜臀av| 国产精品无大码| 毛片一级片免费看久久久久 | 老熟妇仑乱视频hdxx| 欧美性感艳星| 亚洲不卡免费看| 身体一侧抽搐| 黄色视频,在线免费观看| 亚洲第一电影网av| 国产高清视频在线播放一区| 校园人妻丝袜中文字幕| 亚洲国产精品久久男人天堂| 悠悠久久av| 91在线精品国自产拍蜜月| 国产在视频线在精品| 日本免费一区二区三区高清不卡| 欧美激情在线99| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 丰满的人妻完整版| 黄色丝袜av网址大全| 日韩精品有码人妻一区| 亚洲人成网站在线播| 午夜影院日韩av| 一级黄片播放器| 一区二区三区高清视频在线| 国产真实乱freesex| 身体一侧抽搐| 日本欧美国产在线视频| 动漫黄色视频在线观看| 1024手机看黄色片| 一进一出抽搐gif免费好疼| 男人和女人高潮做爰伦理| 天天一区二区日本电影三级| 亚洲av一区综合| 久久人妻av系列| 男女啪啪激烈高潮av片| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 校园春色视频在线观看| 日本免费一区二区三区高清不卡| 亚洲av熟女| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产| 非洲黑人性xxxx精品又粗又长| 欧美最新免费一区二区三区| 女生性感内裤真人,穿戴方法视频| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲美女久久久| 国产精品,欧美在线| 最新在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 日韩欧美免费精品| 亚洲欧美日韩东京热| 国产伦人伦偷精品视频| 免费人成在线观看视频色| 草草在线视频免费看| 在线看三级毛片| 身体一侧抽搐| 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 高清毛片免费观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产成年人精品一区二区| 一进一出抽搐动态| 久久精品人妻少妇| 色视频www国产| 亚洲美女黄片视频| 久久精品国产99精品国产亚洲性色| 午夜福利18| 国产精品伦人一区二区| 日韩中字成人| 欧美国产日韩亚洲一区| 亚洲av美国av| 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 免费一级毛片在线播放高清视频| 最近视频中文字幕2019在线8| 18+在线观看网站| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 亚洲欧美日韩卡通动漫| 国产精品1区2区在线观看.| 久久午夜福利片| 三级男女做爰猛烈吃奶摸视频| 亚洲精品久久国产高清桃花| 三级国产精品欧美在线观看| 国产成人av教育| 午夜免费成人在线视频| 精品午夜福利视频在线观看一区| 久久99热这里只有精品18| 午夜久久久久精精品| 日韩欧美三级三区| 日韩一区二区视频免费看| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久人妻蜜臀av| 91久久精品国产一区二区三区| 亚洲午夜理论影院| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 亚洲精品日韩av片在线观看| 一边摸一边抽搐一进一小说| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 在线免费十八禁| 亚洲无线在线观看| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 久久久久国内视频| 欧美日韩瑟瑟在线播放| 国产精品女同一区二区软件 | 精品一区二区免费观看| 人妻久久中文字幕网| 久久人人精品亚洲av| 51国产日韩欧美| 91久久精品电影网| 简卡轻食公司| 日韩欧美 国产精品| 国产精华一区二区三区| 精品不卡国产一区二区三区| 欧美黑人巨大hd| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9| 一卡2卡三卡四卡精品乱码亚洲| 色在线成人网| 干丝袜人妻中文字幕| 国产av在哪里看| 可以在线观看的亚洲视频| 国产女主播在线喷水免费视频网站 | 看十八女毛片水多多多| 最近中文字幕高清免费大全6 | 在线观看一区二区三区| 国产视频内射| 国产午夜福利久久久久久| 国产精品久久视频播放| 亚洲性久久影院| 丰满乱子伦码专区| 亚洲在线自拍视频| 午夜a级毛片| 欧美3d第一页| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频| 国产精品1区2区在线观看.| 国产高清有码在线观看视频| 免费看光身美女| 一区二区三区免费毛片| ponron亚洲| 免费看av在线观看网站| 麻豆精品久久久久久蜜桃| 亚洲中文字幕一区二区三区有码在线看| 能在线免费观看的黄片| 成人三级黄色视频| 久久精品国产鲁丝片午夜精品 | 精品日产1卡2卡| 美女免费视频网站| 欧美中文日本在线观看视频| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 一区二区三区激情视频| 精品无人区乱码1区二区| 婷婷色综合大香蕉| 国产 一区 欧美 日韩| 99久久中文字幕三级久久日本| 国产在视频线在精品| 国产精品久久久久久精品电影| 老司机福利观看| 少妇被粗大猛烈的视频| 精品一区二区三区av网在线观看| 黄色视频,在线免费观看| 精品福利观看| 俺也久久电影网| 在线天堂最新版资源| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 免费观看人在逋| 国产高清不卡午夜福利| 狂野欧美白嫩少妇大欣赏| 搡老岳熟女国产| 真实男女啪啪啪动态图| 国产精品精品国产色婷婷| 婷婷精品国产亚洲av| 麻豆国产av国片精品| 日韩欧美精品v在线| 国产av一区在线观看免费| 国产一区二区在线av高清观看| 老司机深夜福利视频在线观看| 色精品久久人妻99蜜桃| 女同久久另类99精品国产91| 我要搜黄色片| 欧美色视频一区免费| 啦啦啦韩国在线观看视频| 91在线观看av| 色在线成人网| aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 69av精品久久久久久| 精品国内亚洲2022精品成人| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 国产亚洲91精品色在线| 啦啦啦韩国在线观看视频| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 九色成人免费人妻av| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 麻豆一二三区av精品| 日韩强制内射视频| 亚洲国产日韩欧美精品在线观看| 99九九线精品视频在线观看视频| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 免费看光身美女| 亚洲黑人精品在线| 亚洲成av人片在线播放无| 俄罗斯特黄特色一大片| av在线亚洲专区| 一个人免费在线观看电影| 亚洲国产精品合色在线| 欧美zozozo另类| 国产精品98久久久久久宅男小说| 欧美zozozo另类| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 日本熟妇午夜| 69av精品久久久久久| 在线观看66精品国产| 最近最新免费中文字幕在线| 国产精品98久久久久久宅男小说| 国产成人一区二区在线| 久久中文看片网| 午夜免费男女啪啪视频观看 | 午夜福利视频1000在线观看| 色在线成人网| 黄色欧美视频在线观看| 欧美激情在线99| 日本免费一区二区三区高清不卡| 亚洲图色成人| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 中亚洲国语对白在线视频| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站 | 成年女人毛片免费观看观看9| 国产高清视频在线观看网站| 黄色一级大片看看| 午夜精品久久久久久毛片777| avwww免费| 中文字幕av在线有码专区| 久久天躁狠狠躁夜夜2o2o| 亚洲真实伦在线观看| 国产在线精品亚洲第一网站| 嫩草影院新地址| 国产女主播在线喷水免费视频网站 | 国产精品一区二区免费欧美| 天美传媒精品一区二区| 国产高潮美女av| 亚洲精品乱码久久久v下载方式| 亚洲av日韩精品久久久久久密| 精品不卡国产一区二区三区| 性欧美人与动物交配| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 亚洲人成伊人成综合网2020| 久久中文看片网| 国产精品乱码一区二三区的特点| 国产成人aa在线观看| 久久久久久伊人网av| 欧美+日韩+精品| 国产真实乱freesex| 久久婷婷人人爽人人干人人爱| 中国美白少妇内射xxxbb| 亚洲av免费高清在线观看| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 免费观看人在逋| 小说图片视频综合网站| 人妻少妇偷人精品九色| 国产三级在线视频| 午夜爱爱视频在线播放| ponron亚洲| 久久草成人影院| 久久精品国产清高在天天线| 久久久久精品国产欧美久久久| 97超视频在线观看视频| 日日夜夜操网爽| 亚洲最大成人av| 又黄又爽又免费观看的视频| 亚洲va在线va天堂va国产| 国产爱豆传媒在线观看| 很黄的视频免费| 精品久久久久久久久亚洲 | 国产不卡一卡二| 老师上课跳d突然被开到最大视频| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 在线观看美女被高潮喷水网站| 免费av不卡在线播放| 99在线视频只有这里精品首页| 亚洲真实伦在线观看| 九九爱精品视频在线观看| 天堂√8在线中文| 亚洲,欧美,日韩| 性色avwww在线观看|