• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Analysis of 3D Composite Materials by Hybrid Boundary Node Method

    2014-04-16 01:18:19YuMiaoZheChenQiaoWang2andHongpingZhu
    Computers Materials&Continua 2014年13期

    Yu Miao,Zhe Chen,Qiao Wang,2and Hongping Zhu

    1 Introduction

    Composite materials become more and more important in industrial projects.There has been much interest in the modeling and simulations of composites in order to characterize their mechanical properties for engineering applications.Much effort,time and expense would be saved if the properties of composites could be predicted accurately.Many numerical models based on finite element method(FEM)and boundary element method(BEM)have been developed to simulate composite materials so far.Hou and Wu(1997)studied a multiscale finite element method for solving a class of elliptic problems arising from composite materials and flows in porous media.A numerical homogenization technique based on the FEM with representative volume element(RVE)was used to evaluate the effective material properties with periodic boundary conditions by Kari,Berger,Rodriguez-Ramos and Gabbert(2007).Segurado and LLorca(2004)developed a new 3D quadratic interface finite element to simulate fracture in composite materials Hybrid/Mixed finite elements and mixed methods[Bishay and Atluri(2012);Bishay,Sladek,Sladek and Atluri(2012);Dong,Alotaibi,Mohiuddine and Atluri(2014);Dong,El-Gizawy,Juhany and Atluri(2014)]were developed recently and applied for mechanical modeling of composites.Eischen and Torquato(1993)applied the BEM to determine the effective elastic moduli of continuum models of composite materials.An advanced 3D boundary element method was proposed by Chen and Liu(2005)for characterizations of composite materials.Liu,Nishimura,Otani,Takahashi,Chen and Munakata(2005)developed a new BEM for 3D analysis of fiber-reinforced composites based on a rigid-inclusion model.A new BEM for the numerical analysis of mechanical properties in 3D particle-reinforced composites was proposed by Wang and Yao(2005).Yao,Xu,Wang and Zheng(2009)applied the BEM on the simulation of carbon nanotube(CNT)composites,including the simulation of elastic,thermal and electric properties.Since the BEM has a dense matrix in the final system equation,some researchers[Nishimura and Liu(2004);Liu,Nishimura and Otani(2005);Liu,Nishimura,Otani,Takahashi,Chen and Munakata(2005);Wang and Yao(2005);Wang and Yao(2008);Yao,Xu,Wang and Zheng(2009)]coupled the BEM with fast multipole method(FMM)[Rokhlin(1985)]in order to simulate composites with large scale computation.

    Although the FEM and BEM are widely investigated and have been applied in many areas,they may not be convenient and efficient to simulate composites or fracture problems[Dong and Atluri(2013a);Dong and Atluri(2013b);Dong and Atluri(2013c)]because of the cells caused by the mesh procedure.In order to overcome the difficulty caused by meshing,meshless or meshfree methods are widely investigated in recent years.Many meshless methods have been proposed so far,including the smoothed particle hydrodynamics(SPH)method[Gingold and Monaghan(1977);Lucy(1977)],the reproducing kernel particle methods(RKPM)[Liu,Jun and Zhang(1995)],the hp-clouds method[Liszka,Duarte and Tworzydlo(1996)],the element free Galerkin method(EFG)[Belytschko,Lu and Gu(1994)],the meshless local Petrov-Galerkin(MLPG)approach[Atluri and Zhu(1998)],the boundary node method(BNM)[Mukherjee and Mukherjee(1997)],the Galerkin boundary node method(GBNM)[Li and Zhu(2009)],the boundary face method(BFM)[Zhang,Qin,Han and Li(2009)],the Method of Finite Sphere[De,Hong and Bathe(2003)],the boundary point interpolation method[Gu and Liu(2002)]and the hybrid boundary node method(Hybrid BNM)[Zhang and Yao(2001);Zhang,Yao and Li(2002)].

    The Hybrid BNM[Zhang,Tanaka and Matsumoto(2004a);Zhang and Yao(2004)]is based on the moving least squares(MLS)approximation and the hybrid displacement variational formula.It not only reduces the spatial dimensions by one like boundary element method(BEM)or BNM,but also does not require any cells neither for interpolation of the solution variables nor for the boundary integration.In fact,the Hybrid BNM requires only discrete nodes located on the surface of domain and its parametric representation.The Hybrid BNM has been developed by Miao et al[Miao,Wang and Yu(2005);Miao and Wang(2006)]and applied to some other areas,such as elastodynamics problems[Miao,Wang,Liao and Zheng(2009)],Helmholtz problems[Miao,Wang and Wang(2009)]and multi-domain problems[Wang,Zheng,Miao and Lv(2011)].

    The meshless methods are very suitable for simulation of composite materials and some literatures have reported relative work.Zhang et al.[Zhang,Tanaka and Matsumoto(2004b);Zhang and Tanaka(2008)]simulated the CNT based composites by Hybrid BNM based on a simplified model.Singh,Tanaka and Endo(2007)applied the EFG in the thermal analysis of CNT based composites.Wang,Miao and Zhu(2013a)used a fast multipole Hybrid BNM(FM-HBNM)to simulate the composites in 3D elasticity.There are mainly two models while simulating composites by Hybrid BNM so far.One is the multi-domain solver[Wang,Zheng,Miao and Lv(2011);Wang,Miao and Zhu(2013a)],which is based on the continuity and equilibrium conditions across the interface.The other one is the simplified approach[Zhang,Tanaka and Matsumoto(2004b)],which treats the CNTs as heat superconductors.The multi-domain solver can be applied to general composites since no assumption is added and the unknown vectors for each material are assembled in the final system equation.The simplified approach is very suitable for the case when the inclusions are heat superconductors or rigid bodies and it can reduce the total degrees of freedom(DOFs)substantially,however,it is not suitable to simulate general composites as multi-domain solver.

    In this paper,an improved multi-domain model for 3D composites with inclusions in elasticity problems base on Hybrid BNMis proposed.It has already been applied to thermal analysis of composites[Wang,Miao and Zhu(2013b)]successfully and we extend it to elasticity problems in this paper.In the improved model,no other assumption is added and it can be applied to general case like the multi-domain solver.Much important,it can reduce the total DOFs in the final system equation as the simplified approach,and we will find out only the matrix domain is needed to be modeled in some special case.

    This paper is organized as follows.The hybrid BNM is introduced in the second section and the multi-domain solver for 3D elasticity problems is reviewed in the third section.The formulation for the improved multi-domain model is derived in the fourth section.Then numerical examples are given in the fifth section.

    2 The single-domain Hybrid BNM for 3D elasticity problems

    In this section,the Hybrid BNM for3D elasticity problems[MiaoandWang(2006)]is reviewed.The Hybrid BNM is based on a modified variational principle.In 3D elasticity problems,functions in the modified variational principle that assumed to be independent are:displacementsand tractionson the boundary and displacementsulinside the domain.Consider a domain ? enclosed by Γ=Γu+Γtwithandare the prescribed displacements and tractions,respectively.

    whereNis the number of nodes located on the surfaceandare nodal values,and ΦJ(s)is the shape function of the MLS approximation,corresponding to node.

    The u and t inside the domain can be approximated by fundamental solutions as

    wherer=r(sJ,Q)andQis the field point while sJis the source point.

    As the modified variational principle holds both in the whole domain and any subdomain,the local sub-domain around each node can be taken into consideration.

    Then the following set of equations,expressed in matrix form,are given as[Zhang and Yao(2004);Miao and Wang(2006)]

    wherehI(Q)is a weight function,ΓIis a regularly shaped local region around node sIin the parametric representation space of the boundary surface.Therefore,the integrals in Equations(9),(10)and(11)can be computed without using boundary elements.

    For a general problem,eitherorcan be known at each node on the boundary and by rearranging Equations(7)and(8),a final algebraic equation in terms of x only can be obtained as below:

    For the node sI,ifis known,select the correspond row in U to A,otherwise,select the correspond row in T to A,and the corresponding term of d comes from the matrix-vector product ofor.Then the unknown vector x is obtained by solving the final algebraic equation.The nodal valuesandon the boundary can be computed by the back-substitution of x into Equations(7)and(8)

    3 The multi-domain Hybrid BNM for 3D elasticity problems

    In this section,the multi-domain Hybrid BNM for 3D elasticity problems[Wang,Zheng,Miao and Lv(2011)]is introduced.Consider a problem withnsub-domains andNinodes are distributed on the bounding surface of subdomain-i.Then for each sub-domain,we can have the following equations from Equations(7)and(8)

    where superscriptiindicates the subdomaini.

    The boundary nodes of subdomain-ican be sorted intongroups according to the locations of the nodes.Groupicontains nodes that belong exclusively in subdomain-iand groupjcontains nodes that are on the interface with subdomain-j,wherejis from 1 tonandj/=i.Accordingly,Equations(16)and(17)are partitioned into blocked matrix equations as

    where the superscriptidenotes the subdomain-i;the subscriptk=1,2,...ndenotes that the prescribed quantities are associated with the nodes in groupk.The double subscriptsij,iandj=1,2,...nis used to convey the U T in Equations(16)and(17),by which the prescribed coefficient matrix blocks are computed,belong to groupiandj,respectively.

    At the interfaces between sub-domainiandj,the following continuity conditions exist.For the displacements

    and for the tractions

    Consider a problem with two sub-domains,then for subdomain-1,we can have

    For subdomain-2,we can have

    Using Equations(20)and(21),Equations(22),(23),(24)and(25)can be assembled to an overall matrix equation as

    Similarly,for three subdomains,the final equation for the entire domain can be written as

    Equation(28)can be rewritten as

    where A2stands for the coefficient matrix of the two subdomains in the left hand side of Equation(27)and D2stands for the vector in the right hand side of Equation(27).Then fornsubdomains,the final equation for the entire domain can be written as

    where An?1and Dn?1stand for the coefficient matrix and right hand vector of then-1 subdomains.

    The unknown vector x can be solved by the final matrix equation,and then by backsubstitution x to matrix equations for each sub-domain,the boundary unknowns can be obtained either on the interfaces or the external boundary surfaces.

    4 Improved multi-domain Hybrid BNM for 3D elasticity problems

    For composite materials,the multi-domain solver introduced in section 3 is a natural way to be chosen.Now consider a matrix with inclusions as showed in Figure 1(a).S0is the sub-domain of matrix andS1,S2,...,Snare sub-domains of the inclusions.For the matrix,Equations(18)and(19)can be rewritten as

    Figure 1:(a)The model of matrix with inclusions;(b)Three kinds of inclusions.

    where scripts 0 andk,k=1,...,nindicate the subdomain of matrix and thek-th inclusion,respectively.

    Three types of inclusions can be considered as shown in Figure 1(b)and the inclusion type 2 is totally in the matrix and it is hollow.Then for the general case,the system equations for thek-th inclusion domain can be written as

    If the inclusions are solid and totally embed in the matrix(the inclusion type 3 in Figure 1(b)),then Equations(33)and(34)can be rewritten as

    One can obtain the final system equation for the whole domain as

    Equation(37)is the conventional multi-domain solver for the composites of matrix with inclusions.All the unknown parametersxabout the matrix and inclusions are solved in this equation.

    Now we derive the improved formulation for composites with inclusions,which is based on the multi-domain solver.

    From Equation(31)one can have

    From Equation(33)one can have

    where

    Then from Equation(39)one can obtain

    And from Equation(33)one can obtain

    At the interface between the matrix and inclusion,both the displacement and traction must be continuous.If we use the same set of nodes distributed on the interface,we can obtain

    Substituting Equations(42)and(43)into Equation(41)and using Equation(38),one can have

    where I is the identity operator.

    Using the boundary conditions,for the matrix domain one can have

    For thek-th inclusion domain one can have

    Submitting Equation(45)into Equation(47)and using Equation(44)we can obtain

    Then by assembling Equations(48)and(49)into Equation(46)one can obtain the final system equation as

    For the case when the inclusions are solid and totally embed in the matrix,Equation(50)can be rewritten as

    If the inclusions are of the same size and material,the corresponding incidence matrices Ckare also identical.Therefore,Ckis required to be formed only once.If the inclusions are of the same shape,Ckcan also be calculated only once because of the similar relationship between inclusion phases of different size and material.If we assume the Poisson’s ratios of the inclusions are the same,one can have the following relationship

    whereEkandrkare Young’s module and radius of thek-th inclusion,respectively.In Equations(50)and(59),the unknowns on the interfaces are assembled only once compared with Equation(37),thus,the total unknowns in the final system equation can be reduced by the improved multi-domain solver.In equation(50),if the inclusions are of the same shape and the same boundary condition,Equations(52),(54),(55),(56),(57)and(58)can also be computed once and the computational resource,both the time and memory required,can be saved further.Compared with the simplified approach proposed by Zhang,Tanaka and Matsumoto(2004b),no assumption is needed and it can be applied to analyze more general composites.The improved multi-domain solver is also very suitable to couple with FMM for large scale computation.

    5 Numerical examples

    The proposed technique has been implemented in C++program.Three numerical examples are studied in this section.For the purpose of error estimation,a formula is defined as

    whereandrefer to the exact and numerical solutions respectively and|u|maxis the maximum value ofuoverNnodes.

    In all the examples,Gaussian elimination method is used to solve the final system equations and both the multi-domain solver and improved multi-domain solver are used.

    5.1 Validation of the method

    In this example,a hollow sphere shown in Figure 2 is considered,the outer radius of the sphere is 10 and the inner radius is 1,the Young’s moduleE=1.0 and the Poisson’s ratiov=0.25 Direchlet boundary conditions on all the surfaces are imposed,according to the following exact solution:

    Figure 2:A hollow sphere with three subdomains.

    In order to apply the multi-domain and improved multi-domain solver,the hollow sphere is divided into three subdomains with the same materials,see Figure 2.For the subdomain 2,the outer radius is 2 and the inner radius is 1.For subdomain 3,the radius is 2 and its center located at point(6,0,0).

    In the model,the spherical face is considered as one face and all the spherical faces have the same number of nodes distributed on them.Several different node arrangements are used to show the efficiency and accuracy of the technique.Figure 3 shows the relative error ofuxcomputed by the nodes on line(1,0,0)to(10,0,0).From Figure 3 one can observe that the improved multi-domain solver has the same precision as the conventional multi-domain solver.The CPU time for solving the final system equation is shown in Figure 4 and we can observe that the improved multi-domain is more efficient than the conventional multi-domain solver since it can reduce the total DOFs in the final system equation.

    5.2 Cube with eight spherical inclusions

    A cube with eight spherical inclusions shown in Figure 5 is considered in this example.The parameters of the cube are:the lengtha=2,the Young’s moduleE=1.0,Poisson’s ratiov=0.25.The cube is roller supported on the left end and a uniform distributed traction is loaded on outer normal direction of the right end.These boundary conditions allow us to estimate the effective Young’s module in the axial direction as

    Figure 3:Relative error.

    Figure 4:CPU time.

    whereEeffis the estimated effective Young’s module,Lis the length,σ is average stress of the two ends and Δuis the difference of displacement between the two ends.

    Two models are considered.In the first model,the parameters of the inclusions are:the radiusr=0.2 and the Young’s moduleEinchanges from 1 to 10.In the second model,the Young’s moduleEin=8 and the radius of the inclusion changes from 0.1 to 0.4.In all the models,the Poisson’s ratiov=0.25,600 nodes are distributed on the outer faces and 172 nodes are distributed on each interface.Table 1 shows the information of total unknowns in the final system equation and the computational time.From Table 1,one can indicate that the number of DOFs in the improved multi-domain solver is reduced to nearly one half of that in the conventional multidomain solver.Thus,the improved multi-domain solver is more efficient and From Table 1,one can observe that the CPU time has been saved much by improve solver.Figure 6 and Figure 7 show the effective Young’s modules while the Young’s module of the inclusion and radius of the inclusion changes,respectively.In order to show the validation of the method,the Mori-Tanaka method[Karris(1989)]is also used.From Figure 6 and Figure 7 one can observe that the results obtained by the improved multi-domain solver and conventional multi-domain solver are the same and both of them have good agreement with the Mori-Tanaka method.It should be noted that Mori-Tanaka method can only be used to estimate the effective module of composite for some special cases,it cannot give the field of stress or displacement under boundary conditions.However,by applying numerical methods like introduced in this paper,these aims can be easily achieved.

    If the matrix has more inclusions,the Hybrid BNM can also be applied easily.However,without fast algorithms the technique cannot solve large scale problems[Wang,Miao and Zheng(2010);Wang,Miao,Zhu and Zhang(2012);Wang,Miao and Zhu(2013a);Wang,Miao and Zhu(2013c);Miao,Wang,Zhu and Li(2014)]

    Table 1:Time information of cub with 8 spherical inclusions.

    Figure 5:Model of cub with 8 uniformly distributed spherical inclusions.

    Figure 6:Effective Young’s module with Young’s module of the inclusion.

    Figure 7:Effective Young’s module with radius of the inclusion.

    5.3 A square RVE

    A square RVE model with an inclusion embedded is considered in this example.The geometry is shown in Figure 8.The parameters of the matrix are:the lengthL=100,the widthW=20,the heightH=20,the Young’s moduleEmatrix=1.0 and the Poisson’s ratiov=0.25.The RVE is roller supported on one end and applied with a uniform normal displacementuy=100 on the other end.The parameters of the inclusion are:the lengthLc=50,the outer radiusr=5,the thicknesst=0.4 and the Poisson’s ratiov=0.25.If the Young’s module of the inclusion is supposed to be much higher than the matrix,this model can be considered as a CNT based composites.

    The ratio of the Young’s modules between the inclusion and the matrix is defined asc=Einclusion/Ematrix.Numerical results for the displacements at linesx=0,z=4.8(through the inclusion)andx=0,z=5.1(very near the inclusion)with different values of ratiocare presented in Figure 9.In this example,we useMSandIMSdenote themulti-domain solverandimproved multi-domain solver,respectively.The results obtained by the multi-domain solver and improved multi-domain solver are the same.From Figure 8,we can observe that the displacements at the two lines are very close with a given ratioc.The difference of the displacements within the inclusion(r=4.8)and near the inclusion(r=5.1)becomes smaller as the increase of ratioc.The displacements become almost constant along the length of the inclusion whenc=1000 and the results are very similar to a RVE with rigid inclusion.

    Figure 8:A square RVE model.

    Figure 10 shows the displacements at linex=0,z=4.8 with four different thicknesstof the inclusion whilec=200.Whilet=5.0,the inclusion is solid and only its outer face is needed.In Figure 10,we can observe that thickness of the inclusion has little influence on the displacements at the evaluated line.One of the reasons is that the inclusion is nearly a rigid body in this case and the displacements of the inclusion is the same.Figure 11 shows the effective Young’s module of the RVE with various thicknesstand ratio of the Young’s modules between the inclusion and the matrix.From Figure 11 one can observe that the difference of the effective Young’s modules becomes littler and littler as the increase of the ratiocand the effective Young’s modules become very close for the various thicknesstwhen the ratiocis more than 6000.From this example we can find out that the thickness of the inclusion has little influence on the effective Young’s module of the RVE when the Young’s module of the inclusion is much higher than the matrix,and only the outer face of the inclusion is needed be modeled,which can reduce much resource further.

    Figure 9:Displacements along the axial lines(t=0.4).

    Figure 10:Displacements along the axial lines(c=2000).

    Figure 11:Effective Young’s module of the RVE with various t and c.

    6 Conclusions

    In this paper,an improved multi-domain solver is proposed for the mechanical analysis of composites with inclusions by the Hybrid BNM.Continuity conditions are used in the improved multi-domain solver as the conventional multi-domain solver.The unknown vectors on the interfaces are needed to be assembled only once in the final system equation of improved solver,thus,the computational time and memory required can be reduced.

    The improved multi-domain model proposed can be applied to more general composites than the simplified approach,and especial suitable for the composites when the inclusions are solid and totally embedded in the matrix domain.Composites which similar as rigid inclusion based composites are also discussed in the paper and we can find out that the thickness of the rigid inclusion has little influence on the effective Young’s module.

    The improved multi-domain solver is very suitable for large-scale computation and coupling it with fast algorithm,such as FMM is a subject of future research.

    The difference between the numerical and experimental results has been observe in the work of Yao,Xu,Wang and Zheng(2009)It means that the numerical method has to be improved by considering more practical microstructural factors,including the imperfect interface conditions and thermal contact between fibers.These researches will be investigated in the future.

    Acknowledgement:Financial support for the Project from the Natural Science Foundation of China(No.51378234)the National Basic Research Program of China(973 Program:2011CB013800)and the Fundamental Research Funds for the Central Universities(No.2014YQ008 and No.2013QN027).

    Atluri,S.;Zhu,T.(1998):A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics.Computational mechanics,vol.22,pp.117-127.

    Belytschko,T.;Lu,Y.Y.;Gu,L.(1994):Element-free Galerkin methods.International journal for numerical methods in engineering,vol.37,pp.229-256.

    Bishay,P.;Atluri,S.(2012):High-Performance3DHybrid/Mixed,andSimple3D Voronoi Cell Finite Elements,for Macro-&Micro-mechanical Modeling of Solids,Without Using Multi- field Variational Principles.Computer Modeling in Engineering&Sciences(CMES),vol.84,pp.41-97.

    Bishay,P.L.;Sladek,J.;Sladek,V.;Atluri,S.N.(2012):Analysis of Functionally Graded Magneto-Electro-Elastic Composites Using Hybrid/Mixed Finite Elements and Node-Wise Material Properties.CMC:Computers,Materials&Continua,vol.29,pp.213-262.

    Chen,X.;Liu,Y.(2005):An advanced 3D boundary element method for characterizations of composite materials.Engineering analysis with boundary elements,vol.29,pp.513-523.

    De,S.;Hong,J.-W.;Bathe,K.(2003):On the method of finite spheres in applications:towards the use with ADINA and in a surgical simulator.Computational Mechanics,vol.31,pp.27-37.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.;Atluri,S.(2014):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,pp.1-85.

    Dong,L.;Atluri,S.N.(2013a):Fracture&fatigue analyses:SGBEM-FEM or XFEM?Part 1:2D structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.91-146.

    Dong,L.;Atluri,S.N.(2013b):Fracture&fatigue analyses:SGBEM-FEM or XFEM?Part 2:3D solids.CMES:Computer Modeling in Engineering&Sciences,vol.90,pp.379-413.

    Dong,L.;Atluri,S.N.(2013c):SGBEM Voronoi Cells(SVCs),with embedded arbitrary-shaped inclusions,voids,and/or cracks,for micromechanical modeling of heterogeneous materials.CMC:Computers,Materials&Continua,vol.33,pp.111-154.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014):A simple locking-alleviated 4-node mixed-collocation finite element with over-integration,for homogeneous or functionally-graded or thick-section laminated composite beams.CMC:Computers,Materials&Continua,vol.40,pp.49-77.

    Eischen,J.;Torquato,S.(1993):Determining elastic behavior of composites by the boundary element method.Journal of applied physics,vol.74,pp.159-170.

    Gingold,R.A.;Monaghan,J.J.(1977):Smoothed particle hydrodynamics theory and application to non-spherical stars.Monthly notices of the royal astronomical society,vol.181,pp.375-389.

    Gu,Y.;Liu,G.(2002):A boundary point interpolation method for stress analysis of solids.Computational Mechanics,vol.28,pp.47-54.

    Hou,T.Y.;Wu,X.-H.(1997):A multiscale finite element method for elliptic problems in composite materials and porous media.Journal of computational physics,vol.134,pp.169-189.

    Kari,S.;Berger,H.;Rodriguez-Ramos,R.;Gabbert,U.(2007):Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles.Composite structures,vol.77,pp.223-231.

    Karris,A.(1989):An Examination of the Mori-Tanaka Effective Medium–Approximation for Multiphase Composites.Journal of Applied Mechanics,vol.56,pp.83-88.

    Li,X.;Zhu,J.(2009):A Galerkin boundary node method and its convergence analysis.Journal of computational and applied mathematics,vol.230,pp.314-328.

    Liszka,T.;Duarte,C.;Tworzydlo,W.(1996):hp-Meshless cloud method.Computer Methods in Applied Mechanics and Engineering,vol.139,pp.263-288.

    Liu,W.K.;Jun,S.;Zhang,Y.F.(1995):Reproducing kernel particle methods.International Journal for Numerical Methods in Fluids,vol.20,pp.1081-1106.

    Liu,Y.;Nishimura,N.;Otani,Y.(2005):Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method.Computational Materials Science,vol.34,pp.173-187.

    Liu,Y.;Nishimura,N.;Otani,Y.;Takahashi,T.;Chen,X.;Munakata,H.(2005):A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model.Journal of applied mechanics,vol.72,pp.115-128.

    Lucy,L.B.(1977):A numerical approach to the testing of the fission hypothesis.The astronomical journal,vol.82,pp.1013-1024.

    Miao,Y.;Wang,Q.;Liao,B.;Zheng,J.(2009):A dual hybrid boundary node method for 2D elastodynamics problems.Computer Modeling in Engineering and Sciences(CMES),vol.53,pp.1.

    Miao,Y.;Wang,Q.;Zhu,H.;Li,Y.(2014):Thermal analysis of 3D composites by a new fast multipole hybrid boundary node method.Computational Mechanics,vol.53,pp.77-90.

    Miao,Y.;Wang,Y.-h.(2006):Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method.Applied Mathematics and Mechanics,vol.27,pp.673-681.

    Miao,Y.;Wang,Y.;Wang,Y.(2009):A meshless hybrid boundary-node method for Helmholtz problems.Engineering analysis with boundary elements,vol.33,pp.120-127.

    Miao,Y.;Wang,Y.;Yu,F.(2005):Development of hybrid boundary node method in two-dimensional elasticity.Engineering analysis with boundary elements,vol.29,pp.703-712.

    Mukherjee,Y.X.;Mukherjee,S.(1997):The boundary node method for potential problems.International Journal for Numerical Methods in Engineering,vol.40,pp.797-815.

    Nishimura,N.;Liu,Y.(2004):Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method.Computational Mechanics,vol.35,pp.1-10.

    Rokhlin,V.(1985):Rapid solution of integral equations of classical potential theory.Journal of Computational Physics,vol.60,pp.187-207.

    Segurado,J.;LLorca,J.(2004):A new three-dimensional interface finite element to simulate fracture in composites.International journal of solids and structures,vol.41,pp.2977-2993.

    Singh,I.;Tanaka,M.;Endo,M.(2007):Thermal analysis of CNT-based nanocomposites by element free Galerkin method.Computational Mechanics,vol.39,pp.719-728.

    Wang,H.;Yao,Z.(2005):A new fast multipole boundary element method for large scale analysis of mechanical properties in 3D particle-reinforced composites.Computer Modeling in Engineering&Sciences,vol.7,pp.85-95.

    Wang,H.;Yao,Z.(2008):Arigid-fiber-based boundary element model for strength simulation of carbon nanotube reinforced composites.CMES:Computer Modeling in Engineering&Sciences,vol.29,pp.1-13.

    Wang,Q.;Miao,Y.;Zheng,J.(2010):The hybrid boundary node method accel-erated by fast multipole expansion technique for 3D elasticity.Computer Modeling in Engineering and Sciences,vol.70,pp.123-151.

    Wang,Q.;Miao,Y.;Zhu,H.(2013a):A fast multipole hybrid boundary node method for composite materials.Computational Mechanics,vol.,pp.885-897.

    Wang,Q.;Miao,Y.;Zhu,H.(2013b):A new formulation for thermal analysis of composites by hybrid boundary node method.International Journal of Heat and Mass Transfer,vol.64,pp.322-330.

    Wang,Q.;Miao,Y.;Zhu,H.(2013c):Numerical Simulation of Heat Conduction Problems by a New Fast Multipole Hybrid Boundary-Node Method.Numerical Heat Transfer,Part B:Fundamentals,vol.64,pp.436-459.

    Wang,Q.;Miao,Y.;Zhu,H.;Zhang,C.(2012):An O(N)Fast Multipole Hybrid Boundary Node Method for 3D Elasticity.Computers Materials and Continua,vol.28,pp.1-25.

    Wang,Q.;Zheng,J.;Miao,Y.;Lv,J.(2011):The multi-domain hybrid boundary node method for 3D elasticity.Engineering Analysis with Boundary Elements,vol.35,pp.803-810.

    Yao,Z.-H.;Xu,J.-D.;Wang,H.-T.;Zheng,X.-P.(2009):Simulation of CNT composites using fast multipole BEM.Journal of Marine Science and Technology,vol.17,pp.194-202.

    Zhang,J.;Qin,X.;Han,X.;Li,G.(2009):A boundary face method for potential problems in three dimensions.International journal for numerical methods in engineering,vol.80,pp.320-337.

    Zhang,J.;Tanaka,M.(2008):Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites.Computational Mechanics,vol.41,pp.777-787.

    Zhang,J.;Tanaka,M.;Matsumoto,T.(2004a):Meshless analysis of potential problem sin three dimensions with the hybrid boundary node method.International Journal for Numerical Methods in Engineering,vol.59,pp.1147-1166.

    Zhang,J.;Tanaka,M.;Matsumoto,T.(2004b):A simplified approach for heat conduction analysis of CNT-based nano-composites.Computer methods in applied mechanics and engineering,vol.193,pp.5597-5609.

    Zhang,J.;Yao,Z.(2001):Meshless regular hybrid boundary node method.CMESComputer Modeling in Engineering and Sciences,vol.2,pp.307-318.

    Zhang,J.;Yao,Z.(2004):The regular hybrid boundary node method for three dimensional linear elasticity.Engineering analysis with boundary elements,vol.28,pp.525-534.

    Zhang,J.;Yao,Z.;Li,H.(2002):A hybrid boundary node method.International Journal for Numerical Methods in Engineering,vol.53,pp.751-763.

    国产色婷婷99| 亚洲最大成人中文| 麻豆精品久久久久久蜜桃| 久久97久久精品| 最新中文字幕久久久久| 日韩人妻高清精品专区| 欧美最新免费一区二区三区| av专区在线播放| 高清毛片免费看| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区国产| 毛片一级片免费看久久久久| 综合色丁香网| 国产亚洲91精品色在线| 看非洲黑人一级黄片| 在线观看av片永久免费下载| 欧美日本视频| 观看免费一级毛片| 久久精品国产亚洲av天美| 久久久久国产精品人妻一区二区| 最近中文字幕高清免费大全6| 久久青草综合色| 中国国产av一级| 久久综合国产亚洲精品| 国产视频首页在线观看| 大片电影免费在线观看免费| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品一区二区免费开放| 国产极品粉嫩免费观看在线| 香蕉国产在线看| 国产成人av教育| 男人操女人黄网站| 国产极品粉嫩免费观看在线| 免费人妻精品一区二区三区视频| 国产精品偷伦视频观看了| 视频区图区小说| 桃花免费在线播放| 777米奇影视久久| 看免费av毛片| 中文字幕亚洲精品专区| 久久久国产精品麻豆| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 午夜视频精品福利| 精品国产一区二区三区久久久樱花| 视频区图区小说| 男男h啪啪无遮挡| 18禁观看日本| 亚洲九九香蕉| 国产亚洲欧美精品永久| 久久久久国产精品人妻一区二区| 亚洲av美国av| 最黄视频免费看| 国产欧美亚洲国产| 观看av在线不卡| 精品一区二区三区av网在线观看 | 亚洲精品日韩在线中文字幕| 可以免费在线观看a视频的电影网站| 一级毛片我不卡| 亚洲国产精品国产精品| 视频区欧美日本亚洲| 在线观看免费午夜福利视频| 中文字幕高清在线视频| 日本91视频免费播放| 叶爱在线成人免费视频播放| 少妇人妻 视频| 成年女人毛片免费观看观看9 | 午夜福利免费观看在线| 欧美日韩亚洲综合一区二区三区_| 精品一品国产午夜福利视频| 亚洲图色成人| 久久影院123| 亚洲人成电影免费在线| 亚洲七黄色美女视频| 成在线人永久免费视频| 性高湖久久久久久久久免费观看| a级片在线免费高清观看视频| 亚洲视频免费观看视频| av视频免费观看在线观看| 亚洲人成网站在线观看播放| 午夜福利乱码中文字幕| 日韩 欧美 亚洲 中文字幕| 久久狼人影院| 国产精品麻豆人妻色哟哟久久| 在线观看人妻少妇| 丁香六月天网| 美女视频免费永久观看网站| 一级a爱视频在线免费观看| 日韩免费高清中文字幕av| 日本av手机在线免费观看| 一级毛片电影观看| 可以免费在线观看a视频的电影网站| 色婷婷av一区二区三区视频| 视频在线观看一区二区三区| 精品免费久久久久久久清纯 | av线在线观看网站| 美女视频免费永久观看网站| 国产视频一区二区在线看| 国语对白做爰xxxⅹ性视频网站| 丝袜美足系列| 黄色怎么调成土黄色| 国产成人啪精品午夜网站| 各种免费的搞黄视频| 国产成人av教育| 69精品国产乱码久久久| 亚洲精品久久久久久婷婷小说| 又大又黄又爽视频免费| 69精品国产乱码久久久| 欧美成狂野欧美在线观看| 国产精品成人在线| 青草久久国产| 一区二区三区精品91| 高清黄色对白视频在线免费看| 国产伦人伦偷精品视频| 欧美日韩综合久久久久久| 欧美激情极品国产一区二区三区| 高清视频免费观看一区二区| 国产一卡二卡三卡精品| 亚洲,欧美精品.| 日韩 欧美 亚洲 中文字幕| 国产免费又黄又爽又色| 日韩电影二区| 成年动漫av网址| av视频免费观看在线观看| 男女无遮挡免费网站观看| 国产主播在线观看一区二区 | 国产麻豆69| 色婷婷av一区二区三区视频| 操美女的视频在线观看| 国产一区二区在线观看av| 国产成人91sexporn| 人人妻人人澡人人看| 国产成人91sexporn| 国产一区亚洲一区在线观看| 亚洲综合色网址| 校园人妻丝袜中文字幕| 久久青草综合色| 咕卡用的链子| 日本欧美国产在线视频| 女性被躁到高潮视频| 九色亚洲精品在线播放| 飞空精品影院首页| 国产日韩欧美亚洲二区| 国产成人系列免费观看| 亚洲成人免费av在线播放| 美女中出高潮动态图| 亚洲欧美色中文字幕在线| 国产午夜精品一二区理论片| 日本91视频免费播放| 捣出白浆h1v1| 亚洲中文av在线| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 免费观看av网站的网址| 日韩人妻精品一区2区三区| 精品福利永久在线观看| 免费看十八禁软件| 后天国语完整版免费观看| 日本av免费视频播放| 久久久久久亚洲精品国产蜜桃av| 免费久久久久久久精品成人欧美视频| 精品高清国产在线一区| 日本av手机在线免费观看| 国精品久久久久久国模美| 超碰成人久久| 久久国产精品影院| 一级a爱视频在线免费观看| 久久精品久久久久久久性| 国产视频一区二区在线看| 久久久久久久大尺度免费视频| 久久久久久人人人人人| 国产爽快片一区二区三区| 亚洲精品国产av蜜桃| 在线观看人妻少妇| 天天影视国产精品| 亚洲av日韩精品久久久久久密 | 欧美黄色片欧美黄色片| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 黄片小视频在线播放| 九草在线视频观看| 亚洲欧美一区二区三区黑人| 亚洲av欧美aⅴ国产| 一区二区三区精品91| 久久精品久久久久久噜噜老黄| 婷婷丁香在线五月| 校园人妻丝袜中文字幕| 亚洲色图综合在线观看| 咕卡用的链子| 秋霞在线观看毛片| 欧美日韩亚洲高清精品| 天天躁狠狠躁夜夜躁狠狠躁| 精品视频人人做人人爽| 尾随美女入室| 欧美激情极品国产一区二区三区| 亚洲成色77777| 中文字幕另类日韩欧美亚洲嫩草| 国产女主播在线喷水免费视频网站| 老鸭窝网址在线观看| 中文欧美无线码| 国产精品免费大片| 精品一区二区三区av网在线观看 | 手机成人av网站| 亚洲三区欧美一区| 人人妻,人人澡人人爽秒播 | 亚洲人成77777在线视频| 狠狠婷婷综合久久久久久88av| 男的添女的下面高潮视频| 欧美精品一区二区免费开放| 精品一区二区三区四区五区乱码 | 高清不卡的av网站| 人妻人人澡人人爽人人| 国产视频一区二区在线看| 精品亚洲成国产av| 亚洲,欧美,日韩| 香蕉丝袜av| 如日韩欧美国产精品一区二区三区| 成年女人毛片免费观看观看9 | 最新的欧美精品一区二区| 国产极品粉嫩免费观看在线| 欧美精品一区二区免费开放| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 男男h啪啪无遮挡| 777久久人妻少妇嫩草av网站| 丝袜喷水一区| 欧美日本中文国产一区发布| 男女免费视频国产| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜十八禁免费视频| 熟女少妇亚洲综合色aaa.| 亚洲国产精品一区三区| 99久久综合免费| 妹子高潮喷水视频| 亚洲图色成人| 国产午夜精品一二区理论片| 亚洲九九香蕉| 中文欧美无线码| 啦啦啦在线观看免费高清www| 欧美大码av| 好男人视频免费观看在线| 色婷婷久久久亚洲欧美| 一边摸一边做爽爽视频免费| 男人舔女人的私密视频| 国产不卡av网站在线观看| 亚洲九九香蕉| 亚洲伊人久久精品综合| 黄色怎么调成土黄色| 欧美成人午夜精品| 久久精品国产亚洲av涩爱| 一本一本久久a久久精品综合妖精| 国产伦理片在线播放av一区| 国产精品一区二区在线观看99| 欧美人与性动交α欧美精品济南到| 精品一区在线观看国产| 女性被躁到高潮视频| 韩国精品一区二区三区| 免费看不卡的av| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 制服人妻中文乱码| 亚洲欧美一区二区三区国产| 国产精品麻豆人妻色哟哟久久| 男女床上黄色一级片免费看| 国产成人精品久久久久久| 午夜老司机福利片| 搡老乐熟女国产| 中文字幕精品免费在线观看视频| 欧美成人精品欧美一级黄| 日韩精品免费视频一区二区三区| 女性生殖器流出的白浆| 亚洲人成电影观看| 亚洲国产av影院在线观看| 精品第一国产精品| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| av有码第一页| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产一区二区| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 91麻豆精品激情在线观看国产 | 久久久久国产一级毛片高清牌| 国产片内射在线| 丝袜美足系列| 久久人人97超碰香蕉20202| 国产一卡二卡三卡精品| 肉色欧美久久久久久久蜜桃| 在线观看免费午夜福利视频| 天堂8中文在线网| 久久精品国产综合久久久| 在线亚洲精品国产二区图片欧美| 中文字幕人妻丝袜一区二区| 天天操日日干夜夜撸| 可以免费在线观看a视频的电影网站| 国产成人a∨麻豆精品| 国产成人欧美| 九草在线视频观看| 最黄视频免费看| av网站在线播放免费| 亚洲色图综合在线观看| 日本五十路高清| 亚洲,欧美精品.| 大型av网站在线播放| 99久久精品国产亚洲精品| 亚洲精品久久午夜乱码| 性色av一级| 国产av一区二区精品久久| 免费观看av网站的网址| 国产国语露脸激情在线看| 久久综合国产亚洲精品| 黄色视频在线播放观看不卡| 国产在线一区二区三区精| 国产精品二区激情视频| 国产黄色免费在线视频| 亚洲欧洲日产国产| 欧美 亚洲 国产 日韩一| 亚洲图色成人| 亚洲精品美女久久久久99蜜臀 | 好男人视频免费观看在线| 黄色 视频免费看| 亚洲第一青青草原| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 超色免费av| 脱女人内裤的视频| 国产欧美日韩一区二区三区在线| 久久鲁丝午夜福利片| 欧美人与性动交α欧美精品济南到| 色视频在线一区二区三区| 好男人电影高清在线观看| 视频区欧美日本亚洲| 操美女的视频在线观看| 一本综合久久免费| 美女中出高潮动态图| 国产亚洲精品久久久久5区| 国产精品三级大全| 欧美 亚洲 国产 日韩一| 亚洲第一av免费看| 亚洲人成电影观看| 9色porny在线观看| 亚洲精品国产区一区二| 国产亚洲欧美在线一区二区| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 亚洲天堂av无毛| 一级毛片女人18水好多 | 国产精品免费大片| 9热在线视频观看99| 啦啦啦啦在线视频资源| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| av天堂久久9| 国产一级毛片在线| 成年人免费黄色播放视频| 久9热在线精品视频| 欧美日韩国产mv在线观看视频| 日韩视频在线欧美| 欧美精品人与动牲交sv欧美| av网站在线播放免费| 欧美日韩av久久| 亚洲第一青青草原| 亚洲熟女精品中文字幕| 亚洲成人手机| 久久久久网色| 深夜精品福利| 日本午夜av视频| 亚洲精品国产av成人精品| 天天影视国产精品| 免费看十八禁软件| 黑人欧美特级aaaaaa片| 老司机靠b影院| videosex国产| 精品欧美一区二区三区在线| 国产日韩欧美视频二区| 久久av网站| 久久九九热精品免费| 一级毛片女人18水好多 | 香蕉丝袜av| 精品欧美一区二区三区在线| 欧美精品啪啪一区二区三区 | 亚洲精品国产av成人精品| 亚洲第一av免费看| 99国产精品一区二区蜜桃av | av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 男女午夜视频在线观看| 天天操日日干夜夜撸| 精品一区二区三区av网在线观看 | 久久鲁丝午夜福利片| 精品国产一区二区久久| www日本在线高清视频| 1024香蕉在线观看| 免费在线观看黄色视频的| 日韩 亚洲 欧美在线| 99精国产麻豆久久婷婷| 国产一区二区 视频在线| 搡老岳熟女国产| 日韩大码丰满熟妇| 人人妻人人添人人爽欧美一区卜| 每晚都被弄得嗷嗷叫到高潮| 夫妻性生交免费视频一级片| 国产激情久久老熟女| 免费看av在线观看网站| 性高湖久久久久久久久免费观看| 亚洲免费av在线视频| 一本综合久久免费| 久久毛片免费看一区二区三区| 成人手机av| 国产成人精品久久二区二区免费| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91| 91老司机精品| 久久精品国产a三级三级三级| 狠狠婷婷综合久久久久久88av| 夫妻午夜视频| 免费看av在线观看网站| 色94色欧美一区二区| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看| 日韩一卡2卡3卡4卡2021年| 国产老妇伦熟女老妇高清| a级片在线免费高清观看视频| 99精品久久久久人妻精品| 色婷婷久久久亚洲欧美| 看免费成人av毛片| 美女扒开内裤让男人捅视频| av线在线观看网站| 日韩大码丰满熟妇| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 免费高清在线观看日韩| 大片电影免费在线观看免费| 国产无遮挡羞羞视频在线观看| 亚洲人成77777在线视频| 成人三级做爰电影| 国产一级毛片在线| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 午夜精品国产一区二区电影| 一区二区av电影网| 一二三四在线观看免费中文在| av有码第一页| 欧美日韩亚洲国产一区二区在线观看 | 晚上一个人看的免费电影| 国产亚洲精品久久久久5区| 在线观看国产h片| tube8黄色片| 亚洲美女黄色视频免费看| 2021少妇久久久久久久久久久| 国产成人一区二区在线| xxx大片免费视频| 国产一级毛片在线| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 捣出白浆h1v1| √禁漫天堂资源中文www| 国产亚洲精品第一综合不卡| 亚洲精品自拍成人| 精品国产国语对白av| 欧美激情 高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲中文字幕日韩| 久久中文字幕一级| 午夜免费鲁丝| 国产av一区二区精品久久| 成人国语在线视频| 纯流量卡能插随身wifi吗| 丝袜人妻中文字幕| 老司机深夜福利视频在线观看 | 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www| 亚洲精品国产区一区二| 永久免费av网站大全| 男男h啪啪无遮挡| 91精品三级在线观看| 激情五月婷婷亚洲| 少妇的丰满在线观看| 久久人人爽人人片av| 免费高清在线观看日韩| 我的亚洲天堂| 国产午夜精品一二区理论片| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 无限看片的www在线观看| 国产精品.久久久| 欧美另类一区| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 亚洲熟女毛片儿| 欧美精品人与动牲交sv欧美| 不卡av一区二区三区| 中文字幕人妻丝袜制服| 一本综合久久免费| 国产三级黄色录像| 亚洲情色 制服丝袜| 国产主播在线观看一区二区 | 欧美日韩av久久| 99国产综合亚洲精品| 日日爽夜夜爽网站| 国产91精品成人一区二区三区 | 91成人精品电影| 欧美人与性动交α欧美精品济南到| 欧美日韩av久久| 久久中文字幕一级| 久久精品国产综合久久久| 午夜福利,免费看| 青青草视频在线视频观看| 蜜桃在线观看..| 午夜久久久在线观看| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜爱| 黄色视频不卡| 色视频在线一区二区三区| 成人午夜精彩视频在线观看| 亚洲伊人久久精品综合| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| a级毛片黄视频| 少妇裸体淫交视频免费看高清 | 2018国产大陆天天弄谢| 无遮挡黄片免费观看| 女警被强在线播放| 亚洲精品中文字幕在线视频| 最新的欧美精品一区二区| a级毛片黄视频| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 成年人免费黄色播放视频| 91老司机精品| 国产伦理片在线播放av一区| 多毛熟女@视频| 久久精品熟女亚洲av麻豆精品| 久久久久视频综合| 丁香六月天网| 最新在线观看一区二区三区 | 久久毛片免费看一区二区三区| 国产亚洲欧美精品永久| av在线老鸭窝| 久久久久国产一级毛片高清牌| 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 午夜精品国产一区二区电影| 麻豆国产av国片精品| 妹子高潮喷水视频| 成人手机av| 老司机靠b影院| 中文字幕人妻熟女乱码| 三上悠亚av全集在线观看| 久久这里只有精品19| 国产在线一区二区三区精| 亚洲欧洲国产日韩| 女人高潮潮喷娇喘18禁视频| 亚洲欧美成人综合另类久久久| 亚洲av在线观看美女高潮| 少妇人妻久久综合中文| 男人舔女人的私密视频| 久久精品久久久久久噜噜老黄| 亚洲精品国产av蜜桃| 男人操女人黄网站| 老司机靠b影院| 久久精品久久久久久噜噜老黄| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 亚洲成人免费电影在线观看 | 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 日本欧美国产在线视频| 男女之事视频高清在线观看 | 日本欧美视频一区| 亚洲国产中文字幕在线视频| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 美女中出高潮动态图| www.熟女人妻精品国产| 午夜福利,免费看| 黄色a级毛片大全视频| 精品少妇黑人巨大在线播放| 91精品国产国语对白视频| 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 亚洲九九香蕉| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 国产视频一区二区在线看| 汤姆久久久久久久影院中文字幕| 欧美成人午夜精品| 国产精品成人在线| 美女视频免费永久观看网站| 波多野结衣一区麻豆| 自线自在国产av| 99热网站在线观看| 午夜影院在线不卡| 久久久国产一区二区| 亚洲视频免费观看视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲久久久国产精品| 啦啦啦在线免费观看视频4| 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡|