• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Anti-plane Crack Analysis in Functional Graded Piezoelectric Semiconductor Crystals

    2014-04-16 03:38:16SladekVSladekEPanandYoung

    J.SladekV.SladekE.Panand D.L.Young

    1 Introduction

    Piezoelectric materials(PZ)can be either dielectrics or semiconductors.These materials have been widely used in various electromechanical devices and systems.Up to date dielectric materials are more intensively investigated than semiconductors.However,PZ semiconductors play a crucial role in offering the great electromechanical couling effect within a high-frequency regime.In PZ semiconductors the induced electric field produces also the electric current.The interaction between mechanical fields and mobile charges in PZ semiconductors is called the acoustoelectric effect[Hutson and White(1962);White(1962)].An acoustic wave traveling in a PZ semiconductor can be amplified by application of an initial or biasing dc electric field[Yang and Zhou(2005)].This phenomenon is utilized in many acoustoelectric devices[Heyman(1978);Busse and Miller(1981)].When an acoustic field deforms the PZ material,space charges are generated by the elastic field,causing the electrons to redistribute accordingly.The electron drift induced by an external field can become supersonic,and amplification can take place due to the phonon emission of carriers.

    Piezoelectric ceramics are brittle and susceptible to fracture during service.To improve the performance and to predict the reliable service lifetime of ceramic PZ components,it is necessary to analyze theoretically the damage and fracture processes taking place in PZ materials with consideration of the coupling effect between mechanics and electrics.Deeg(1980)and Pak(1990)addressed the inplane and anti-plane fracture problems of an in finite PZ body and obtained the closed form solutions of stress field and electric displacement field near the crack tip.

    To meet the demand of advanced PZ materials with improved mechanical,thermal,corrosion and wear resistant properties,the concept of functionally graded materials(FGMs)[Suresh and Mortensen(1998)]has recently been extended to the field of PZ solids.Consequently,the concept of FGMs can be extended to the piezoelasticity to obtain PZ materials with high strength,high toughness,low thermal expansion coefficient and low dielectric constant.Devices such as actuators based on functionally graded PZ materials(FGPMs)are presented by Zhu et al.(1995,1999).Fracture of FGPMs under a thermal load was studied by Wang and Noda(2001).An anti-plane crack problem can be described by relatively simpler governing equations than for in-plane problems[Li and Weng 2002a].The electroelastic problem of an anti-plane shear crack propagating in a functionally graded PZ ceramic strip was analyzed by the integral transform approach[Kwon(2004)].Recently,the in-plane crack problem in FGPMs was analyzed by Chen et al.(2003)and Ueda(2003).Anti-plane cracks in finite functionally graded PZ solids under time-harmonic loading was studied via a non-hypersingular traction based boundary integral equation method[Dineva et al.(2010)].The electrically nonlinear crack problem in a functionally graded PZ ceramic strip was analyzed by Kwon(2003).However,in all these crack problems,the PZ material was considered as a non-conducting dielectric.

    There are only few papers devoted to crack problems in PZ semiconductor materials.All papers concern the anti-plane crack problem in unbounded domain with a semi-in finite crack[Yang(2005)]and a finite crack[Hu et al.(2007)]under stationary conditions.The Fourier transform technique is usually applied to reduce the problem to a pair of dual integral equations.In the present paper,we aim at analyzing the anti-plane crack problem in bounded domains with functionally graded material properties and under transient loading conditions.The solution of the boundary value problems for continuously nonhomogeneous PZ solids requires advanced numerical methods due to the high mathematical complexity.The governing equations are more complicated than in a homogeneous counterpart and the electric and mechanical fields are coupled with each other.Transient regime brings additional complications.

    In recent years,meshless formulations are becoming popular due to their high adaptivity and low costs to prepare input and output data for numerical analyses.A variety of meshless methods has been proposed so far and some of them are also applied to PZ problems[Ohs and Aluru(2001);Liu et al.(2002);Sladek et al.(2007,2010,2012)].They can be derived either from a weak-form formulation on the global domain or a set of local subdomains.In the global formulation,background cells are required for the integration of the weak-form.The meshless local Petrov-Galerkin(MLPG)method is a fundamental base for the derivation of many meshless formulations,since trial and test functions can be chosen from different functional spaces.Recently,the MLPG method with a Heaviside step function as the test functions[Atluri et al.(2003);Atluri(2004);Sladek et al.(2004);Sladek et al.(2013)]was applied to crack problems in continuously nonhomogeneous medium[Sladek et al.(2007)]and an interface crack problem[Sladek et al.(2010)].Impermeable or permeable crack conditions were considered there.Energetically consistent boundary conditions on the crack-faces are considered too[Sladek et al.(2012)].This model is leading to consistency of total and crack-tip energy release rates.An additional closing traction is added to the well-known semi-permeable crack-face boundary conditions.

    In this paper,the MLPG is applied to a finite continuously nonhomogeneous PZ conducting solid with anti-plane crack under transient boundary conditions.The coupled governing partial differential equations for shear stresses,electric displacement field and current are satisfied in a weak-form on small fictitious subdomains.Nodal points are introduced and spread on the analyzed domain and each node is surrounded by a small circle for simplicity,but without loss of generality.If the shape of subdomains has a simple form,numerical integrations over them can be easily carried out.The integral equations have a very simple nonsingular form.The spatial variations of the displacement,electric potential and electron density are approximated by the Moving Least-Squares(MLS)scheme[Zhu et al.(1998)].After performing the spatial integrations,a system of ordinary differential equa-tions for unknown nodal values is obtained.The essential boundary conditions on the global boundary are satisfied by the collocation approach.Then,the system of the ordinary differential equations of the second order resulting from the equations of motion is solved by the Houbolt finite-difference scheme[Houbolt 1950]as a time-stepping method.

    2 Local integral equations for piezoelectric semiconductor

    Consider a homogeneous n-type PZ semiconductor withm0electron density in unloaded state with vanishing initial electric fieldE0.Supposing the frequency of external loadings to be close to characteristic frequency of elastic waves,one can assume quasi-static approximation for the electromagnetic field.Then,the effect of Faraday’s induction is neglected even if there is a magnetic field induced by the electric current according to the Ampere’s law.Eventually,the governing equations within the linear theory are given by the balance of momentum,Gauss’s law and conservation of charge[Hutson and White(1962)]

    where¨ui,σij,Di,andqare the acceleration of displacements,stress tensor,electric displacement field,and electric charge of the electron,respectively.The electron density and electric current are denoted bymandJi,respectively.Symbolρis used for the mass density.A comma followed by an index denotes partial differentiation with respect to the coordinate associated with the index.

    These governing equations(1)have to be supplemented by the constitutive equations below[Hutson and White(1962);White(1962)]

    wherecijkl(x),eijk(x),hij(x),μij(x)anddij(x)are the elastic,PZ,dielectric,electron mobility and carrier diffusion material coefficients,respectively.Generally,these coefficients can depend on Cartesian coordinates in functionally graded materials.

    Finally,the strain tensorεijand the electric field vectorEjare related to the displacementsuiand the electric potentialφby

    In this analysis,we assume a transversely isotropic PZ solid.Assuming anti-plane deformations(u1=u2=0)with all the fields dependent on the in-plane coordinates(x1,x2),hence the following fields vanish:

    Then,the governing equations are transformed into a simpler form

    The constitutive equations for the transversally isotropic anti-plane problem become[Hu et al.(2007)]

    Instead of writing the global weak-form for the above governing equations,we apply the MLPG method to construct a weak-form on the local fictitious subdomains such as ?s,which is a small region taken for each node inside the global domain[Atluri(2004)].The local subdomains are distributed inside the whole global domain ?.The local subdomains could be of any geometrical shape and size.In the present paper,the local subdomains are taken to be of circular shape.The local weak-form of the governing equations(5)can be written as

    whereu?(x)is a test function.

    Applying the Gauss divergence theorem to equations(7)-(9)one obtains

    where??sis the boundary of the local subdomain[Atluri 2004]andnαis a unit normal vector to the boundary??s.By choosing a Heaviside step function as the test functionu?(x)in each subdomain

    the local weak-forms(10)-(12)are converted into the following local boundarydomain integral equations

    In the MLPG method the test and trial functions are not necessarily from the same functional spaces.For internal nodes,the test function is chosen as the Heaviside step function with its support on the local subdomain.The trial functions,on the other hand,are chosen to be the moving least-squares(MLS)approximation over a number of nodes spread within the domain of influence.Details are given in the next section.

    3 Numerical solution

    According to the MLS[Lancaster and Salkauskas(1981);Nayroles et al.(1992)]method,the approximation of physical fieldsf(x,τ)(i.e.,the displacement,electric potential and electron density)over a number of randomly located nodes=1,2,...n,is given by

    wherenis the number of nodes used for the approximation.It is determined by the weight functionwa(x)associated with the nodea.The symbolstands for the fictitious nodal values,but not the nodal values of the unknown trial functions in general.The stationarity ofsin eq.(19)with respect to a(x,τ)leads to the following linear relation between a(x,τ)and

    The solution of Eq.(20)for a(x,τ)and a subsequent substitution into Eq.(16)gives the approximation formulas for the displacement,electric potential,and electron density[Sladek et al.(2010)]

    whereis the size of the support domain.It is seen that theC1-continuity is ensured over the entire domain;therefore the continuity conditions of the traction,electric charge and the electric current are satisfied.

    In the local integral equations(13)-(15)we have the scalar products of the normal vector with shear stresses,electrical displacement and electric current.Substituting the MLS approximations into the scalar products we obtain

    Substituting Eqs.(24)-(26)into the local integral equations(13)-(15),we obtain the following system of ordinary differential equations

    The essential boundary conditions at nodal points on the global boundary are satisfied by approximation formula(22)

    It should be noted that one of the most important properties of the MLS approximation is its high-order continuity of approximated fields.On the other hand,there are such problems in which even the primary fields suffer certain discontinuities.For instance,the displacements are discontinuous across the crack surface.Crack discontinuities can be treated in several ways in the meshless approximation[Organ et al.(1996);Carpinteri et al.(2003)].The simplest approach to satisfy the discontinuity of displacements on the crack surfaces is the visibility criterion.Nodes lying inside the domain ABC shown in Fig.1 are not considered for the evaluation of the shape function at the point x in the MLS-approximation(i.e.,the mentioned nodes are excluded from the support domain).Another approach for the treatment of crack discontinuities in both the meshless and the FEM is based on the introduction of discontinuous enrichment functions[Belytschko et al.(2001)].Carpinteri et al.(2003)proposed the method where the crack is virtually extended in the direction of the tangent at the crack-tip.All the weight functions whose support domains intersect the real crack are cut along the crack line(real+virtual),while the weight functions are left unchanged if the support domains intersect only the virtual crack.That method has to be applied to problems where symmetry with respect to the crack plane cannot be utilized and both crack surfaces has to be modeled.It happens if materials properties are varying along the direction normal to the crack plane.

    Figure 1:Visibility criterion for the support of domain in the crack-tip vicinity.

    4 Numerical examples

    Consider a finite PZ semiconductor strip in planex1-x2with size 2H×2L(Fig.2)and a central crack with length 2a.On the top and bottom surfaces,the shear stressτ0,electric displacementD0and the electric currentJ0are applied.Electrically impermeable boundary conditions on the crack surface are considered that gives rise to singular behavior of both the electric intensity and electric displacement fields near the crack tips.First,the numerical analysis is performed for a homogeneous material.The material properties correspond to Cadmium Sulfide CdS[Auld 1973]:

    Figure 2:Anti-plane crack in a finite strip.

    Due to the symmetry of the problem,it is sufficient to analyze only a quarter of the cracked strip.The strip widthL=2.5a,crack lengtha=0.08mand height of the striph=1.25Lare considered.In the first example the crack size is relatively small with respect to the strip size.The mechanical displacement,electrical potential and electron density in the quarter of the specimen are approximated with 930(31x30)nodes equidistantly distributed.The local subdomains are considered to be circular with a radiusrloc=0.006m.

    Variations of displacements,electric potentials and electron densities along the crack surface for various initial electron densitiesm0are presented in Figs 3,4 and 5,respectively.The presented numerical results correspond to a pure mechanical loadτ0=1Pa.One can observe that initial electron density has a small influence on the crack displacement.However,the induced electric potential is strongly dependent on the initial electron density.The largest value of the induced potential is for a non-conducting PZ material.With increasing value ofm0,the induced electric potential decreases.The observed electron density on the crack surface is strongly dependent onm0value.The higher value ofm0results in lower density of electronsm.

    For cracks in homogeneous and linear PZ solids the asymptotic behaviour of the field quantities near the crack tip has been given by Sosa(1991)and Pak(1992).In one of our previous papers[Sladek et al.(2007)]we showed that the stress singularity at the crack tip in a continuously nonhomogeneous PZ solid is the same as that in a homogeneous one.Therefore,similarly to a homogeneous case[Hu et al.,(2007)]we can de fine field intensity factors in functionally graded PZ semiconductors as

    Figure 3:Variation of displacement u3along the crack under a pure mechanical load τ0=1N/m2.

    Figure 4:Variation of the electric potential(-φ)along the crack under a pure mechanical load τ0=1N/m2.

    Figure 5:Variation of the electron density m along the crack under a pure mechanical load τ0=1N/m2.

    whereare the stress intensity factor,electrical displacement intensity factor,strain intensity factor and electric field intensity factor,respectively All intensity factors(IFs)in equations(33)-(36)are computed using the extrapolations technique from three corresponding quantities at three points ahead the crack tip.Their distance from the crack tip has to be sufficiently small due to validity of asymptotic expansion of stressσ23,electric displacementD2,strainγ23and electric intensity fieldE2.It follows from constitutive equations(2)and(6)that intensity factorsKσandKDcan be expressed byKγandKE,respectively.Then,one gets

    The energy release rate can be de fined on the base of above given intensity factors[Pak(1990)]

    For stationary boundary conditions the stress intensity factor(SIF)for nonconducting PZ solid is independent on electric loadD0.The SIF vanishes in such a case since the stressesσ23are zero ahead the crack tip on the crack line because of the immediate electromechanical interaction,despite the finite value of induced electric potential for a pure mechanical load(Fig.4).It means that displacement and electric potential are coupled;however,intensity factors are decoupled in a stationary case.

    Figure 6:Variation of the electric displacement intensity factor with initial electron density.

    In conducting PZ solids we observe a strong influence of the initial electronic densitym0on the induced electric potential.Therefore,it is interesting to investigate the influence ofm0on the electric displacement intensity factor for the crack under a mixed mechanicalτ0and electric loadD0.The variation ofKDwith initial electron density is given in Fig.6.For a pure mechanical load we get a vanishing value ofKDfor any value ofm0.For a finite value of the electric loadD0we get a finite value ofKDfor non-conducting material.With increasing conductivity of PZ semiconductor,theKDvalue is reduced and form0=1011m-3the electric displacement intensity factor is almost zero.

    Figure 7:Influence of the electric load on the energy release rate for a mixed load.

    The influence of the electric loadD0and electric currentJ0on the energy release rate is shown in Fig.7 and 8,respectively.Two different initial electron densities are considered in the numerical analyses.One can observe that the energy release rate is less sensitive on the electric load and electric current for PZ semiconductor as for non-conducting PZ solid,since the initial electron densitym0=106can be considered as a value corresponding to a non-conducting solid.

    It is also interesting to investigate influence of the geometry(crack size and strip size)on G.Therefore,we consider a larger crack with lengtha=0.08mand smaller strip heighth=1.0Land strip widthL=2.0a.The energy release rate for this cracked specimen is givenin Fig.9.The sensitivity on the electric current is smaller for a larger crack size and smaller specimen.A similar influence is observed for the electric loadD0as shown in Fig.10.

    We now consider the influence of the non-stationary boundary conditions on the physical quantities.The strip is subjected to an impact load with Heaviside time variation and the intensityτ0=1Pafor a pure mechanical load.Time variation of the normalized stress intensity factors for a non-conducting and semiconductor PZ solid are presented in Fig.11,whereOne can observe that the initial electron density has vanishing influence on the SIF.In non-stationary case a pure electrical load can induce finite value of the SIF.The response of the electric fields is immediate,while that of the elastic ones is taken as finite because of the finite velocity of elastic waves.On the other hand,in a static case,the response of both the mechanical(strain,stress)and electrical fields is immediate.One can observe finite value of the electric displacement intensity factor(EDIF)for a pure mechanical load in Fig.12.However,due to small value of the PZ coefficient,the induced EDIF is small for non-conducting solid.Larger values are observed for the conducting material.It is due to strong influence ofm0onKDas observed for stationary boundary conditions.

    Figure 8:Influence of the electric current on the energy release rate for a mixed load.

    Figure 9:Influence of the electric current J0on the energy release rate for a mixed load when the crack is larger with a=0.1m.

    Figure 10:Influence of the electric load D0on the energy release rate for a mixed load when the crack is larger with a=0.1m.

    If a pure electric loadD0is applied one can observe a strong influence ofm0on the SIF as shown in Fig.13.Larger values of the SIF are achieved in non-conducting PZ material.The time variation of the normalized EDIF is presented in Fig.14.For both conducting and non-conducting materials the EDIF in the whole time interval is almost uniform.A larger reduction of the EDIF is observed for conducting PZ material.

    Finally,we consider the functionally graded material(FGM)properties for the shear modulusc44inx2coordinate.An exponential variation is used

    Figure 11:Normalized stress intensity factor for the anti-plane crack within a strip under a pure mechanical load τ0.

    Figure 12:Normalized EDIF for the anti-plane crack within a strip under a pure mechanical load τ0.

    Figure 13:Normalized SIF for the anti-plane crack within a strip under a pure electric load D0=0,38·10-10C/m2.

    Figure 14:Normalized EDIF for the anti-plane crack within a strip under a pure electric load D0=0,38·10-10C/m2.

    wherec440corresponds to material parameter used in the previous example.For considered geometry and material gradation the shear modulus is almost doubled on the top and bottom surfaces than in the crack plane.Other material parameters are uniform with values given in earlier examples.A pure impact load with Heaviside time variation and initial electron densitym0=109m-3are considered.Numerical results for normalized stress intensity factor are presented in Fig.15.

    Figure 15:Influence of the shear modulus gradation on the SIF in a cracked strip under a pure mechanical impact load with m0=109m-3.

    For a gradation of mechanical material properties withx2coordinate and a uniform mass density,the wave propagation grows withx2.Therefore,the peak value of the SIF is reached in a shorter time instant in FGM strip than in a homogeneous one.The maximum value of the SIF is only slightly reduced for the FGM cracked strip.

    5 Conclusions

    The meshless local Petrov-Galerkin method(MLPG)is developed for transient dynamic analyses of the anti-plane crack problem in continuously nonhomogeneous PZ semiconductors.The analyzed 2-D domain of arbitrary shape is divided into small subdomains for which local integral equations are derived.The moving least-squares(MLS)scheme is adopted for approximating the physical quantities.The numerical results revealed that initial density of electrons(carriers of electric charge in n-type PZ semiconductors)has a strong influence on the induced electric potential and electric displacement intensity factor(EDIF).With increasing electric current in PZ semiconductor,the EDIF is decreasing.It has been observed that energy release rate is less sensitive to the electric load and electric current for PZ semiconductor as for non-conducting PZ solid.The influence of the ratio of crack length to the specimen size on the energy release rate is investigated too.The sensitivity of the energy release rate on the electric current and electric load decreases with increasing crack length ratio.

    One can observe that the initial electron density has vanishing influence on the stress intensity factor(SIF)for a crack under a pure impact mechanical load.In non-stationary case a pure electrical load yields a finite value of the SIF.More distinct response is observed in non-conducting material than in the PZ semiconductors.The normalized EDIF is almost invariable in time for both the conducting and non-conducting PZ samples.The EDIF for conducting PZ material,however,is significantly lower than that for the non-conducting PZ material.

    Acknowledgement:The authors gratefully acknowledge the supports by the Slovak Science and Technology Assistance Agency registered under number APVV-0014-10 and the Slovak Grant Agency VEGA-2/0011/13.

    Atluri S.N.(2004):The Meshless Method,(MLPG)For Domain&BIE Discretizations,Forsyth,Tech Science Press.

    Atluri,S.N.;Han,Z.D.;Shen,S.(2003):Meshless local Petrov-Galerkin(MLPG)approaches for solving the weakly-singular traction&displacement boundary integral equations.CMES:Computer Modeling in Engineering&Sciences,vol.4,no.5,pp.507-516.

    Auld,B.A.(1973):Acoustic Fields and Waves in Solids.John Wiley and Sons,New York,pp.357-382.

    Belytschko,T.;Moes,N.;Usi,S.;Parimi,C.(2001):Arbitrary discontinuities in finite elements.Int.J.Num.Meth.Eng.,vol.50,pp.993-1013.

    Deeg,W.F.(1980):The analysis of dislocation,crack,and inclusion problems in piezoelectric solids.Ph.D.Thesis,Stanford University,Stanford,CA.

    Busse,L.J.;Miller,J.G.(1981):Response characteristics of a finite aperture,phase insensitive ultrasonic receiver based upon the acoustoelectric effect.J.A-coust.Soc.Am.,vol.70,pp.1370-1376.

    Carpinteri,A.;Ferro,G.;Ventura,G.(2003):The partition of unity quadrature in element-free crack modeling.Comput.Struct.,vol.81,pp.1783-1794.

    Chen,J.;Liu,Z.X.;Zou,Z.Z.(2003):Electromechanical impact of a crack in a functionally graded piezoelectric medium.Theoretical and Applied FractureMechanics,vol.39,pp.47-60.

    Dineva,P.;Gross,D.;Muller,R.;Rangelov,T.(2010):BIEM analysis of dynamically loaded anti-plane cracks in graded piezoelectric finite solids.Int.J.Solids Structures,vol.47,pp.3150-3165.

    Heyman,J.S.(1978):Phase insensitive acoustoelectric transducer.J.Acoust.Soc.Am.,vol.64,pp.243-249.

    Houbolt,J.C.(1950):A recurrence matrix solution for the dynamic response of elastic aircraft.Journal of Aeronautical Sciences,vol.17,pp.371-376.

    Hu,Y.;Zeng,Y.;Yang,J.(2007):A mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry.Int.J.Solids Structures,vol.44,pp.3928-3938.

    Hutson,A.R.;White,D.L.(1962):Elastic wave propagation in piezoelectric semiconductors.J.Appl.Phys.,vol.33,pp.40-47.

    Kwon,S.M.(2004):On the dynamic propagation of an anti-plane shear crack in a functionally graded piezoelectric strip.Acta Mechanica,vol.167,pp.73-89.

    Kwon,S.M.(2003):Electrical nonlinear anti-plane shear crack in a functionally graded piezoelectric strip.Int.J Solids Structures,vol.40,pp.5649-5667.

    Lancaster,P.;Salkauskas,K.(1981):Surfaces generated by moving least square methods.Math.Comput.,vol.37,pp.141-158.

    Li,C.;Weng,G.J.(2002):Antiplane crack problem on functionally graded piezoelectric materials.ASME Journal of Applied Mechanics,vol.69,pp.481-488.

    Liu,G.R.;Dai,K.Y.;Lim,K.M.;Gu,Y.T.(2002):A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures.Comput.Mech.,vol.29,pp.510-519.

    Nayroles,B.;Touzot,G.;Villon,P.(1992):Generalizing the finite element method.Comput.Mech.,vol.10,pp.307-318.

    Ohs,R.R.;Aluru,N.R.(2001):Meshless analysis of piezoelectric devices.Comput.Mech.,vol.27,pp.23-36.

    Organ,D.;Fleming,M.;Terry,T.;Belytschko,T.(1996):Continuous meshless approximations for convex bodies by diffraction and transparency.Comput.Mech.,vol.18,pp.1-11.

    Pak,Y.E.(1990):Crack extension force in a piezoelectric material.ASME J.Applied Mechanics,vol.57,pp.647-653.

    Pak,Y.E.(1992):Linear electro-elastic fracture mechanics of piezoelectric materials.Int.J.Fracture,vol.54,pp.79-100.

    Sladek,J.;Sladek,V.;Atluri,S.N.(2004):Meshless local Petrov-Galerkin method in anisotropic elasticity.CMES:Computer Modeling in Engn&Sciences,vol.6,no.5,pp.477-489.

    Sladek,J.;Sladek,V.;Wunsche,M.;Zhang,Ch.(2012):Analysis of an interface crack between two dissimilar piezoelectric solids.Eng.Fracture Mech.,vol.89,pp.114–127.

    Sladek,J.;Sladek,V.;Zhang,Ch.;Wunsche,M.(2010):Crack analysis in piezoelectric solids with energetically consistent boundary conditions by the MLPG.CMES-Computer Modeling in Engineering&Sciences,vol.68,no.2,pp.185-220.

    Sladek,J.;Sladek,V.;Zhang,Ch.;Solek,P.;Pan,E.(2007):Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids.Int.J.Fracture,vol.145,pp.313–326.

    Sladek,J.;Stanak,P.;Han,Z.D.;Sladek,V.;Atluri,S.N.(2013):Applications of the MLPG method in engineering&Sciences:A review.CMES-Computer Modeling in Engineering&Sciences,vol.92,no.5,pp.423-475.

    Sosa,H.(1991):Plane problems in piezoelectric media with defects.Int.J.Solids Structures,vol.28,pp.491-505.

    Suresh,S.;Mortensen,A.(1998):Fundamentals of Functionally Graded Materials,Institute of Materials,London.

    Ueda,S.(2003):Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading.Theoretical Applied Fracture Mechanics,vol.40,pp.225-236.

    Yang,J.(2005):An anti-plane crack in a piezoelectric semiconductor.Int.J.Fracture,vol.136,pp.L27-L32.

    Yang,J.S.;Zhou,H.G.(2005):Amplification of acoustic waves in piezoelectric semiconductor plates.Int.J.Solids Structures,vol.42,pp.3171-3183.

    Wang,B.L.;Noda,N.(2001):Thermally induced fracture of a smart functionally graded composite structure.Theoretical Applied Fracture Mechanics,vol.35,pp.93-109.

    White,D.L.(1962):Amplification of ultrasonic waves in piezoelectric semiconductors.J.Appl.Phys.,vol.33,pp.2547-2554.

    Zhu,T.;Zhang,J.D.;Atluri,S.N.(1998):A local boundary integral equation(LBIE)method in computational mechanics,and a meshless discretization approaches.Comput.Mech.,vol.21,pp.223-235.

    Zhu,X.;Wang,Z.;Meng,A.(1995):A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system.J.Mater.Sci.Lett.,vol.14,pp.516-518.

    Zhu,X.;Zhu,J.;Zhou,S.;Li,Q.;Liu,Z.(1999):Microstructures of the monomorph piezoelectric ceramic actuators with functionally gradient.Sensors Actuators A,vol.74,pp.198-202.

    久久久精品大字幕| 国产三级中文精品| 国产精品,欧美在线| 色播亚洲综合网| 国产亚洲欧美98| 欧美潮喷喷水| 老熟妇仑乱视频hdxx| 亚洲综合色惰| 精品久久久久久久末码| 国产精品永久免费网站| 亚洲av五月六月丁香网| 深夜a级毛片| 久久久久久久精品吃奶| 亚洲精品456在线播放app | 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 五月玫瑰六月丁香| 免费观看的影片在线观看| 蜜桃久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 亚洲七黄色美女视频| 国产亚洲欧美98| 91在线观看av| 美女免费视频网站| 一区二区三区四区激情视频 | 九九久久精品国产亚洲av麻豆| 嫩草影院新地址| 在线看三级毛片| 国产在线男女| 亚洲乱码一区二区免费版| 国产三级黄色录像| 在线看三级毛片| 18+在线观看网站| ponron亚洲| 十八禁网站免费在线| 亚洲五月天丁香| а√天堂www在线а√下载| 一本久久中文字幕| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 搡老岳熟女国产| 嫩草影院精品99| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 亚洲专区国产一区二区| 亚洲,欧美精品.| 中国美女看黄片| 国内久久婷婷六月综合欲色啪| 黄色一级大片看看| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 欧美中文日本在线观看视频| 欧美不卡视频在线免费观看| 国产精品,欧美在线| 嫁个100分男人电影在线观看| 国产av一区在线观看免费| 国产乱人伦免费视频| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| av黄色大香蕉| 一区二区三区激情视频| 亚洲熟妇中文字幕五十中出| 18禁黄网站禁片午夜丰满| a级一级毛片免费在线观看| 12—13女人毛片做爰片一| 天堂√8在线中文| 国产欧美日韩一区二区精品| 欧美高清成人免费视频www| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 成人鲁丝片一二三区免费| 色5月婷婷丁香| 精品人妻1区二区| 中文字幕熟女人妻在线| 国产视频内射| 搞女人的毛片| avwww免费| 嫩草影院入口| 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 一二三四社区在线视频社区8| 给我免费播放毛片高清在线观看| 久久久久久久亚洲中文字幕 | 无人区码免费观看不卡| 久久久久久久久久成人| 婷婷六月久久综合丁香| 1024手机看黄色片| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| av视频在线观看入口| 日韩欧美在线二视频| 变态另类成人亚洲欧美熟女| 一二三四社区在线视频社区8| 可以在线观看的亚洲视频| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 欧美日韩黄片免| 国产麻豆成人av免费视频| 亚洲国产精品久久男人天堂| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻偷拍中文字幕| 床上黄色一级片| 一区二区三区免费毛片| 女人被狂操c到高潮| 成人精品一区二区免费| 欧美日韩综合久久久久久 | 欧美区成人在线视频| 国产主播在线观看一区二区| 欧美一区二区亚洲| 禁无遮挡网站| 亚洲人成网站高清观看| 两个人的视频大全免费| 97超视频在线观看视频| 色精品久久人妻99蜜桃| 老司机午夜福利在线观看视频| 真实男女啪啪啪动态图| 精品久久久久久久人妻蜜臀av| 看十八女毛片水多多多| 久久热精品热| 国产高清激情床上av| 欧美性猛交黑人性爽| 国模一区二区三区四区视频| 久久久国产成人精品二区| 欧美潮喷喷水| 亚洲成人免费电影在线观看| 亚洲国产精品999在线| 亚洲精品粉嫩美女一区| 久久久久国内视频| 老司机午夜福利在线观看视频| 色综合婷婷激情| 一区二区三区高清视频在线| 一本一本综合久久| 在线播放无遮挡| 少妇被粗大猛烈的视频| 精品一区二区三区视频在线| 内射极品少妇av片p| 九九久久精品国产亚洲av麻豆| 青草久久国产| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 禁无遮挡网站| 中文资源天堂在线| 国产精品,欧美在线| 一进一出抽搐动态| h日本视频在线播放| 亚洲熟妇中文字幕五十中出| 琪琪午夜伦伦电影理论片6080| 首页视频小说图片口味搜索| 在线观看免费视频日本深夜| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| 欧美日韩综合久久久久久 | 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av涩爱 | 亚洲午夜理论影院| 99久久精品热视频| 可以在线观看的亚洲视频| 内射极品少妇av片p| 久久这里只有精品中国| 一级作爱视频免费观看| 亚洲av五月六月丁香网| 淫秽高清视频在线观看| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 91在线精品国自产拍蜜月| 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 久久久久亚洲av毛片大全| 亚洲欧美日韩卡通动漫| 国产欧美日韩精品一区二区| 一区福利在线观看| 午夜激情欧美在线| 午夜两性在线视频| 搡老妇女老女人老熟妇| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| 婷婷六月久久综合丁香| 夜夜夜夜夜久久久久| 亚洲av二区三区四区| 久久精品影院6| 蜜桃亚洲精品一区二区三区| 动漫黄色视频在线观看| 一区二区三区四区激情视频 | or卡值多少钱| 久久人妻av系列| 国产三级中文精品| 欧美黑人巨大hd| 日日夜夜操网爽| 无遮挡黄片免费观看| 欧美在线一区亚洲| 午夜日韩欧美国产| 国产精品,欧美在线| 国产视频内射| 91久久精品电影网| 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 欧美黑人欧美精品刺激| 欧美成人免费av一区二区三区| 精品一区二区三区人妻视频| av视频在线观看入口| 看免费av毛片| 男女做爰动态图高潮gif福利片| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 亚洲国产欧美人成| 日本在线视频免费播放| 2021天堂中文幕一二区在线观| 午夜免费激情av| 欧美+日韩+精品| 国产精品,欧美在线| 桃色一区二区三区在线观看| 国产极品精品免费视频能看的| 国产黄色小视频在线观看| 国产成人a区在线观看| 久久国产乱子免费精品| 99热6这里只有精品| 国产老妇女一区| 亚洲狠狠婷婷综合久久图片| 啦啦啦韩国在线观看视频| 日韩中字成人| 国内精品久久久久久久电影| 麻豆成人av在线观看| 乱人视频在线观看| 国产色爽女视频免费观看| 国产野战对白在线观看| 无人区码免费观看不卡| 日本黄大片高清| 亚洲av一区综合| 亚洲人成网站高清观看| 色综合亚洲欧美另类图片| 日本撒尿小便嘘嘘汇集6| 国语自产精品视频在线第100页| a级毛片a级免费在线| 99久久成人亚洲精品观看| 婷婷精品国产亚洲av在线| 久久久久国内视频| 久久精品国产亚洲av涩爱 | 久久久久国产精品人妻aⅴ院| 亚洲内射少妇av| 精品久久久久久成人av| 美女大奶头视频| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 欧美性猛交╳xxx乱大交人| 淫妇啪啪啪对白视频| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 精品一区二区三区视频在线观看免费| 啪啪无遮挡十八禁网站| 国产免费男女视频| 国产国拍精品亚洲av在线观看| 极品教师在线视频| 免费看a级黄色片| 毛片女人毛片| 精品福利观看| 69av精品久久久久久| 在线播放无遮挡| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久国产乱子伦精品免费另类| 国产精品嫩草影院av在线观看 | 国产视频一区二区在线看| 免费大片18禁| 午夜日韩欧美国产| 久久久久久久午夜电影| 亚洲在线观看片| 最新中文字幕久久久久| 又爽又黄无遮挡网站| 精品人妻偷拍中文字幕| 简卡轻食公司| 国产一区二区三区视频了| 日本 欧美在线| 国产午夜精品论理片| 哪里可以看免费的av片| 亚洲人成网站高清观看| 搡女人真爽免费视频火全软件 | 欧美性猛交黑人性爽| 天堂网av新在线| 亚洲欧美成人综合另类久久久| 欧美丝袜亚洲另类| 男的添女的下面高潮视频| 18禁裸乳无遮挡免费网站照片| 国产探花极品一区二区| 色视频在线一区二区三区| 波多野结衣巨乳人妻| 一本色道久久久久久精品综合| 国产91av在线免费观看| 日韩中字成人| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 国产 精品1| 成年女人看的毛片在线观看| 久久国内精品自在自线图片| av.在线天堂| 91精品伊人久久大香线蕉| 亚洲性久久影院| 麻豆国产97在线/欧美| 真实男女啪啪啪动态图| 18禁裸乳无遮挡动漫免费视频 | 久久久国产一区二区| 精品亚洲乱码少妇综合久久| 菩萨蛮人人尽说江南好唐韦庄| 极品教师在线视频| av国产免费在线观看| 三级国产精品片| 交换朋友夫妻互换小说| 一本一本综合久久| 在线看a的网站| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 国产精品精品国产色婷婷| 联通29元200g的流量卡| 精品久久久久久久久av| 国产探花在线观看一区二区| 国产亚洲91精品色在线| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 久久99热这里只有精品18| 中文字幕制服av| 国产精品福利在线免费观看| 超碰97精品在线观看| 婷婷色麻豆天堂久久| 日韩 亚洲 欧美在线| 午夜福利网站1000一区二区三区| 久久久久精品性色| 永久网站在线| 国产精品嫩草影院av在线观看| 亚洲国产高清在线一区二区三| 丰满少妇做爰视频| 三级男女做爰猛烈吃奶摸视频| 国产免费视频播放在线视频| 亚洲成色77777| av国产精品久久久久影院| 欧美人与善性xxx| 国产亚洲最大av| 亚洲av中文字字幕乱码综合| 亚洲最大成人av| 久久这里有精品视频免费| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久国产电影| 一区二区av电影网| 新久久久久国产一级毛片| 成人国产麻豆网| 欧美成人精品欧美一级黄| 国产精品无大码| 啦啦啦啦在线视频资源| 美女主播在线视频| 欧美成人午夜免费资源| 亚洲怡红院男人天堂| 亚洲图色成人| 美女国产视频在线观看| 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲不卡免费看| 少妇人妻 视频| 欧美成人午夜免费资源| 色吧在线观看| 午夜精品一区二区三区免费看| 日日撸夜夜添| 真实男女啪啪啪动态图| 高清av免费在线| 成人一区二区视频在线观看| 亚洲精品国产色婷婷电影| 国产精品国产av在线观看| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 亚洲精品国产色婷婷电影| 免费av观看视频| 亚洲精品国产成人久久av| 国产精品人妻久久久久久| 激情五月婷婷亚洲| 亚洲,欧美,日韩| 精品少妇久久久久久888优播| 欧美+日韩+精品| 亚洲精品久久午夜乱码| 久久久久国产网址| 久久97久久精品| 白带黄色成豆腐渣| 丰满少妇做爰视频| 麻豆久久精品国产亚洲av| 在线免费十八禁| 男女啪啪激烈高潮av片| 热re99久久精品国产66热6| 少妇人妻一区二区三区视频| 内地一区二区视频在线| 亚洲国产精品专区欧美| 在线观看一区二区三区激情| 国产av不卡久久| 精品一区二区三卡| 日韩强制内射视频| 高清视频免费观看一区二区| 久久97久久精品| 成人亚洲精品一区在线观看 | 国产成人aa在线观看| 男人舔奶头视频| 国产视频内射| 最新中文字幕久久久久| 免费黄频网站在线观看国产| 亚洲欧洲日产国产| 国产成人一区二区在线| 国产av国产精品国产| 一个人看的www免费观看视频| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 午夜福利视频1000在线观看| av网站免费在线观看视频| 国产中年淑女户外野战色| 亚洲精品,欧美精品| 极品教师在线视频| 亚洲av.av天堂| 国产免费又黄又爽又色| 亚洲精品国产色婷婷电影| 人妻一区二区av| 嫩草影院新地址| 亚洲经典国产精华液单| 最后的刺客免费高清国语| 欧美三级亚洲精品| 亚洲欧美一区二区三区国产| 深夜a级毛片| 亚洲人成网站在线播| 国产精品一及| 联通29元200g的流量卡| 欧美一区二区亚洲| 人人妻人人澡人人爽人人夜夜| 午夜福利视频1000在线观看| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久久性| 国产 一区精品| 欧美成人午夜免费资源| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩视频在线欧美| 我要看日韩黄色一级片| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 国产成人精品久久久久久| 51国产日韩欧美| 国产精品福利在线免费观看| 高清毛片免费看| 亚洲精品乱久久久久久| 人人妻人人看人人澡| 日本爱情动作片www.在线观看| 亚洲三级黄色毛片| 超碰av人人做人人爽久久| 国产毛片a区久久久久| 一本久久精品| 亚洲av中文av极速乱| 婷婷色av中文字幕| 九九久久精品国产亚洲av麻豆| 在线观看一区二区三区激情| 亚洲av电影在线观看一区二区三区 | 久久97久久精品| 亚洲成人av在线免费| 在线免费十八禁| 黄片无遮挡物在线观看| 丝瓜视频免费看黄片| 亚洲自偷自拍三级| 亚洲无线观看免费| 欧美激情在线99| 插逼视频在线观看| 51国产日韩欧美| 五月伊人婷婷丁香| 在线观看人妻少妇| 国产av不卡久久| 高清视频免费观看一区二区| 久久97久久精品| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 1000部很黄的大片| 久久精品久久久久久久性| 草草在线视频免费看| 别揉我奶头 嗯啊视频| 大片电影免费在线观看免费| 特级一级黄色大片| 春色校园在线视频观看| 蜜臀久久99精品久久宅男| 九九爱精品视频在线观看| 亚洲精品乱久久久久久| 亚洲无线观看免费| 一级毛片我不卡| 91午夜精品亚洲一区二区三区| 亚洲成人一二三区av| 亚洲综合色惰| 久久久欧美国产精品| 色播亚洲综合网| 在线看a的网站| 热re99久久精品国产66热6| 国产精品久久久久久精品电影| 成人一区二区视频在线观看| av国产精品久久久久影院| 免费观看在线日韩| 成人鲁丝片一二三区免费| 亚洲av男天堂| 亚洲人成网站在线观看播放| 久久韩国三级中文字幕| 91久久精品电影网| 91精品国产九色| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 亚洲aⅴ乱码一区二区在线播放| 成年女人看的毛片在线观看| 国产精品国产三级国产专区5o| 菩萨蛮人人尽说江南好唐韦庄| 人妻 亚洲 视频| 少妇猛男粗大的猛烈进出视频 | 一级黄片播放器| 国产精品秋霞免费鲁丝片| 联通29元200g的流量卡| 亚洲欧美日韩卡通动漫| 免费观看av网站的网址| 欧美丝袜亚洲另类| 国产精品一及| kizo精华| 一区二区三区免费毛片| 国产极品天堂在线| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 网址你懂的国产日韩在线| 亚洲国产精品成人久久小说| 哪个播放器可以免费观看大片| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品国产成人久久av| 夫妻性生交免费视频一级片| 久久精品国产亚洲网站| 亚洲av.av天堂| 中文资源天堂在线| 高清欧美精品videossex| 国产精品偷伦视频观看了| 观看免费一级毛片| 精品一区在线观看国产| 波野结衣二区三区在线| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄| 成人综合一区亚洲| 午夜亚洲福利在线播放| 人妻夜夜爽99麻豆av| 亚洲av不卡在线观看| 九色成人免费人妻av| 国产一区二区三区综合在线观看 | 国产伦精品一区二区三区四那| 国产av国产精品国产| 中文天堂在线官网| 国产久久久一区二区三区| 亚洲精品国产色婷婷电影| 亚洲成人av在线免费| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品偷伦视频观看了| 老女人水多毛片| 观看美女的网站| 日本免费在线观看一区| 久久久久性生活片| 免费不卡的大黄色大毛片视频在线观看| 特级一级黄色大片| 在线免费十八禁| 亚洲美女视频黄频| 大又大粗又爽又黄少妇毛片口| 丝袜美腿在线中文| 亚洲精品日韩在线中文字幕| 高清在线视频一区二区三区| 嫩草影院精品99| 免费观看av网站的网址| 国产精品蜜桃在线观看| 一级a做视频免费观看| 国产精品.久久久| 免费黄色在线免费观看| 亚洲国产精品专区欧美| 欧美+日韩+精品| 成年人午夜在线观看视频| 美女主播在线视频| 赤兔流量卡办理| 97热精品久久久久久| 国产精品偷伦视频观看了| 免费少妇av软件| 亚洲aⅴ乱码一区二区在线播放| 亚洲激情五月婷婷啪啪| 最近最新中文字幕大全电影3| 久久99热这里只频精品6学生| 两个人的视频大全免费| 日本三级黄在线观看| 听说在线观看完整版免费高清| 国产成人精品久久久久久| 亚洲人成网站在线播| 我要看日韩黄色一级片| 大话2 男鬼变身卡| 欧美极品一区二区三区四区| 亚洲最大成人av| 亚洲欧美一区二区三区黑人 | 晚上一个人看的免费电影| 97在线视频观看| 欧美日韩一区二区视频在线观看视频在线 | 成年女人在线观看亚洲视频 | 久久久亚洲精品成人影院| 久久久久久久久久久丰满| 综合色丁香网| 男女啪啪激烈高潮av片| 丝袜喷水一区| 国产免费视频播放在线视频| 免费高清在线观看视频在线观看| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区成人| 日产精品乱码卡一卡2卡三| 国产色婷婷99| 18禁在线无遮挡免费观看视频| 国产一区二区三区av在线| 人妻 亚洲 视频| 毛片女人毛片|