• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Anti-plane Crack Analysis in Functional Graded Piezoelectric Semiconductor Crystals

    2014-04-16 03:38:16SladekVSladekEPanandYoung

    J.SladekV.SladekE.Panand D.L.Young

    1 Introduction

    Piezoelectric materials(PZ)can be either dielectrics or semiconductors.These materials have been widely used in various electromechanical devices and systems.Up to date dielectric materials are more intensively investigated than semiconductors.However,PZ semiconductors play a crucial role in offering the great electromechanical couling effect within a high-frequency regime.In PZ semiconductors the induced electric field produces also the electric current.The interaction between mechanical fields and mobile charges in PZ semiconductors is called the acoustoelectric effect[Hutson and White(1962);White(1962)].An acoustic wave traveling in a PZ semiconductor can be amplified by application of an initial or biasing dc electric field[Yang and Zhou(2005)].This phenomenon is utilized in many acoustoelectric devices[Heyman(1978);Busse and Miller(1981)].When an acoustic field deforms the PZ material,space charges are generated by the elastic field,causing the electrons to redistribute accordingly.The electron drift induced by an external field can become supersonic,and amplification can take place due to the phonon emission of carriers.

    Piezoelectric ceramics are brittle and susceptible to fracture during service.To improve the performance and to predict the reliable service lifetime of ceramic PZ components,it is necessary to analyze theoretically the damage and fracture processes taking place in PZ materials with consideration of the coupling effect between mechanics and electrics.Deeg(1980)and Pak(1990)addressed the inplane and anti-plane fracture problems of an in finite PZ body and obtained the closed form solutions of stress field and electric displacement field near the crack tip.

    To meet the demand of advanced PZ materials with improved mechanical,thermal,corrosion and wear resistant properties,the concept of functionally graded materials(FGMs)[Suresh and Mortensen(1998)]has recently been extended to the field of PZ solids.Consequently,the concept of FGMs can be extended to the piezoelasticity to obtain PZ materials with high strength,high toughness,low thermal expansion coefficient and low dielectric constant.Devices such as actuators based on functionally graded PZ materials(FGPMs)are presented by Zhu et al.(1995,1999).Fracture of FGPMs under a thermal load was studied by Wang and Noda(2001).An anti-plane crack problem can be described by relatively simpler governing equations than for in-plane problems[Li and Weng 2002a].The electroelastic problem of an anti-plane shear crack propagating in a functionally graded PZ ceramic strip was analyzed by the integral transform approach[Kwon(2004)].Recently,the in-plane crack problem in FGPMs was analyzed by Chen et al.(2003)and Ueda(2003).Anti-plane cracks in finite functionally graded PZ solids under time-harmonic loading was studied via a non-hypersingular traction based boundary integral equation method[Dineva et al.(2010)].The electrically nonlinear crack problem in a functionally graded PZ ceramic strip was analyzed by Kwon(2003).However,in all these crack problems,the PZ material was considered as a non-conducting dielectric.

    There are only few papers devoted to crack problems in PZ semiconductor materials.All papers concern the anti-plane crack problem in unbounded domain with a semi-in finite crack[Yang(2005)]and a finite crack[Hu et al.(2007)]under stationary conditions.The Fourier transform technique is usually applied to reduce the problem to a pair of dual integral equations.In the present paper,we aim at analyzing the anti-plane crack problem in bounded domains with functionally graded material properties and under transient loading conditions.The solution of the boundary value problems for continuously nonhomogeneous PZ solids requires advanced numerical methods due to the high mathematical complexity.The governing equations are more complicated than in a homogeneous counterpart and the electric and mechanical fields are coupled with each other.Transient regime brings additional complications.

    In recent years,meshless formulations are becoming popular due to their high adaptivity and low costs to prepare input and output data for numerical analyses.A variety of meshless methods has been proposed so far and some of them are also applied to PZ problems[Ohs and Aluru(2001);Liu et al.(2002);Sladek et al.(2007,2010,2012)].They can be derived either from a weak-form formulation on the global domain or a set of local subdomains.In the global formulation,background cells are required for the integration of the weak-form.The meshless local Petrov-Galerkin(MLPG)method is a fundamental base for the derivation of many meshless formulations,since trial and test functions can be chosen from different functional spaces.Recently,the MLPG method with a Heaviside step function as the test functions[Atluri et al.(2003);Atluri(2004);Sladek et al.(2004);Sladek et al.(2013)]was applied to crack problems in continuously nonhomogeneous medium[Sladek et al.(2007)]and an interface crack problem[Sladek et al.(2010)].Impermeable or permeable crack conditions were considered there.Energetically consistent boundary conditions on the crack-faces are considered too[Sladek et al.(2012)].This model is leading to consistency of total and crack-tip energy release rates.An additional closing traction is added to the well-known semi-permeable crack-face boundary conditions.

    In this paper,the MLPG is applied to a finite continuously nonhomogeneous PZ conducting solid with anti-plane crack under transient boundary conditions.The coupled governing partial differential equations for shear stresses,electric displacement field and current are satisfied in a weak-form on small fictitious subdomains.Nodal points are introduced and spread on the analyzed domain and each node is surrounded by a small circle for simplicity,but without loss of generality.If the shape of subdomains has a simple form,numerical integrations over them can be easily carried out.The integral equations have a very simple nonsingular form.The spatial variations of the displacement,electric potential and electron density are approximated by the Moving Least-Squares(MLS)scheme[Zhu et al.(1998)].After performing the spatial integrations,a system of ordinary differential equa-tions for unknown nodal values is obtained.The essential boundary conditions on the global boundary are satisfied by the collocation approach.Then,the system of the ordinary differential equations of the second order resulting from the equations of motion is solved by the Houbolt finite-difference scheme[Houbolt 1950]as a time-stepping method.

    2 Local integral equations for piezoelectric semiconductor

    Consider a homogeneous n-type PZ semiconductor withm0electron density in unloaded state with vanishing initial electric fieldE0.Supposing the frequency of external loadings to be close to characteristic frequency of elastic waves,one can assume quasi-static approximation for the electromagnetic field.Then,the effect of Faraday’s induction is neglected even if there is a magnetic field induced by the electric current according to the Ampere’s law.Eventually,the governing equations within the linear theory are given by the balance of momentum,Gauss’s law and conservation of charge[Hutson and White(1962)]

    where¨ui,σij,Di,andqare the acceleration of displacements,stress tensor,electric displacement field,and electric charge of the electron,respectively.The electron density and electric current are denoted bymandJi,respectively.Symbolρis used for the mass density.A comma followed by an index denotes partial differentiation with respect to the coordinate associated with the index.

    These governing equations(1)have to be supplemented by the constitutive equations below[Hutson and White(1962);White(1962)]

    wherecijkl(x),eijk(x),hij(x),μij(x)anddij(x)are the elastic,PZ,dielectric,electron mobility and carrier diffusion material coefficients,respectively.Generally,these coefficients can depend on Cartesian coordinates in functionally graded materials.

    Finally,the strain tensorεijand the electric field vectorEjare related to the displacementsuiand the electric potentialφby

    In this analysis,we assume a transversely isotropic PZ solid.Assuming anti-plane deformations(u1=u2=0)with all the fields dependent on the in-plane coordinates(x1,x2),hence the following fields vanish:

    Then,the governing equations are transformed into a simpler form

    The constitutive equations for the transversally isotropic anti-plane problem become[Hu et al.(2007)]

    Instead of writing the global weak-form for the above governing equations,we apply the MLPG method to construct a weak-form on the local fictitious subdomains such as ?s,which is a small region taken for each node inside the global domain[Atluri(2004)].The local subdomains are distributed inside the whole global domain ?.The local subdomains could be of any geometrical shape and size.In the present paper,the local subdomains are taken to be of circular shape.The local weak-form of the governing equations(5)can be written as

    whereu?(x)is a test function.

    Applying the Gauss divergence theorem to equations(7)-(9)one obtains

    where??sis the boundary of the local subdomain[Atluri 2004]andnαis a unit normal vector to the boundary??s.By choosing a Heaviside step function as the test functionu?(x)in each subdomain

    the local weak-forms(10)-(12)are converted into the following local boundarydomain integral equations

    In the MLPG method the test and trial functions are not necessarily from the same functional spaces.For internal nodes,the test function is chosen as the Heaviside step function with its support on the local subdomain.The trial functions,on the other hand,are chosen to be the moving least-squares(MLS)approximation over a number of nodes spread within the domain of influence.Details are given in the next section.

    3 Numerical solution

    According to the MLS[Lancaster and Salkauskas(1981);Nayroles et al.(1992)]method,the approximation of physical fieldsf(x,τ)(i.e.,the displacement,electric potential and electron density)over a number of randomly located nodes=1,2,...n,is given by

    wherenis the number of nodes used for the approximation.It is determined by the weight functionwa(x)associated with the nodea.The symbolstands for the fictitious nodal values,but not the nodal values of the unknown trial functions in general.The stationarity ofsin eq.(19)with respect to a(x,τ)leads to the following linear relation between a(x,τ)and

    The solution of Eq.(20)for a(x,τ)and a subsequent substitution into Eq.(16)gives the approximation formulas for the displacement,electric potential,and electron density[Sladek et al.(2010)]

    whereis the size of the support domain.It is seen that theC1-continuity is ensured over the entire domain;therefore the continuity conditions of the traction,electric charge and the electric current are satisfied.

    In the local integral equations(13)-(15)we have the scalar products of the normal vector with shear stresses,electrical displacement and electric current.Substituting the MLS approximations into the scalar products we obtain

    Substituting Eqs.(24)-(26)into the local integral equations(13)-(15),we obtain the following system of ordinary differential equations

    The essential boundary conditions at nodal points on the global boundary are satisfied by approximation formula(22)

    It should be noted that one of the most important properties of the MLS approximation is its high-order continuity of approximated fields.On the other hand,there are such problems in which even the primary fields suffer certain discontinuities.For instance,the displacements are discontinuous across the crack surface.Crack discontinuities can be treated in several ways in the meshless approximation[Organ et al.(1996);Carpinteri et al.(2003)].The simplest approach to satisfy the discontinuity of displacements on the crack surfaces is the visibility criterion.Nodes lying inside the domain ABC shown in Fig.1 are not considered for the evaluation of the shape function at the point x in the MLS-approximation(i.e.,the mentioned nodes are excluded from the support domain).Another approach for the treatment of crack discontinuities in both the meshless and the FEM is based on the introduction of discontinuous enrichment functions[Belytschko et al.(2001)].Carpinteri et al.(2003)proposed the method where the crack is virtually extended in the direction of the tangent at the crack-tip.All the weight functions whose support domains intersect the real crack are cut along the crack line(real+virtual),while the weight functions are left unchanged if the support domains intersect only the virtual crack.That method has to be applied to problems where symmetry with respect to the crack plane cannot be utilized and both crack surfaces has to be modeled.It happens if materials properties are varying along the direction normal to the crack plane.

    Figure 1:Visibility criterion for the support of domain in the crack-tip vicinity.

    4 Numerical examples

    Consider a finite PZ semiconductor strip in planex1-x2with size 2H×2L(Fig.2)and a central crack with length 2a.On the top and bottom surfaces,the shear stressτ0,electric displacementD0and the electric currentJ0are applied.Electrically impermeable boundary conditions on the crack surface are considered that gives rise to singular behavior of both the electric intensity and electric displacement fields near the crack tips.First,the numerical analysis is performed for a homogeneous material.The material properties correspond to Cadmium Sulfide CdS[Auld 1973]:

    Figure 2:Anti-plane crack in a finite strip.

    Due to the symmetry of the problem,it is sufficient to analyze only a quarter of the cracked strip.The strip widthL=2.5a,crack lengtha=0.08mand height of the striph=1.25Lare considered.In the first example the crack size is relatively small with respect to the strip size.The mechanical displacement,electrical potential and electron density in the quarter of the specimen are approximated with 930(31x30)nodes equidistantly distributed.The local subdomains are considered to be circular with a radiusrloc=0.006m.

    Variations of displacements,electric potentials and electron densities along the crack surface for various initial electron densitiesm0are presented in Figs 3,4 and 5,respectively.The presented numerical results correspond to a pure mechanical loadτ0=1Pa.One can observe that initial electron density has a small influence on the crack displacement.However,the induced electric potential is strongly dependent on the initial electron density.The largest value of the induced potential is for a non-conducting PZ material.With increasing value ofm0,the induced electric potential decreases.The observed electron density on the crack surface is strongly dependent onm0value.The higher value ofm0results in lower density of electronsm.

    For cracks in homogeneous and linear PZ solids the asymptotic behaviour of the field quantities near the crack tip has been given by Sosa(1991)and Pak(1992).In one of our previous papers[Sladek et al.(2007)]we showed that the stress singularity at the crack tip in a continuously nonhomogeneous PZ solid is the same as that in a homogeneous one.Therefore,similarly to a homogeneous case[Hu et al.,(2007)]we can de fine field intensity factors in functionally graded PZ semiconductors as

    Figure 3:Variation of displacement u3along the crack under a pure mechanical load τ0=1N/m2.

    Figure 4:Variation of the electric potential(-φ)along the crack under a pure mechanical load τ0=1N/m2.

    Figure 5:Variation of the electron density m along the crack under a pure mechanical load τ0=1N/m2.

    whereare the stress intensity factor,electrical displacement intensity factor,strain intensity factor and electric field intensity factor,respectively All intensity factors(IFs)in equations(33)-(36)are computed using the extrapolations technique from three corresponding quantities at three points ahead the crack tip.Their distance from the crack tip has to be sufficiently small due to validity of asymptotic expansion of stressσ23,electric displacementD2,strainγ23and electric intensity fieldE2.It follows from constitutive equations(2)and(6)that intensity factorsKσandKDcan be expressed byKγandKE,respectively.Then,one gets

    The energy release rate can be de fined on the base of above given intensity factors[Pak(1990)]

    For stationary boundary conditions the stress intensity factor(SIF)for nonconducting PZ solid is independent on electric loadD0.The SIF vanishes in such a case since the stressesσ23are zero ahead the crack tip on the crack line because of the immediate electromechanical interaction,despite the finite value of induced electric potential for a pure mechanical load(Fig.4).It means that displacement and electric potential are coupled;however,intensity factors are decoupled in a stationary case.

    Figure 6:Variation of the electric displacement intensity factor with initial electron density.

    In conducting PZ solids we observe a strong influence of the initial electronic densitym0on the induced electric potential.Therefore,it is interesting to investigate the influence ofm0on the electric displacement intensity factor for the crack under a mixed mechanicalτ0and electric loadD0.The variation ofKDwith initial electron density is given in Fig.6.For a pure mechanical load we get a vanishing value ofKDfor any value ofm0.For a finite value of the electric loadD0we get a finite value ofKDfor non-conducting material.With increasing conductivity of PZ semiconductor,theKDvalue is reduced and form0=1011m-3the electric displacement intensity factor is almost zero.

    Figure 7:Influence of the electric load on the energy release rate for a mixed load.

    The influence of the electric loadD0and electric currentJ0on the energy release rate is shown in Fig.7 and 8,respectively.Two different initial electron densities are considered in the numerical analyses.One can observe that the energy release rate is less sensitive on the electric load and electric current for PZ semiconductor as for non-conducting PZ solid,since the initial electron densitym0=106can be considered as a value corresponding to a non-conducting solid.

    It is also interesting to investigate influence of the geometry(crack size and strip size)on G.Therefore,we consider a larger crack with lengtha=0.08mand smaller strip heighth=1.0Land strip widthL=2.0a.The energy release rate for this cracked specimen is givenin Fig.9.The sensitivity on the electric current is smaller for a larger crack size and smaller specimen.A similar influence is observed for the electric loadD0as shown in Fig.10.

    We now consider the influence of the non-stationary boundary conditions on the physical quantities.The strip is subjected to an impact load with Heaviside time variation and the intensityτ0=1Pafor a pure mechanical load.Time variation of the normalized stress intensity factors for a non-conducting and semiconductor PZ solid are presented in Fig.11,whereOne can observe that the initial electron density has vanishing influence on the SIF.In non-stationary case a pure electrical load can induce finite value of the SIF.The response of the electric fields is immediate,while that of the elastic ones is taken as finite because of the finite velocity of elastic waves.On the other hand,in a static case,the response of both the mechanical(strain,stress)and electrical fields is immediate.One can observe finite value of the electric displacement intensity factor(EDIF)for a pure mechanical load in Fig.12.However,due to small value of the PZ coefficient,the induced EDIF is small for non-conducting solid.Larger values are observed for the conducting material.It is due to strong influence ofm0onKDas observed for stationary boundary conditions.

    Figure 8:Influence of the electric current on the energy release rate for a mixed load.

    Figure 9:Influence of the electric current J0on the energy release rate for a mixed load when the crack is larger with a=0.1m.

    Figure 10:Influence of the electric load D0on the energy release rate for a mixed load when the crack is larger with a=0.1m.

    If a pure electric loadD0is applied one can observe a strong influence ofm0on the SIF as shown in Fig.13.Larger values of the SIF are achieved in non-conducting PZ material.The time variation of the normalized EDIF is presented in Fig.14.For both conducting and non-conducting materials the EDIF in the whole time interval is almost uniform.A larger reduction of the EDIF is observed for conducting PZ material.

    Finally,we consider the functionally graded material(FGM)properties for the shear modulusc44inx2coordinate.An exponential variation is used

    Figure 11:Normalized stress intensity factor for the anti-plane crack within a strip under a pure mechanical load τ0.

    Figure 12:Normalized EDIF for the anti-plane crack within a strip under a pure mechanical load τ0.

    Figure 13:Normalized SIF for the anti-plane crack within a strip under a pure electric load D0=0,38·10-10C/m2.

    Figure 14:Normalized EDIF for the anti-plane crack within a strip under a pure electric load D0=0,38·10-10C/m2.

    wherec440corresponds to material parameter used in the previous example.For considered geometry and material gradation the shear modulus is almost doubled on the top and bottom surfaces than in the crack plane.Other material parameters are uniform with values given in earlier examples.A pure impact load with Heaviside time variation and initial electron densitym0=109m-3are considered.Numerical results for normalized stress intensity factor are presented in Fig.15.

    Figure 15:Influence of the shear modulus gradation on the SIF in a cracked strip under a pure mechanical impact load with m0=109m-3.

    For a gradation of mechanical material properties withx2coordinate and a uniform mass density,the wave propagation grows withx2.Therefore,the peak value of the SIF is reached in a shorter time instant in FGM strip than in a homogeneous one.The maximum value of the SIF is only slightly reduced for the FGM cracked strip.

    5 Conclusions

    The meshless local Petrov-Galerkin method(MLPG)is developed for transient dynamic analyses of the anti-plane crack problem in continuously nonhomogeneous PZ semiconductors.The analyzed 2-D domain of arbitrary shape is divided into small subdomains for which local integral equations are derived.The moving least-squares(MLS)scheme is adopted for approximating the physical quantities.The numerical results revealed that initial density of electrons(carriers of electric charge in n-type PZ semiconductors)has a strong influence on the induced electric potential and electric displacement intensity factor(EDIF).With increasing electric current in PZ semiconductor,the EDIF is decreasing.It has been observed that energy release rate is less sensitive to the electric load and electric current for PZ semiconductor as for non-conducting PZ solid.The influence of the ratio of crack length to the specimen size on the energy release rate is investigated too.The sensitivity of the energy release rate on the electric current and electric load decreases with increasing crack length ratio.

    One can observe that the initial electron density has vanishing influence on the stress intensity factor(SIF)for a crack under a pure impact mechanical load.In non-stationary case a pure electrical load yields a finite value of the SIF.More distinct response is observed in non-conducting material than in the PZ semiconductors.The normalized EDIF is almost invariable in time for both the conducting and non-conducting PZ samples.The EDIF for conducting PZ material,however,is significantly lower than that for the non-conducting PZ material.

    Acknowledgement:The authors gratefully acknowledge the supports by the Slovak Science and Technology Assistance Agency registered under number APVV-0014-10 and the Slovak Grant Agency VEGA-2/0011/13.

    Atluri S.N.(2004):The Meshless Method,(MLPG)For Domain&BIE Discretizations,Forsyth,Tech Science Press.

    Atluri,S.N.;Han,Z.D.;Shen,S.(2003):Meshless local Petrov-Galerkin(MLPG)approaches for solving the weakly-singular traction&displacement boundary integral equations.CMES:Computer Modeling in Engineering&Sciences,vol.4,no.5,pp.507-516.

    Auld,B.A.(1973):Acoustic Fields and Waves in Solids.John Wiley and Sons,New York,pp.357-382.

    Belytschko,T.;Moes,N.;Usi,S.;Parimi,C.(2001):Arbitrary discontinuities in finite elements.Int.J.Num.Meth.Eng.,vol.50,pp.993-1013.

    Deeg,W.F.(1980):The analysis of dislocation,crack,and inclusion problems in piezoelectric solids.Ph.D.Thesis,Stanford University,Stanford,CA.

    Busse,L.J.;Miller,J.G.(1981):Response characteristics of a finite aperture,phase insensitive ultrasonic receiver based upon the acoustoelectric effect.J.A-coust.Soc.Am.,vol.70,pp.1370-1376.

    Carpinteri,A.;Ferro,G.;Ventura,G.(2003):The partition of unity quadrature in element-free crack modeling.Comput.Struct.,vol.81,pp.1783-1794.

    Chen,J.;Liu,Z.X.;Zou,Z.Z.(2003):Electromechanical impact of a crack in a functionally graded piezoelectric medium.Theoretical and Applied FractureMechanics,vol.39,pp.47-60.

    Dineva,P.;Gross,D.;Muller,R.;Rangelov,T.(2010):BIEM analysis of dynamically loaded anti-plane cracks in graded piezoelectric finite solids.Int.J.Solids Structures,vol.47,pp.3150-3165.

    Heyman,J.S.(1978):Phase insensitive acoustoelectric transducer.J.Acoust.Soc.Am.,vol.64,pp.243-249.

    Houbolt,J.C.(1950):A recurrence matrix solution for the dynamic response of elastic aircraft.Journal of Aeronautical Sciences,vol.17,pp.371-376.

    Hu,Y.;Zeng,Y.;Yang,J.(2007):A mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry.Int.J.Solids Structures,vol.44,pp.3928-3938.

    Hutson,A.R.;White,D.L.(1962):Elastic wave propagation in piezoelectric semiconductors.J.Appl.Phys.,vol.33,pp.40-47.

    Kwon,S.M.(2004):On the dynamic propagation of an anti-plane shear crack in a functionally graded piezoelectric strip.Acta Mechanica,vol.167,pp.73-89.

    Kwon,S.M.(2003):Electrical nonlinear anti-plane shear crack in a functionally graded piezoelectric strip.Int.J Solids Structures,vol.40,pp.5649-5667.

    Lancaster,P.;Salkauskas,K.(1981):Surfaces generated by moving least square methods.Math.Comput.,vol.37,pp.141-158.

    Li,C.;Weng,G.J.(2002):Antiplane crack problem on functionally graded piezoelectric materials.ASME Journal of Applied Mechanics,vol.69,pp.481-488.

    Liu,G.R.;Dai,K.Y.;Lim,K.M.;Gu,Y.T.(2002):A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures.Comput.Mech.,vol.29,pp.510-519.

    Nayroles,B.;Touzot,G.;Villon,P.(1992):Generalizing the finite element method.Comput.Mech.,vol.10,pp.307-318.

    Ohs,R.R.;Aluru,N.R.(2001):Meshless analysis of piezoelectric devices.Comput.Mech.,vol.27,pp.23-36.

    Organ,D.;Fleming,M.;Terry,T.;Belytschko,T.(1996):Continuous meshless approximations for convex bodies by diffraction and transparency.Comput.Mech.,vol.18,pp.1-11.

    Pak,Y.E.(1990):Crack extension force in a piezoelectric material.ASME J.Applied Mechanics,vol.57,pp.647-653.

    Pak,Y.E.(1992):Linear electro-elastic fracture mechanics of piezoelectric materials.Int.J.Fracture,vol.54,pp.79-100.

    Sladek,J.;Sladek,V.;Atluri,S.N.(2004):Meshless local Petrov-Galerkin method in anisotropic elasticity.CMES:Computer Modeling in Engn&Sciences,vol.6,no.5,pp.477-489.

    Sladek,J.;Sladek,V.;Wunsche,M.;Zhang,Ch.(2012):Analysis of an interface crack between two dissimilar piezoelectric solids.Eng.Fracture Mech.,vol.89,pp.114–127.

    Sladek,J.;Sladek,V.;Zhang,Ch.;Wunsche,M.(2010):Crack analysis in piezoelectric solids with energetically consistent boundary conditions by the MLPG.CMES-Computer Modeling in Engineering&Sciences,vol.68,no.2,pp.185-220.

    Sladek,J.;Sladek,V.;Zhang,Ch.;Solek,P.;Pan,E.(2007):Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids.Int.J.Fracture,vol.145,pp.313–326.

    Sladek,J.;Stanak,P.;Han,Z.D.;Sladek,V.;Atluri,S.N.(2013):Applications of the MLPG method in engineering&Sciences:A review.CMES-Computer Modeling in Engineering&Sciences,vol.92,no.5,pp.423-475.

    Sosa,H.(1991):Plane problems in piezoelectric media with defects.Int.J.Solids Structures,vol.28,pp.491-505.

    Suresh,S.;Mortensen,A.(1998):Fundamentals of Functionally Graded Materials,Institute of Materials,London.

    Ueda,S.(2003):Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading.Theoretical Applied Fracture Mechanics,vol.40,pp.225-236.

    Yang,J.(2005):An anti-plane crack in a piezoelectric semiconductor.Int.J.Fracture,vol.136,pp.L27-L32.

    Yang,J.S.;Zhou,H.G.(2005):Amplification of acoustic waves in piezoelectric semiconductor plates.Int.J.Solids Structures,vol.42,pp.3171-3183.

    Wang,B.L.;Noda,N.(2001):Thermally induced fracture of a smart functionally graded composite structure.Theoretical Applied Fracture Mechanics,vol.35,pp.93-109.

    White,D.L.(1962):Amplification of ultrasonic waves in piezoelectric semiconductors.J.Appl.Phys.,vol.33,pp.2547-2554.

    Zhu,T.;Zhang,J.D.;Atluri,S.N.(1998):A local boundary integral equation(LBIE)method in computational mechanics,and a meshless discretization approaches.Comput.Mech.,vol.21,pp.223-235.

    Zhu,X.;Wang,Z.;Meng,A.(1995):A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system.J.Mater.Sci.Lett.,vol.14,pp.516-518.

    Zhu,X.;Zhu,J.;Zhou,S.;Li,Q.;Liu,Z.(1999):Microstructures of the monomorph piezoelectric ceramic actuators with functionally gradient.Sensors Actuators A,vol.74,pp.198-202.

    www国产在线视频色| 免费无遮挡裸体视频| 成人av一区二区三区在线看| 国产精品免费一区二区三区在线| 五月玫瑰六月丁香| 日本 欧美在线| 成人av在线播放网站| 法律面前人人平等表现在哪些方面| 欧美极品一区二区三区四区| 国产精品电影一区二区三区| 777久久人妻少妇嫩草av网站| 老熟妇乱子伦视频在线观看| 国产精品香港三级国产av潘金莲| 国产一区二区三区在线臀色熟女| 亚洲男人天堂网一区| 日韩欧美一区二区三区在线观看| 欧美+亚洲+日韩+国产| 色老头精品视频在线观看| 亚洲中文日韩欧美视频| 国产成人av激情在线播放| 99热这里只有精品一区 | 日韩欧美一区二区三区在线观看| 久久久国产欧美日韩av| 精品不卡国产一区二区三区| 搡老熟女国产l中国老女人| 国产av麻豆久久久久久久| 免费在线观看日本一区| 黄色a级毛片大全视频| 波多野结衣巨乳人妻| 午夜两性在线视频| 日韩精品免费视频一区二区三区| 中文字幕熟女人妻在线| 午夜福利视频1000在线观看| 日韩欧美国产在线观看| 日本成人三级电影网站| 国产精品香港三级国产av潘金莲| 久久中文字幕人妻熟女| 女警被强在线播放| 欧美一级a爱片免费观看看 | 日韩高清综合在线| 亚洲国产精品久久男人天堂| 国内精品一区二区在线观看| 久久亚洲精品不卡| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 亚洲av成人一区二区三| 久久久久亚洲av毛片大全| 男女床上黄色一级片免费看| 久久久国产成人免费| 国产人伦9x9x在线观看| 亚洲欧美精品综合一区二区三区| 2021天堂中文幕一二区在线观| av在线播放免费不卡| 在线观看免费日韩欧美大片| 欧美黑人巨大hd| 中文亚洲av片在线观看爽| 12—13女人毛片做爰片一| 男人舔奶头视频| 午夜福利18| av欧美777| 国产一区二区在线av高清观看| 国产av不卡久久| 两个人视频免费观看高清| 免费观看人在逋| 黄频高清免费视频| 久久精品91无色码中文字幕| 色综合站精品国产| av有码第一页| 90打野战视频偷拍视频| 露出奶头的视频| 国产精品日韩av在线免费观看| 天堂√8在线中文| 国产精品爽爽va在线观看网站| 国产91精品成人一区二区三区| 男人舔女人下体高潮全视频| 精品午夜福利视频在线观看一区| www国产在线视频色| 精品第一国产精品| 国产亚洲精品av在线| 91字幕亚洲| 免费高清视频大片| 在线观看免费午夜福利视频| 麻豆一二三区av精品| ponron亚洲| 99热只有精品国产| а√天堂www在线а√下载| a级毛片在线看网站| 中文字幕精品亚洲无线码一区| 在线观看日韩欧美| 97超级碰碰碰精品色视频在线观看| 黄色片一级片一级黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品久久二区二区免费| 国产伦一二天堂av在线观看| 国产熟女xx| 亚洲欧美精品综合一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲人与动物交配视频| 午夜激情福利司机影院| 午夜老司机福利片| 久久九九热精品免费| 久久久国产成人免费| 成人av在线播放网站| 青草久久国产| 国产真实乱freesex| 别揉我奶头~嗯~啊~动态视频| www.999成人在线观看| 波多野结衣高清作品| 深夜精品福利| 99re在线观看精品视频| 国产不卡一卡二| 亚洲国产看品久久| 亚洲成人中文字幕在线播放| 亚洲自拍偷在线| 亚洲精品一区av在线观看| 婷婷精品国产亚洲av在线| 最好的美女福利视频网| 国产真人三级小视频在线观看| 久久久国产欧美日韩av| 成人三级黄色视频| 亚洲国产看品久久| 精品久久久久久,| 国产高清视频在线播放一区| 精品国产超薄肉色丝袜足j| 国产爱豆传媒在线观看 | 欧美成人午夜精品| 又紧又爽又黄一区二区| 国产精品亚洲一级av第二区| 免费在线观看影片大全网站| 欧美+亚洲+日韩+国产| 国产真人三级小视频在线观看| 一级黄色大片毛片| 亚洲一区中文字幕在线| 亚洲国产日韩欧美精品在线观看 | 欧美又色又爽又黄视频| 好男人电影高清在线观看| 婷婷精品国产亚洲av在线| 午夜福利18| 一a级毛片在线观看| 一区福利在线观看| 一进一出好大好爽视频| 日本精品一区二区三区蜜桃| 色综合站精品国产| 欧美zozozo另类| 麻豆av在线久日| 一级作爱视频免费观看| 少妇的丰满在线观看| 法律面前人人平等表现在哪些方面| 精品欧美一区二区三区在线| 欧美久久黑人一区二区| netflix在线观看网站| 757午夜福利合集在线观看| 老司机在亚洲福利影院| 三级国产精品欧美在线观看 | netflix在线观看网站| 国产精品国产高清国产av| 99国产精品一区二区三区| 日本熟妇午夜| 色综合婷婷激情| 国产伦一二天堂av在线观看| 亚洲成av人片在线播放无| 曰老女人黄片| 亚洲专区国产一区二区| 999久久久精品免费观看国产| 老司机靠b影院| 亚洲精品在线美女| 少妇粗大呻吟视频| 男女午夜视频在线观看| 少妇被粗大的猛进出69影院| 日韩欧美免费精品| 亚洲人与动物交配视频| 国产激情欧美一区二区| 久久久久久免费高清国产稀缺| 亚洲中文字幕日韩| 一进一出好大好爽视频| 大型av网站在线播放| 欧美中文日本在线观看视频| 久久 成人 亚洲| 日本黄色视频三级网站网址| 在线免费观看的www视频| 男女视频在线观看网站免费 | 久热爱精品视频在线9| 亚洲国产看品久久| 大型av网站在线播放| 成熟少妇高潮喷水视频| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 日韩av在线大香蕉| 国产久久久一区二区三区| 国产乱人伦免费视频| www日本黄色视频网| 大型av网站在线播放| 校园春色视频在线观看| 国产精品一区二区三区四区免费观看 | 欧美绝顶高潮抽搐喷水| 国产亚洲精品第一综合不卡| 舔av片在线| 国产视频内射| 一本大道久久a久久精品| 在线视频色国产色| 波多野结衣高清作品| 国产av不卡久久| 国产精品久久视频播放| 久99久视频精品免费| 精品高清国产在线一区| 此物有八面人人有两片| 亚洲av电影在线进入| aaaaa片日本免费| 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 亚洲九九香蕉| 欧美成人免费av一区二区三区| 99热这里只有是精品50| 精品不卡国产一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 欧美日韩亚洲综合一区二区三区_| 岛国在线免费视频观看| 1024手机看黄色片| 国产aⅴ精品一区二区三区波| 国产成人精品久久二区二区免费| 在线观看66精品国产| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 久久精品91无色码中文字幕| 亚洲avbb在线观看| 国产午夜精品论理片| 国产精品综合久久久久久久免费| 久久久国产欧美日韩av| 我要搜黄色片| 美女 人体艺术 gogo| 免费观看精品视频网站| av福利片在线观看| 国产精品久久久av美女十八| 欧美一区二区国产精品久久精品 | 国产精品永久免费网站| 国产熟女xx| 在线观看www视频免费| 两个人免费观看高清视频| or卡值多少钱| 亚洲欧美日韩高清专用| 日韩欧美国产在线观看| av免费在线观看网站| 香蕉av资源在线| 天天添夜夜摸| 午夜激情福利司机影院| 中文字幕av在线有码专区| 精品一区二区三区视频在线观看免费| 午夜免费成人在线视频| 精品国产美女av久久久久小说| 亚洲av美国av| 日本a在线网址| bbb黄色大片| 亚洲男人的天堂狠狠| 久久久久久久久中文| 婷婷亚洲欧美| 神马国产精品三级电影在线观看 | 亚洲成人中文字幕在线播放| 国语自产精品视频在线第100页| 国产熟女xx| av欧美777| 一个人观看的视频www高清免费观看 | 黄频高清免费视频| 一夜夜www| 老鸭窝网址在线观看| 在线观看午夜福利视频| 久久精品91无色码中文字幕| 母亲3免费完整高清在线观看| 极品教师在线免费播放| 精品免费久久久久久久清纯| 一个人观看的视频www高清免费观看 | 国产高清有码在线观看视频 | 国产av一区二区精品久久| 99久久久亚洲精品蜜臀av| 每晚都被弄得嗷嗷叫到高潮| 最近最新免费中文字幕在线| 高清在线国产一区| 美女大奶头视频| 日日干狠狠操夜夜爽| 可以在线观看毛片的网站| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 十八禁网站免费在线| 黄频高清免费视频| 日日夜夜操网爽| 人人妻人人澡欧美一区二区| 国产成人aa在线观看| 亚洲一区二区三区不卡视频| 19禁男女啪啪无遮挡网站| 日本撒尿小便嘘嘘汇集6| 国产99白浆流出| 听说在线观看完整版免费高清| 一级作爱视频免费观看| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 91老司机精品| 少妇人妻一区二区三区视频| 男人的好看免费观看在线视频 | 国产高清视频在线播放一区| 日本一二三区视频观看| 黄色毛片三级朝国网站| 亚洲激情在线av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 啪啪无遮挡十八禁网站| 搞女人的毛片| 一区二区三区高清视频在线| av视频在线观看入口| 人妻久久中文字幕网| 人人妻,人人澡人人爽秒播| 老汉色av国产亚洲站长工具| 蜜桃久久精品国产亚洲av| av免费在线观看网站| 免费观看人在逋| 精品久久久久久成人av| 午夜福利欧美成人| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻aⅴ院| 91字幕亚洲| 性色av乱码一区二区三区2| 91在线观看av| 美女午夜性视频免费| 老司机午夜十八禁免费视频| 亚洲欧美精品综合一区二区三区| 久久久久久国产a免费观看| 成年女人毛片免费观看观看9| 欧美日韩黄片免| 国产一区二区在线观看日韩 | 免费高清视频大片| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 丰满的人妻完整版| 国模一区二区三区四区视频 | 麻豆成人午夜福利视频| 中文字幕最新亚洲高清| 国产亚洲av高清不卡| 99在线人妻在线中文字幕| 欧美人与性动交α欧美精品济南到| 成年人黄色毛片网站| 国产人伦9x9x在线观看| 身体一侧抽搐| 亚洲激情在线av| 精品熟女少妇八av免费久了| 99精品在免费线老司机午夜| 亚洲电影在线观看av| 嫩草影院精品99| 一进一出抽搐动态| 又紧又爽又黄一区二区| 18禁国产床啪视频网站| 欧美成人一区二区免费高清观看 | 在线观看免费午夜福利视频| 午夜精品一区二区三区免费看| 波多野结衣巨乳人妻| 国产一区二区在线观看日韩 | 欧美日韩亚洲综合一区二区三区_| 国产97色在线日韩免费| 老熟妇乱子伦视频在线观看| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 午夜福利高清视频| 99riav亚洲国产免费| 国产成人精品久久二区二区免费| 久久天堂一区二区三区四区| x7x7x7水蜜桃| 成人国产一区最新在线观看| 日韩高清综合在线| 999精品在线视频| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 亚洲午夜精品一区,二区,三区| a级毛片a级免费在线| 欧美高清成人免费视频www| 国产欧美日韩一区二区三| 日韩欧美国产在线观看| 精品久久久久久,| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 久久精品影院6| 国产精品电影一区二区三区| 香蕉av资源在线| 制服人妻中文乱码| www.自偷自拍.com| aaaaa片日本免费| 亚洲专区字幕在线| 最新在线观看一区二区三区| 神马国产精品三级电影在线观看 | 国产v大片淫在线免费观看| 国产精品国产高清国产av| 国产91精品成人一区二区三区| 国产精品自产拍在线观看55亚洲| 黄色视频,在线免费观看| 一个人免费在线观看的高清视频| av福利片在线| 观看免费一级毛片| 日本成人三级电影网站| 国产av不卡久久| 国产成人aa在线观看| 久久精品亚洲精品国产色婷小说| 国产一区二区三区视频了| 村上凉子中文字幕在线| 男女下面进入的视频免费午夜| 精品国产美女av久久久久小说| 欧美日韩亚洲综合一区二区三区_| 久久午夜亚洲精品久久| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 熟妇人妻久久中文字幕3abv| 国产成年人精品一区二区| 我要搜黄色片| 91老司机精品| 欧美又色又爽又黄视频| 桃红色精品国产亚洲av| 麻豆一二三区av精品| 久久精品国产清高在天天线| 久久性视频一级片| 一级毛片精品| 免费在线观看完整版高清| 午夜激情福利司机影院| 国产精品久久久久久久电影 | 欧美又色又爽又黄视频| a级毛片在线看网站| 国内精品久久久久精免费| 亚洲 国产 在线| 亚洲精品久久国产高清桃花| 精品第一国产精品| 精华霜和精华液先用哪个| a在线观看视频网站| 不卡av一区二区三区| 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址| 亚洲va日本ⅴa欧美va伊人久久| 国产精品,欧美在线| 免费在线观看亚洲国产| 精华霜和精华液先用哪个| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女视频黄频| 亚洲精品国产一区二区精华液| 男女下面进入的视频免费午夜| 99久久国产精品久久久| 久久人人精品亚洲av| 日本一区二区免费在线视频| 无遮挡黄片免费观看| 久久久精品国产亚洲av高清涩受| 日韩免费av在线播放| 亚洲成av人片免费观看| 国产三级中文精品| 日本一区二区免费在线视频| 一级a爱片免费观看的视频| 三级毛片av免费| 亚洲成人精品中文字幕电影| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久亚洲av鲁大| 免费看十八禁软件| 国产精品综合久久久久久久免费| a级毛片在线看网站| 亚洲精品中文字幕在线视频| 男人的好看免费观看在线视频 | 最近最新中文字幕大全免费视频| 国产av麻豆久久久久久久| 久久人妻福利社区极品人妻图片| 久久久久久久久免费视频了| 久久婷婷人人爽人人干人人爱| 国产精品 欧美亚洲| 亚洲国产精品sss在线观看| 国产真实乱freesex| www.自偷自拍.com| 一进一出抽搐动态| 搡老熟女国产l中国老女人| 18禁美女被吸乳视频| 一本综合久久免费| 久久精品91无色码中文字幕| 手机成人av网站| 亚洲七黄色美女视频| 麻豆成人av在线观看| 日韩有码中文字幕| 欧美高清成人免费视频www| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 天堂动漫精品| 黄色a级毛片大全视频| 一个人免费在线观看的高清视频| 天堂影院成人在线观看| 亚洲av电影在线进入| 国产1区2区3区精品| 午夜亚洲福利在线播放| 熟妇人妻久久中文字幕3abv| 午夜福利视频1000在线观看| 亚洲色图av天堂| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 制服诱惑二区| 午夜两性在线视频| av片东京热男人的天堂| 18禁观看日本| 99久久综合精品五月天人人| 国产三级中文精品| 国内久久婷婷六月综合欲色啪| 国产精品av视频在线免费观看| 桃色一区二区三区在线观看| 久久久久久人人人人人| 精品久久蜜臀av无| 日韩欧美精品v在线| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频| 午夜免费观看网址| 波多野结衣巨乳人妻| 亚洲男人天堂网一区| 国产熟女xx| 露出奶头的视频| 国产精品免费视频内射| 老鸭窝网址在线观看| 大型黄色视频在线免费观看| 亚洲第一欧美日韩一区二区三区| 欧美又色又爽又黄视频| 欧美色视频一区免费| av国产免费在线观看| e午夜精品久久久久久久| 99久久精品热视频| √禁漫天堂资源中文www| 国产精品日韩av在线免费观看| 人人妻人人看人人澡| 久久中文字幕人妻熟女| 国产视频内射| 亚洲成人精品中文字幕电影| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 国产精品九九99| svipshipincom国产片| 日韩精品青青久久久久久| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 国产精品 国内视频| 中文字幕高清在线视频| 岛国视频午夜一区免费看| 久久久精品大字幕| 日本 av在线| 日本在线视频免费播放| 国产高清视频在线播放一区| 精品久久久久久久末码| 午夜两性在线视频| 久久中文字幕一级| 久久久久免费精品人妻一区二区| 五月伊人婷婷丁香| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看 | 手机成人av网站| a级毛片a级免费在线| 亚洲人成网站在线播放欧美日韩| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 中文在线观看免费www的网站 | 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 中文字幕av在线有码专区| 一级片免费观看大全| 成人高潮视频无遮挡免费网站| 男插女下体视频免费在线播放| 国产乱人伦免费视频| 久久精品91无色码中文字幕| 91在线观看av| 亚洲片人在线观看| 日本 av在线| 免费在线观看黄色视频的| 亚洲自偷自拍图片 自拍| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 搞女人的毛片| 国产伦人伦偷精品视频| 亚洲中文日韩欧美视频| 听说在线观看完整版免费高清| 婷婷丁香在线五月| 99re在线观看精品视频| 亚洲欧美激情综合另类| 啦啦啦免费观看视频1| 欧美色欧美亚洲另类二区| 国产在线观看jvid| 操出白浆在线播放| 国产av在哪里看| 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看 | av欧美777| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品美女特级片免费视频播放器 | 欧美zozozo另类| 国产亚洲精品久久久久久毛片| 成在线人永久免费视频| 久久精品国产综合久久久| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久| 久久婷婷成人综合色麻豆| 女警被强在线播放| 熟女电影av网| 香蕉国产在线看|