• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Second-order Two-scale Method for Nonstationary Coupled Conduction-Radiation Heat Transfer Problem of Random Porous Materials

    2014-04-16 01:18:15ZhiqiangYangYufengNieYataoWuZihaoYangandYiSun
    Computers Materials&Continua 2014年13期

    Zhiqiang Yang,Yufeng Nie,Yatao Wu,Zihao Yangand Yi Sun

    1 Introduction

    Porous materials are widely used in high technology engineering as well as ordinary industrial products owing to their high temperature resistance,high radiation attenuation coefficient and light weight.Especially,with rapid development of space aircraft,porous materials have attracted tremendous attention and wide research interests in thermal engineering.Therefore,the accurate determination of thermal properties of porous materials has been an important issue.Some scientists and engineers investigated the physical properties of porous materials by physical tests,various empirical and semi-empirical numerical methods[Zhou,Qi and Shao(2006);Glicksman,Schuetz and Sinofsky(1987);Liang and Qu(1999);Contento,Oliviero,Bianco and Naso(2014)].Later,Dong et al.proposed a novel method"Computational Grains",which enables a direct numerical simulation of a large number of heterogeneous materials[Dong,Gamal and Atluri(2013);Dong and Atluri(2012a);Dong and Atluri(2012b)].The literatures mentioned above have just predicted effective macroscopic properties of thermal conduction and thermal radiation,respectively,and can not be employed to calculate the temperature and heat flux fields at mesoscopic level.Meanwhile,other researchers were interested in the modeling of the heat transfer at high temperatures,taking into account both conductive and radiative contributions[Zhao,Lu and Hodson(2004);Zhao,Tassou and Lu(2008);Loretz,Coquard,Baillis and Maire(2008);Coquard,Rochais and Baillis(2009);Coquard,Rochais and Baillis(2012)].It can be seen that the literature on experimental and theoretical models of radiation or conduction in porous materials are abundant,but the number of numerical studies remain relatively limited.Moreover,these experimental investigations generally concern the radiation or the conduction alone,requiring expensive equipments,especially for measurements at high temperatures[Coquard,Rochais and Baillis(2009)].Actually,in many practical thermal engineering problems,coupled conduction and radiation problem should be considered in order to give more accurate results.Moreover,the random porous materials have better physical properties and agree with the real working environment of materials more.Thus it is significant and meaningful to study the coupled conduction-radiation heat transfer problem of porous materials with random distribution.

    The ways of heat transfer in porous materials contains conduction,convection and radiation.Convection occurs by flow,and can be neglected at low pressures or in closed-cell porous materials[Liu and Zhang(2006);Daryabeigi(1999)].Radiation is a way of heat transmission and sometimes plays an important role in heat transfer at high temperature.Considering the surface radiation of porous materials,some interesting works were reported in recent years.Liu and Zhang(2006)predicted the effective macroscopic properties of heat conduction-radiation problem.Bakhvalov(1981)obtained the formal expansions for the solution of those problems,but had no theoretical justification.On this basis,Allaire and El Ganaoui(2009)studied a linear heat conduction equation with ε?1-order radiation boundary conditions by two-scale asymptotic expansion.Yang[Yang,Cui,Nie and Ma(2012);Yang,Cui and Li(2013)]proposed a second-order two-scale method to solve the coupled conduction and radiation equation with a classical radiation model in physics.In addition,for the optically thick materials at high temperature with high porosity,scientists considered the radiation problem approximated by Rosseland equation in the fields of experimental and theoretical studies[Coquard,Rochais and Baillis(2009);Daryabeigi(1999);Doermann and Sacadura(1996);Yan(2006)].Experimental studies and theoretical prediction models can be just applied to the predicting of the macroscopic effective properties of porous materials,and no model has taken into account random porous materials with all random parameters together,including the shape,orientation,spatial location,volume fraction and so on.So this paper will lay a strong emphasis on the investigation of the Rosseland problem for the porous materials with random distribution.

    Based on the asymptotic expansion homogenization approach[Bensoussan,Lions and Papanicolaou(1978);Oleinik,Shamaev and Yosi fian(1992)],Cui proposed a multi-scale analysis method for different types of composites[Yang,Cui,Nie and Ma(2012);Yang,Cui and Li(2013);Cui,Shin and Wang(1999);He and Cui(2006);Li and Cui(2005);Yu,Cui and Han(2008);Yang,Cui,Nie,Wu,Yang and Wu(2013);Yu,Cui and Han(2009)].They established a second-order two scale analysis method to predict physical and mechanical properties of composites with periodic configuration[Yang,Cui,Nie and Ma(2012);Cui,Shin and Wang(1999);He and Cui(2006)].Meanwhile,for the physics field problems of random composites,Jikov,Kozlov and Oleinik(1994)proved the existences of the homogenized coefficients and the homogenized solution.On the basis of the Monte Carlo method,Cui[Yang,Cui and Li(2013);Li and Cui(2005);Yu,Cui and Han(2008);Yang,Cui,Nie,Wu,Yang and Wu(2013);Yu,Cui and Han(2009)]established a statistical second-order two-scale analysis method by introducing a random sample model to predict physical and mechanical properties of the composite structure with random distribution.This method is able not only to show the macro characteristic of composite material with random configurations,but also greatly decrease the computation time required for numerical simulations.

    However,the previous second-order two-scale asymptotic expansion cannot be employed to the coupled conduction-radiation heat transfer problem because of the nonlinearity of the coupled problem.In this paper,we introduce higher-order correction terms into the asymptotic expansion of the temperature field,and derive a family of cell problems.A new SSOTS method is developed by a constructive way to predict heat transfer properties,and calculate temperature and heat flux fields at mesoscopic level of random porous materials.

    The remainder of this paper is outlined as follows.In the following section,the mesoscopic configurations for porous materials with random distribution are represented.Section 3 is devoted to the formulations of the SSOTS method and the algorithm procedure for the maximum heat flux density.Finally,numerical results for the performance analysis of coupled conduction-radiation heat transfer are shown,which strongly support our method.

    Throughout the paper the Einstein summation convention on repeated indices is adopted.

    2 Representation of porous materials with random distribution

    Referring to Ref.[Li and Cui(2005);Yu,Cui and Han(2008)],we suppose that all the pores in the geometry are considered as ellipsoids,which are randomly distributed in the matrix.In this paper,all of the ellipsoid pores are also considered as“same scale”,which means all of their long axes satisfyr1<a<r2,wherer1andr2are given upper and lower bounds.Then,the microstructures of random porous materials are represented as follows:

    1)In the investigated structure ?ε,there exists a constant ε satisfying 0 < ε<<L,whereLdenotes the macro scale of ?ε.Thus,?εis composed of all the cells of size ε,as shown in Figure 1(a).

    2)Each ellipsoid in the three-dimensional space is denoted by nine random parameters,describing the shape,size,orientation and spatial distribution of ellipsoid pores:a1,a2,a3,β1,β2,β3,x01,x02,x03,wherea1,a2anda3denote length of three axes;β1,β2and β3three Euler angles of the rotations;x01,x02andx03the coordinates of the center.Let the random vector ξ =(a1,a2,a3,β1,β2,β3,x01,x02,x03),it includes all the information of an ellipsoid.

    3)Based on the above random parameters defining the ellipsoid in a cell εYs,letKdenote the maximum number of ellipsoids located inside the cell,Ysrepresents a normalized cell,and its random sample is defined as ωs,wheres=1,2,3...denote the index of samples.Then we can define a sample ωsof ellipsoidal pores distribution in a normalized statistic screen as follows:

    for sample ωsshown in Figure 1(b).Therefore,the investigated structure ?εis logically composed of ε-size cells subjected to identical probability distribution modelP,part of which is shown in Figure 1(a).

    In this work,the following material parameters of porous materials with random distribution can be considered

    3 Statistical second-order two-scale method

    3.1 Statistical second-order two-scale formulation

    In this section,a novel SSOTS formulation is derived by using a constructive way for calculating the thermal properties of the heat transfer problem,including effective thermal conductivity parameters,temperature field and heat flux densities.

    When the optical thickness of porous materials is sufficiently large,the local radiation heat transfer is mainly controlled by the gradient of the fourth power of the temperature.Under such conditions,one can define a radiation-based thermal conductivityby the Rosseland equation[Daryabeigi(1999);Doermann and Sacadura(1996);Yan(2006);Modest(2003);Zhang and Cui(2012);Zhang(2012);Yang,Cui and Zhang(2013)].Then,we consider the coupled conductionradiation heat transfer problem for a given structure as follows:

    whereTε(x,ω,t)denotes the temperature,are the coefficients of the thermal conductivity and thermal radiation,respectively. ρε(x,ω)andcε(x,ω)denote,respectively,the densities and the specific heat of porous materials,and ε> 0 is a small parameter which represents the relative size of a cell.(x,t)is the temperature on the boundary??,andf(x,t)is the internal heat source.ω ={ωs,x∈εYs??ε}.

    In order to avoid the arguments on the mathematical properties of investigated functions below,we suppose that:

    Figure 1:Porous materials with random distribution of pores[Li and Cui(2005)].

    By supposition(ii)and(iii),for any fixed given sample ω,Zhang[Zhang and Cui(2012);Zhang(2012)]proved the existence and uniqueness of Eq.(1).

    It is well known that the temperature increments of porous material with random distribution depend not only on its global behaviors,but also on random mesoscopic configurations.It hence can be expressed asTε(x,ω,t)=T(x,y,ω,t),wherey=,xdenotes the macroscopic coordinate andyis the local one.And then material parameters can be expressed as ρε(x,ω)= ρ(y,ω),cε(x,ω)=c(y,ω),(x,ω)=kij(y,ω)and(x,ω)=bij(y,ω).

    In order to obtain the two-scale expression of the temperature field,it is assumed thatTε(x,ω,t)can be expanded into the series of the following form:

    whereT0(x,t)only reflects the macroscopic behaviors of the structure,and is called the homogenization solution.P1(x,y,ω,t)is the asymptotic expansion function depending the two-scale variablesxandy.Nα1(x,y,ωs),Mα1α2(x,y,ωs),Nα1α2(x,y,ωs),Rα1(x,y,ωs),Cα1(x,y,ωs)and θ(x,y,ωs)are the local solutions,respectively.They will be determined below.For simplicity,letT0=T0(x,t)andf=f(x,t).

    It is worth noting that the expansion(2)is different from the traditional form given by[Li and Cui(2005)],the differences are that the correction termsNα1α2(x,y,ωs),Rα1(x,y,ωs)andCα1(x,y,ωs)are constructed into the asymptotic expansion and all of the correction terms depend on the macroscopic variablexowing to the thermal radiation.

    Taking into account

    and substituting(2)into(1)yield the equalities

    Supposing that the equality(4)holds for any ε> 0,then from the coefficients of ε?1in both sides of equality(4),the following equality is obtained:

    To attach the following boundary condition on?Ys

    For any sample ωs(s=1,2,3,...),we obtain the auxiliary functionNα1(x,y,ωs).Nα1(x,y,ωs)is the solution of the following elliptic partial differential equation

    It is proved that problems Eq.(8)have a unique solution for any specified sample.Referring to[Li and Cui(2005);Yu,Cui,Han and Chen(2008);Yu,Cui and Han(2009)],for any sample ωs(s=1,2,3,...),the homogeneous parameters are defined as

    where|Y|denotes the Lebesgue measure ofY.

    From the finiteness ofkij(y,ωs),bij(y,ωs),ρ(y,ωs),c(y,ωs)and Lemma 3.2 in[Li and Cui(2005)],it follows that(x,ωs),(x,ωs)and(ρc)?(ωs)are bounded random functions and exist uniquely.Then applying Kolmogorov’s strong law of large numbers,the expected homogenization coefficients can be calculated by

    whereMis the maximum number of samples.

    After the expected homogenized coefficients are obtained in the structure ?,the homogenized equation associated with Eq.(1)is defined as follows

    Similar to[Oleinik,Shamaev and Yosi fian(1992)]and[Li and Cui(2005)],it is proved that(x)and(x)are symmetrical and positive define.Thus the homogenization problem(11)has the unique solution,see[Zhang and Cui(2012);Zhang(2012)].

    Nα1α2(x,y,ωs)is the solution of the following problem:

    Rα1(x,y,ωs)is the solution of the following problem:

    Cα1(x,y,ωs)is the solution of the following problem:

    θ(x,y,ωs)is the solution of the following problem

    For any fixed given sample ωs(s=1,2,3,...),by Lax-Milgram theorem,Poincare’s inequality and supposition(ii),(12)-(16)are determined uniquely.

    To sum up,one acquires the following theorem:

    TheoremThe coupled conduction-radiation heat transfer problem(1)for porous materials with random distribution formally has a SSOTS asymptotic expansion given by

    whereT0is the solution of the homogenized Eq.(11)with the parameters(10).P1(x,y,ωs,t)is the asymptotic expansion function depending the two-scale variablesxandy.Nα1(x,y,ωs),Mα1α2(x,y,ωs),Nα1α2(x,y,ωs),Rα1(x,y,ωs),Cα1(x,y,ωs)and θ (x,y,ωs)are the local solutions satisfying(8),(12),(13),(14),(15)and(16),respectively.

    In practical computation of engineering only the sum of fore three terms in(17)are evaluated.Furthermore,the expansion formulation of the temperature gradients and heat flux densities are approximately given as follows

    3.2 Algorithm procedure

    1.Generate a sample ωsfor a unit cellYsaccording to the probability distribution modelsPand the volume fraction.Further,partitionYsinto finite element(FE)mesh.

    2.Choose different pointsxi(i=1,2,···,)??εand solveNα1(xi,y,ωs)according to the problem(8)by FE method for a range of macroscopic temperature[Ta,Tb].And then homogenization coefficients?(xi,ωs)?and?(xi,ωs)?are evaluated by using the formula(9).

    3.Repeat the step 1)and 2)forMsamples ωs∈P(s=1,···,M),andMhomogenized coefficients are obtained,respectively.The expected thermal conduc-parameters are given by the formula(10).

    5.With the same meshes to 2),we evaluateMα1α2(x,y,ωs),Nα1α2(x,y,ωs),Rα1(x,y,ωs),Cα1(x,y,ωs)and θ(x,y,ωs)corresponding to a sample ωs∈Pby solving the cell problems(12),(13),(14),(15)and(16),respectively.

    6.From(18)and(19),the temperature and heat flux densities distributions corresponding to the sample ωs∈Pare evaluated.

    7.Suppose the value of the heat flux densities atx∈csisq(x,ωs,t).One obtains the following maximum heat flux density for a cellcscorresponding to the sample ωs∈P

    8.Repeating the steps 6)and 7)forMsamples ωs∈P(s=1,···,M),one obtainsMthe maximum heat flux densityqextr(ωs,t).By analogizing the expected homogenization parameters,the expected maximum heat flux density is given by

    4 Numerical experiments and results

    In order to verify that the presented algorithm is feasible and effective to predict the thermal properties of the porous materials,we have developed computer programs and performed some numerical experiments.

    4.1 Algorithm validation

    Consider the mixed boundary value problem(1)and study the validity of the SSOTS method,a macrostructure ?ε,which is the union of entire periodic cells as illustrated in Figure 2(a),is chosen,and the unit cellY=[0,1]is as shown in Figure 2(b).The boundary temperatures in the z-direction are set asˉT1andˉT2,and the time step is taken as Δt=0.02.

    Figure 2:(a)Domain ?ε=[0,0.25]3(b)Unit cellY=[0,1]3.

    Since it is difficult to find the analytical solution of(1),we have to replaceTε(x,ωs,t)with its FE solutionT?FEin a very refined mesh,and implement the tetrahedron partition for ?ε.The number of elements and nodes used in the numerical simulations are listed in Table 1.

    Table 1:Comparison of computational cost.

    The following two cases are investigated:

    The relative numerical errors of the homogenization, first-order,and second-order two-scale methods in theL2-norm andH1-norm for examples are listed in Tables 2 and 3.

    Table 2:Comparison with computing results of norm L2.

    Table 3:Comparison with computing results of semi-norm H1.

    Figure 3:t=0.2;Case 1(a)T0(x,t);(b)(x,ωs,t);(c)(x,ωs,t);(d)T?FE.

    In practical engineering,porous materials generally consist of a large number of pores.A porous system depicted in Figure 5 is used to demonstrate the effectiveness of the SSOTS computational method,consisting of 27000 pores with a diameter of d=4.1667mm.The thermal conductivity of the matrix isk=150WK?1m?1.The boundary temperatures in the z-direction are set as=100K and=500K.The internal heat sourcef=1000MWm?3.Other materials parameters are the same as example listed in Case 1.

    Figures 6(a)–(c)illustrate the numerical results forT0(x,t),(x,ωs,t)and(x,ωs,t)at the intersectionz=0.13333 at timet=0.2.

    Figure 4:Case 1;(a)the evolution of L2relative errors with t;(b)the evolution of H1relative errors with t.

    Figure 5:Porous materials with a large number of pores.?ε=[0,0.25]3.

    Both the SSOTS method and the direct numerical simulations are performed on the same computer(which has memory of 96GB and 24 processors with CPU=2.33GHz).On the aspect of the SSOTS method,it is very cheap to solve the simulation(it takes about 40 seconds to finish solving the cell problem,and about 60 seconds for the homogenized problem),which takes the majority of the computational efforts.On the other hand,we cannot easily obtainT?FEby classical numerical methods because it would require very fine meshes and a great amount of computation.Moreover,the convergence of FE method is not easy.

    Figure 6:t=0.2;(a)T0(x,t);(b)(x,ωs,t);(c)(x,ωs,t).

    From the results presented in Tables 2-3 and Figures 3-6,we can see that the statistical second-order two-scale approximate solution is in a good agreement with the FE solution in a refined mesh,and can effectively capture the local fluctuations caused by 3-D microstructures well.But the statistical first-order two-scale approximate solution and the homogenized solution are not capable of providing satisfactory results,especially when the thermal conduction coefficients in different parts of unit cell are large or the source term varies with large amplitude.The statistical second-order two-scale method is clearly the best among the computation schemes studied in this paper,and it gives the accurate numerical solutions.Furthermore,the proposed method is suitable for a very small periodic parameter ε;i.e.,there are a great number of cells in porous materials.

    From Table 1,it is seen that the mesh partition numbers of statistical second-order two-scale approximate solution are much less than that of refined FE solution,especially for small ε.It means the new approximate solution can greatly save computer memory and CPU time,which is very important in engineering computations.

    4.2 Thermal properties of randomly distributed porous material

    In order to investigate thermal properties of porous materials with random distribution,we consider three different types of microscopic distributions and their effective computer generation algorithm has been developed by authors[Yu,Cui and Han(2008)]based on the probability distribution model of pores:spherical pores subject to uniformly stochastic distribution in a ε-cell;spherical pores subject to normal distribution around the centric point of ε-cell;orientations of ellipsoidal pores,whose long axes is about two times that of the middle axes and short axes,which are subjected to normal distribution alongx1-axis,and subjected to uniformly stochastic distribution in ε-cell.Figure 7 depicts the three samples corresponding to those.The effect of locations,orientations and shapes of pores on material properties is investigated by the SSOTS method,and due to pores random dispersion,the numerical results of the different samples will vary even for the same distribution models of pores.Therefore,to obtain more accurate prediction values a numbers of samples are required.It should be noted that the following computation results are averaged from 50 random samples.

    Figure 7:(a)uniform distribution(b)location-normal distribution(c)orientationnormal distribution.

    Figure 8 depicts the geometry structure of the plate studied which is of the length is 10mm,width is 10mm,and the thickness is 5mm,respectively.The internal heat sourcef=10MWm?3,and the boundary temperatures in the z-direction are set as(x,t)=100K,(x,t)=500K.The materials parameters of porous materials are listed in Table 4,and we choose the effective radiative thermal conductivity calculated by genetic algorithm in Yan(2006).The radii are both taken as 0.05 for the spherical pores subjected to uniform distribution and spherical pores subjected to normal distribution.As for the orientations of spherical pores are normal distribution,the sizes of their long axes are taken as 0.1,middle axes and short axes are both 0.05.

    Table 4:Material parameters of porous materials[Yan(2006)].

    Figure 8:Schematic of porous materials plate.

    From the discussion in Section 3 it follows that the effective thermal conductivity and effective radiative thermal conductivity of the porous materials are dependent of temperature because of the nonlinearity of Rosseland equation.In order to investigate thermal properties of the porous materials,the effective thermal conductivity coefficients are obtained,and compared to Hashin-shtrikman bounds and Voigt-Reuss bounds[Jikov,Kozlov and Oleinik(1994);Hashin and Shtrikman(1963)]for different temperatures.The results are listed in Table 5 as temperatures are 50K and 1250K for different volume fractions with normal distribution of pores.Table 6 shows that the effective thermal conductivity at 1000K and the spherical pores are orientation-normal distribution around the centric point of ε-cell.From Tables 5 and 6,it can be seen that the effective thermal conductivity decrease with the increment of volume fraction,and SSOTS method show the effective thermal conductivity which satisfy Hashin-shtrikman bounds and Voigt-Reuss bounds,between super and low bounds.

    Table 5:Effective thermal conductivity of porous materials for different volume fractions at 50K and 1250K with normal distribution of pores.

    Table 6:Effective thermal conductivity of porous materials for different volume fractions at 1000K with orientation-normal distribution of spherical pores.

    In Figure 9 we plot K11 and K22 of the homogenized conductivities of porous material with volume fraction are 38%in terms of the macroscopic temperature from 100K to 1500K,and pores subject to uniform random distribution.As a result,we note that these diagonal components are different at high temperature because of the effect of radiation.

    We have studied the limit of the cell problems and the homogenized coefficients when the macroscopic temperature goes to infinity.In Figs.10 we plot the three different values of the homogenized conductivities with volume fraction of pores is 38%,and find that,at extremely high temperatures,they reach the limit value,which has the similar changing trends to the results showed in Allaire and Ganaoui(2009)owing to the importance of heat radiation at the high temperature.

    Figure 9:K11 and K22 of the homogenized conductivities as a function of the macroscopic temperature with uniform distribution of pores.

    Figure 11 demonstrates that the statistically maximum heat flux density increases with the increment of time for different volume fraction,and the(t)of orientation normal distribution is larger than the(t)of uniform distribution in a unit cell,and they all reach a steady state at last.So the curves of Fig.11 indicate that the statistically maximum heat flux density of the porous materials is concurrently affected not only by macroscopic properties,but also by the microscopic structure of random distribution of pores.

    Figures 12 and 13 illustrate heat flux densities distribution for different random distributions with different volume fractions of pores at timet=1.0.One can see that the heat flux densities in the two local cells are different for different distribution with a marked fluctuation,and local heat flux densities with high volume fraction are relatively high.Moreover,the statistically heat flux densities with orientation normal distribution of pores are larger than that with uniform distribution of pores for the same volume fraction.

    All the results from above examples demonstrate that the thermal properties of coupled conduction-radiation heat transfer problem for porous materials with random distribution can be effectively predicted by the SSOTS method.

    Figure 10:Homogenized conductivities as a function of the macroscopic temperature with uniform distribution of pores.(a)K11;(b)K22;(c)K33.

    Figure 11:Statistically maximum heat flux density as time for different distributions of pores locations.

    Figure 12:Heat flux densities in a local cells with different volume fraction and pores subjected to uniform distribution(a)0.09(b)0.26.

    Figure 13:Heat flux densities in a local cells with different volume fraction and pores subjected to orientation-normal distribution(a)0.09(b)0.20.

    5 Conclusions

    In this paper,the SSOTS method is presented to predict the heat transfer performance of nonstationary coupled conduction-radiation problem for porous materials with random distribution.The validity of this two-scale model and the effectiveness of the developed SSOTS method have been verified by comparing with FE methods in a very fine mesh.As a result,the statistical second-order two-scale method is effective to numerically solve the coupled conduction-radiation equation.Besides,the convergence of the SSOTS numerical results is much better than FE method,especially at a high temperature.

    The macroscopic thermal properties for the structures with varying probability distribution models,including volume fraction,location,orientation and spatial distribution of pores,are shown.Numerical results demonstrate that the microstructure has a marked effect on the macroscopic thermal properties.specifically,these properties vary with the probability model of random inclusion dispersions.And the local behaviors caused by microstructures inside porous materials can be captured exactly by the SSTOS method.Therefore,the SSOTS method proposed in this paper can be practically employed to predict thermal properties of the random porous materials.

    Furthermore,the SSOTS method and related numerical approximation techniques developed in this work is helpful to the design and optimization of the porous materials with random distribution.

    Acknowledgement:This work is supported by the Special Funds for National Basic Research Program of China(973 Program 2010CB832702),and also supported by the State Key Laboratory of Science and Engineering Computing,and Center for High Performance Computing of Northwestern Polytechnical University.

    Allaire,G.;El Ganaoui,K.(2009):Homogenization of a conductive and radiative heat transfer problem.Multiscale Model.Sim.,vol.7,pp.1148-1170.

    Bakhvalov,N.S.(1981):Averaging of the heat-transfer process in periodic media with radiative.Differ.Uraun.,vol.17,no.10,pp.1774-1778.

    Bensoussan,A.;Lions,J.L.;Papanicolaou,G.(1978):Asymptotic Analysis for Periodic Structure,North-Holland,Amsterdam.

    Cui,J.Z.;Shin,T.M.;Wang,Y.L.(1999):Two-scale analysis method for bodies with small period configuration.Struct.Eng.Mech.,vol.7,pp.601–614.

    Contento,G.;Oliviero,M.;Bianco,N.;Naso,V.(2014):Prediction of radiative heat transfer in metallic foams.Int.J.Therm.Sci.,vol.76,pp.147-154.

    Coquard,R.;Rochais,D.;Baillis,D.(2009):Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams.Int.J.Heat Mass Tran.,vol.52,pp.4907-4918.

    Coquard,R.;Rochais,D.;Baillis,D.(2012):Conductive and Radiative Heat Transfer in Ceramic and Metal Foams at Fire Temperatures.Fire Technol.,vol.48,no.3,pp.699-732.

    Doermann,D.;Sacadura,J.F.(1996):Heat transfer in open cell foam insulation.J.Heat Trans.-T Asme,vol.118,pp.88-93.

    Daryabeigi,K.(1999):Analysis and testing of high temperature fibrous insulation for reusable launch vehicles.37th AIAA Aerospace Sciences Meeting and Exhibit,January 11-14,Reno,NV.

    Dong,L.T.;Atluri,S.N.(2012):Development of 3D Trefftz Voronoi Cells with Ellipsoidal Voids&/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials.CMC-Comput.Mater.Con.,vol.30,no.1,pp.39-81.

    Dong,L.T.;Atluri,S.N.(2012):T-Trefftz Voronoi cell finite elements with elastic/rigid inclusions or voids for micromechanical analysis of composite and porous materials.CMES:Comp.Model.Eng.,vol.83,no.2,pp.183-219.

    Dong,L.T.;Gamal,S.H.;Atluri,S.N.(2013):Stochastic Macro Material Properties,Through Direct Stochastic Modeling of Heterogeneous Microstructures with Randomness of Constituent Properties and Topologies,by Using Trefftz Computational Grains(TCG).CMC-Comput.Mater.Con.,vol.37,no.1,pp.1-21.

    Glicksman,L.R.;Schuetz,M.;Sinofsky,M.(1987):Radiation heat transfer in foam insulation.Int.J.Heat Mass Tran.,vol.30,pp.187-197.

    Hashin,Z.;Shtrikman,S.(1963):A variational approach to the theory of the elastic behavior of multiphase materials.J.Mech.Phys.Solids,vol.11,pp.127-140.

    He,W.M.;Cui,J.Z.(2006):A finite element method for elliptic problems with rapidly oscillating coefficients.Bit Numer.Math.,vol.22,pp.581-594.

    Jikov,V.V.;Kozlov,S.M.;Oleinik,O.A.(1994):Homogenization of Differential Operators and Integral Functions,Springer:Berlin.

    Liang,X.G.;Qu,W.(1999):Effective thermal conductivity of gas-solid composite materials and the temperature difference effect at high temperature.Int.J.Heat Mass Tran.,vol.42,pp.1885-1893.

    Loretz,M.;Coquard,R.;Baillis,D.;Maire,E.(2008):Metallic foams:Radiative properties/comparison between different models.J.Quant.Spectrosc.Radiat.Trans.,vol.109,no.1,pp.16-27.

    Liu,S.T.;Zhang,Y.C.(2006):Multi-scale analysis method for thermal conductivity of composite material with radiation.Multidiscipline Modeling in Mat.and Str.,vol.2,no.3,pp.327-344.

    Li,Y.Y.;Cui,J.Z.(2005):The multi-scale computational method for mechanics parameters of the materials with random distribution of multi-scale grains.Compos.Sci.Technol.,vol.65,pp.1447-1458.

    Modest,M.F.(2003):Radiative Heat Transfer,second ed.,New York.

    Oleinik,O.A.;Shamaev,A.S.;Yosi fian,G.A.(1992):Mathematical Problems in Elasticity and Homogenization,North-Holland,Amsterdam.

    Su,F.;Xu,Z.;Dong,Q.L.;Li,H.S.(2011):A second-order and two-scale computation method for heat conduction equation with rapidly oscillatory coefficients.Finite Elem.Anal.Des.,vol.47,pp.276-280.

    Yang,Z.Q.;Cui,J.Z.;Nie,Y.F.;Ma,Q.(2012):The second-order two-scale method for heat transfer performances of periodic porous materials with interior surface radiation.CMES:Comp.Model.Eng.,vol.88,no.5,pp.419-442.

    Yang,Z.Q.;Cui,J.Z.;Li,Y.Q.(2013):The statistical second-order two-scale method for heat transfer performances of random porous materials with interior surface radiation.Int.J.Numer.Anal Mod.Ser.B,vol.4,no.2,pp.151-166.

    Yan,C.H.(2006):Thermal insulating mechanism and research on thermal insulating efficiency of thermal insulations of metallic thermal protection system,PhD Thesis,Harbin Institute of Technology,(in Chinese).

    Yu,Y.;Cui,J.Z.;Han,F.(2008):An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains.Compos.Sci.Technol.,vol.68,pp.2543-2550.

    Yang,Z.H.;Cui,J.Z.;Nie,Y.F.;Wu,Y.T.;Yang,B.;Wu,B.(2013):Microstructural modeling and second-order two-scale computation for mechanical properties of 3D 4-directional braided composites.CMC-Comput.Mater.Con.,vol.38,no.3,pp.175-194.

    Yu,Y.;Cui,J.Z.;Han,F.(2009):The statistical second-order two-scale analysis method for heat conduction performances of the composite structure with inconsistent random distribution.Comp.Mater.Sci.,vol.46,pp.151-161.

    Yang,Z.Q.;Cui,J.Z.;Zhang,Q.F.(2013):The statistical second-order twoscale analysis method for conduction-radiation coupled heat transfer of porous materials.Acta Mater.Compos.Sin.,vol.30,no.2,pp.173-182.

    Zhou,W.Y.;Qi,S.H.;Li,H.D.;Shao,S.Y.(2006):Study on insulating thermal conductive BN/HDPE composites.Thermochim.Acta,vol.452,pp.36-42.

    Zhao,C.Y.;Lu,T.J.;Hodson,H.P.(2004):Thermal radiation in ultralight metal foams with open cells.Int.J.Heat Mass Tran.,vol.47,pp.2927-2939.

    Zhao,C.Y.;Tassou,S.A.;Lu,T.J.(2008):Analytical considerations of thermal radiation in cellular metal foams with open cells.Int.J.Heat Mass Tran.,vol.47,pp.929-940.

    Zhang,Q.F.;Cui,J.Z.(2012):Existence theory for Rosseland equation and its homogenized equation.Appl.Math.Mech-Engl.,vol.33,no.12,pp.1595-1612.

    Zhang,Q.F.(2012):Multi-scale analysis method for Rosseland-type equation of periodic composites,PhD Thesis,Chinese Academy of Sciences,(in Chinese).

    亚洲精华国产精华液的使用体验| 午夜影院在线不卡| h视频一区二区三区| 国产乱来视频区| 欧美国产精品一级二级三级| 少妇的逼水好多| 婷婷成人精品国产| av国产久精品久网站免费入址| 国产精品亚洲av一区麻豆 | 一区二区日韩欧美中文字幕| 男女国产视频网站| av网站免费在线观看视频| 性高湖久久久久久久久免费观看| 午夜免费观看性视频| 黑人巨大精品欧美一区二区蜜桃| 青春草国产在线视频| 黄色怎么调成土黄色| 午夜福利网站1000一区二区三区| 飞空精品影院首页| 午夜日韩欧美国产| 在线天堂最新版资源| 久热久热在线精品观看| 有码 亚洲区| 街头女战士在线观看网站| 九草在线视频观看| 国产成人精品一,二区| 国产一级毛片在线| 久久精品久久久久久久性| 国产高清国产精品国产三级| 波多野结衣一区麻豆| 免费大片黄手机在线观看| 成年女人在线观看亚洲视频| 婷婷色av中文字幕| 久久久久网色| av国产久精品久网站免费入址| 制服人妻中文乱码| 成年女人毛片免费观看观看9 | 久久人人97超碰香蕉20202| 亚洲五月色婷婷综合| 亚洲国产最新在线播放| 亚洲情色 制服丝袜| 亚洲人成77777在线视频| 99热国产这里只有精品6| 日本免费在线观看一区| 看免费成人av毛片| 亚洲,欧美,日韩| 国产深夜福利视频在线观看| 下体分泌物呈黄色| av不卡在线播放| 卡戴珊不雅视频在线播放| 丰满迷人的少妇在线观看| 日韩三级伦理在线观看| 日韩不卡一区二区三区视频在线| 婷婷色麻豆天堂久久| 亚洲一区中文字幕在线| 亚洲av福利一区| 夫妻性生交免费视频一级片| 欧美人与善性xxx| 美女视频免费永久观看网站| 精品卡一卡二卡四卡免费| 免费av中文字幕在线| 精品午夜福利在线看| 欧美日韩亚洲国产一区二区在线观看 | 色网站视频免费| 午夜免费男女啪啪视频观看| 少妇精品久久久久久久| 在线亚洲精品国产二区图片欧美| 777久久人妻少妇嫩草av网站| 国产亚洲午夜精品一区二区久久| 欧美精品一区二区免费开放| 国产精品 国内视频| 精品人妻偷拍中文字幕| 男女啪啪激烈高潮av片| 日韩中字成人| 人成视频在线观看免费观看| 成人免费观看视频高清| 老汉色av国产亚洲站长工具| 18+在线观看网站| 一区二区三区激情视频| 国产高清国产精品国产三级| 亚洲色图 男人天堂 中文字幕| 亚洲精品自拍成人| 日产精品乱码卡一卡2卡三| 久久免费观看电影| 久久精品人人爽人人爽视色| 在线观看一区二区三区激情| 久久久久久免费高清国产稀缺| 久久人人爽人人片av| 性色av一级| 水蜜桃什么品种好| 嫩草影院入口| 国产高清国产精品国产三级| 日本av免费视频播放| 一级毛片黄色毛片免费观看视频| 国产精品二区激情视频| 熟女av电影| 少妇被粗大的猛进出69影院| 国产在线一区二区三区精| 黄片播放在线免费| 国产精品av久久久久免费| 日韩精品免费视频一区二区三区| 一区二区三区激情视频| 看免费av毛片| 国产精品人妻久久久影院| 久久这里只有精品19| 国产 一区精品| 观看av在线不卡| 观看av在线不卡| 亚洲精品aⅴ在线观看| 永久网站在线| 国产成人精品无人区| 女人久久www免费人成看片| 久久精品国产亚洲av涩爱| 亚洲,欧美精品.| 亚洲精品一二三| 蜜桃在线观看..| 久久久欧美国产精品| 欧美变态另类bdsm刘玥| 国产淫语在线视频| 日韩电影二区| 女的被弄到高潮叫床怎么办| 三级国产精品片| 精品亚洲乱码少妇综合久久| 亚洲国产毛片av蜜桃av| 成年动漫av网址| 一区二区日韩欧美中文字幕| 亚洲欧美成人精品一区二区| 日韩视频在线欧美| 欧美在线黄色| 久热这里只有精品99| 日韩电影二区| 欧美黄色片欧美黄色片| 国产一区二区激情短视频 | 国产精品国产三级国产专区5o| 一级毛片我不卡| 欧美人与性动交α欧美软件| 亚洲综合精品二区| 综合色丁香网| 中国国产av一级| 国产视频首页在线观看| 在线观看国产h片| 亚洲综合色网址| 国产人伦9x9x在线观看 | 久热久热在线精品观看| 妹子高潮喷水视频| 久久久久久久国产电影| 老女人水多毛片| 日本欧美视频一区| 久久久国产欧美日韩av| 在线观看一区二区三区激情| 精品一区二区三卡| 国产成人午夜福利电影在线观看| 蜜桃在线观看..| 欧美人与善性xxx| 99国产综合亚洲精品| 麻豆av在线久日| av在线观看视频网站免费| 男女啪啪激烈高潮av片| 99香蕉大伊视频| 中文精品一卡2卡3卡4更新| 中国国产av一级| 午夜福利视频精品| 热99国产精品久久久久久7| 精品少妇一区二区三区视频日本电影 | 国产探花极品一区二区| 不卡视频在线观看欧美| a级片在线免费高清观看视频| 免费黄网站久久成人精品| 丰满饥渴人妻一区二区三| 国产精品一二三区在线看| 建设人人有责人人尽责人人享有的| 国产精品免费视频内射| 国产精品久久久久久久久免| 亚洲欧美精品综合一区二区三区 | 欧美人与性动交α欧美软件| 午夜老司机福利剧场| 免费日韩欧美在线观看| 精品少妇一区二区三区视频日本电影 | 99国产综合亚洲精品| 边亲边吃奶的免费视频| 只有这里有精品99| 国产熟女午夜一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产精品免费大片| 欧美精品av麻豆av| 热re99久久国产66热| 国产精品久久久久久精品电影小说| 久久精品夜色国产| 成年av动漫网址| 美女午夜性视频免费| 91精品三级在线观看| 一级毛片黄色毛片免费观看视频| 午夜日本视频在线| 欧美日韩精品成人综合77777| 十分钟在线观看高清视频www| 日日摸夜夜添夜夜爱| 国产免费视频播放在线视频| 久久青草综合色| 日韩免费高清中文字幕av| 亚洲五月色婷婷综合| 国产乱人偷精品视频| 两个人免费观看高清视频| 亚洲成人av在线免费| av在线观看视频网站免费| 国产男女内射视频| 国产精品久久久久久av不卡| 美女国产高潮福利片在线看| 免费黄网站久久成人精品| 亚洲国产精品999| 免费女性裸体啪啪无遮挡网站| 波多野结衣一区麻豆| 国产97色在线日韩免费| 免费不卡的大黄色大毛片视频在线观看| 欧美另类一区| 好男人视频免费观看在线| 美女视频免费永久观看网站| av视频免费观看在线观看| 人体艺术视频欧美日本| 亚洲色图 男人天堂 中文字幕| 波多野结衣一区麻豆| 日韩av免费高清视频| av在线播放精品| 亚洲欧美中文字幕日韩二区| 久久久久久人妻| 午夜免费男女啪啪视频观看| 免费观看av网站的网址| 黄片无遮挡物在线观看| 爱豆传媒免费全集在线观看| 综合色丁香网| 曰老女人黄片| 极品少妇高潮喷水抽搐| 1024香蕉在线观看| 成人亚洲欧美一区二区av| 午夜福利在线观看免费完整高清在| 波多野结衣一区麻豆| 国产精品三级大全| 一区二区三区四区激情视频| 超碰成人久久| 男女午夜视频在线观看| 久久久久久人人人人人| 成年动漫av网址| 美女中出高潮动态图| 青春草视频在线免费观看| 精品人妻熟女毛片av久久网站| 国产在线视频一区二区| 国产毛片在线视频| 永久免费av网站大全| 美女主播在线视频| 欧美另类一区| 超碰成人久久| 黄网站色视频无遮挡免费观看| 在现免费观看毛片| 国产一级毛片在线| 日韩一区二区视频免费看| 国产免费现黄频在线看| 汤姆久久久久久久影院中文字幕| 女人精品久久久久毛片| 青青草视频在线视频观看| 久久国内精品自在自线图片| 国产亚洲一区二区精品| 久久久国产欧美日韩av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精华国产精华液的使用体验| 国产在线免费精品| 精品人妻偷拍中文字幕| 国产麻豆69| 在线观看国产h片| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 国产精品麻豆人妻色哟哟久久| 久久鲁丝午夜福利片| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 美女福利国产在线| 999久久久国产精品视频| 亚洲视频免费观看视频| 一级片免费观看大全| 精品一区二区三区四区五区乱码 | 亚洲av免费高清在线观看| 国产精品99久久99久久久不卡 | 国产精品人妻久久久影院| 男女国产视频网站| 亚洲一区中文字幕在线| 精品人妻一区二区三区麻豆| 国产精品二区激情视频| 午夜福利网站1000一区二区三区| 欧美日韩一级在线毛片| 久久ye,这里只有精品| 春色校园在线视频观看| 亚洲精品国产av蜜桃| 久久亚洲国产成人精品v| 最近最新中文字幕大全免费视频 | 国产精品久久久久成人av| 日韩电影二区| 国产高清不卡午夜福利| 午夜日本视频在线| 国产精品秋霞免费鲁丝片| 国产一区二区在线观看av| 26uuu在线亚洲综合色| 国产极品粉嫩免费观看在线| 搡女人真爽免费视频火全软件| 啦啦啦在线免费观看视频4| 色婷婷久久久亚洲欧美| 久久久久久久亚洲中文字幕| 永久网站在线| av网站在线播放免费| 99九九在线精品视频| 亚洲成人一二三区av| 一区福利在线观看| 久久国产精品大桥未久av| 亚洲色图 男人天堂 中文字幕| 精品一区在线观看国产| 成年人午夜在线观看视频| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 精品国产一区二区久久| 亚洲精品av麻豆狂野| 另类精品久久| 热99久久久久精品小说推荐| 午夜福利网站1000一区二区三区| av免费在线看不卡| 天天躁日日躁夜夜躁夜夜| 97精品久久久久久久久久精品| 久久精品熟女亚洲av麻豆精品| 狠狠婷婷综合久久久久久88av| 精品一区二区三区四区五区乱码 | 热99国产精品久久久久久7| 亚洲伊人色综图| 九草在线视频观看| 日本av免费视频播放| 久久热在线av| 成年人午夜在线观看视频| 国产野战对白在线观看| 亚洲在久久综合| 久久99精品国语久久久| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| kizo精华| 男人操女人黄网站| 天堂8中文在线网| 美女国产高潮福利片在线看| 美女中出高潮动态图| 精品国产一区二区三区久久久樱花| 99热网站在线观看| av卡一久久| 亚洲av在线观看美女高潮| 99国产综合亚洲精品| 18禁裸乳无遮挡动漫免费视频| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 美女高潮到喷水免费观看| 国产极品粉嫩免费观看在线| 一二三四中文在线观看免费高清| 婷婷色av中文字幕| 九草在线视频观看| 99热国产这里只有精品6| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 免费观看av网站的网址| 中文字幕色久视频| 不卡av一区二区三区| 亚洲第一av免费看| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久 | 国产在线一区二区三区精| 亚洲第一青青草原| 日韩av不卡免费在线播放| 大码成人一级视频| 又黄又粗又硬又大视频| 狠狠精品人妻久久久久久综合| 国产伦理片在线播放av一区| 只有这里有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 最近中文字幕高清免费大全6| 不卡av一区二区三区| 少妇精品久久久久久久| 亚洲精华国产精华液的使用体验| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 晚上一个人看的免费电影| 亚洲av电影在线进入| 美女国产视频在线观看| 美女福利国产在线| 欧美成人午夜精品| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 一区二区三区乱码不卡18| 国产精品久久久av美女十八| 午夜日本视频在线| 免费观看性生交大片5| 久久国内精品自在自线图片| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| 免费播放大片免费观看视频在线观看| 亚洲成人手机| 韩国精品一区二区三区| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9 | 久久久欧美国产精品| 久久精品亚洲av国产电影网| 日日爽夜夜爽网站| 日本欧美视频一区| 久久99精品国语久久久| 伦理电影免费视频| 久久国产亚洲av麻豆专区| 亚洲av免费高清在线观看| 在线观看人妻少妇| 久久久亚洲精品成人影院| 免费不卡的大黄色大毛片视频在线观看| 最近手机中文字幕大全| 国产成人精品一,二区| 1024视频免费在线观看| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 天天躁日日躁夜夜躁夜夜| 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| 午夜久久久在线观看| 国产乱来视频区| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 亚洲色图综合在线观看| 亚洲国产成人一精品久久久| 国产精品av久久久久免费| 国产成人91sexporn| 久久精品久久精品一区二区三区| 国产爽快片一区二区三区| 国产精品二区激情视频| 国产麻豆69| 观看美女的网站| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| 99九九在线精品视频| 蜜桃在线观看..| 精品国产一区二区久久| 亚洲国产色片| 免费大片黄手机在线观看| 亚洲国产欧美在线一区| 秋霞在线观看毛片| 亚洲成色77777| 免费av中文字幕在线| 久久久亚洲精品成人影院| 人人澡人人妻人| 韩国精品一区二区三区| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 亚洲第一av免费看| 亚洲美女黄色视频免费看| 美国免费a级毛片| 午夜福利,免费看| 18禁裸乳无遮挡动漫免费视频| 黄色 视频免费看| 最近最新中文字幕大全免费视频 | 新久久久久国产一级毛片| 最新的欧美精品一区二区| 亚洲国产最新在线播放| a级片在线免费高清观看视频| 日日撸夜夜添| 青春草国产在线视频| 免费观看av网站的网址| 久久久久久久久免费视频了| 久久狼人影院| 久久精品国产自在天天线| 久久人人爽人人片av| av.在线天堂| 看免费av毛片| 午夜福利乱码中文字幕| 一级毛片 在线播放| 韩国高清视频一区二区三区| 男女免费视频国产| 色播在线永久视频| 亚洲在久久综合| 免费av中文字幕在线| 久久久a久久爽久久v久久| 在线观看免费日韩欧美大片| 99久久精品国产国产毛片| 高清视频免费观看一区二区| 亚洲av福利一区| 老熟女久久久| 欧美精品一区二区免费开放| a级毛片黄视频| 国产av码专区亚洲av| 色视频在线一区二区三区| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 青春草国产在线视频| 国产女主播在线喷水免费视频网站| 99久久综合免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧洲日产国产| 亚洲图色成人| 亚洲精品,欧美精品| 欧美国产精品va在线观看不卡| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 国产精品香港三级国产av潘金莲 | 18禁动态无遮挡网站| 国产极品天堂在线| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 久久国产精品男人的天堂亚洲| 久久这里只有精品19| 热re99久久精品国产66热6| 电影成人av| 老司机亚洲免费影院| 欧美最新免费一区二区三区| 久久99热这里只频精品6学生| 日韩精品免费视频一区二区三区| 精品久久久久久电影网| 黄色 视频免费看| 汤姆久久久久久久影院中文字幕| 少妇 在线观看| 在线天堂最新版资源| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 伦理电影免费视频| av视频免费观看在线观看| 成年女人毛片免费观看观看9 | 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 精品亚洲乱码少妇综合久久| 香蕉丝袜av| 在线观看免费高清a一片| 国产精品香港三级国产av潘金莲 | 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 国产精品嫩草影院av在线观看| 99国产综合亚洲精品| 色播在线永久视频| 看免费成人av毛片| 日本av手机在线免费观看| 18禁国产床啪视频网站| 欧美国产精品一级二级三级| tube8黄色片| 美女国产视频在线观看| 日日啪夜夜爽| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| 免费人妻精品一区二区三区视频| 国产成人aa在线观看| av网站免费在线观看视频| 中文乱码字字幕精品一区二区三区| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 大话2 男鬼变身卡| av电影中文网址| videosex国产| 国产1区2区3区精品| 91精品三级在线观看| 精品第一国产精品| 午夜福利乱码中文字幕| av网站在线播放免费| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠久久av| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 成年人免费黄色播放视频| 毛片一级片免费看久久久久| 色网站视频免费| 亚洲欧美清纯卡通| 免费女性裸体啪啪无遮挡网站| 99久久精品国产国产毛片| 亚洲av日韩在线播放| 久久国内精品自在自线图片| 交换朋友夫妻互换小说| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 男的添女的下面高潮视频| 欧美日韩av久久| 欧美精品一区二区大全| 老司机影院成人| 国产女主播在线喷水免费视频网站| 久久久久网色| 天天操日日干夜夜撸| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 日韩人妻精品一区2区三区| av女优亚洲男人天堂| 中文天堂在线官网| 国产精品免费视频内射| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| 九色亚洲精品在线播放| 国产女主播在线喷水免费视频网站| www日本在线高清视频| 欧美精品一区二区大全| 亚洲欧美一区二区三区国产| 成人毛片60女人毛片免费| 国产 精品1| 18在线观看网站| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 如何舔出高潮| 免费播放大片免费观看视频在线观看| 免费黄网站久久成人精品| 精品一区二区三区四区五区乱码 | 亚洲第一av免费看| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 国产精品三级大全| kizo精华| 日韩成人av中文字幕在线观看|