• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling of Nanoscale Friction using Network Simulation Method

    2014-04-16 01:18:14MarAlhamaandMoreno
    Computers Materials&Continua 2014年13期
    關(guān)鍵詞:金屬粉末冶金粉體

    F.Marín,F.Alhamaand J.A.Moreno

    1 Introduction

    The physical phenomenon of dry friction between sliding bodies is an important subject in mechanical engineering,to which many studies have been devoted[Blau(1986);Dowson(1998);Perry(2001);Blau(2001);Müser(2006)].In nanotribology,the frictional behaviour of a single-asperity contact should first be investigated to improve our understanding of friction in macroscopic systems.Once the atomicscale manifestations of friction at such a nanometre-sized single asperity have been clarified,macroscopic friction can be explained with the summation of the interactions of a large number of small individual contacts,which form the macroscopic roughness of the contact interface[H?lscher,Schirmeisen and Schwarz(2008)].

    In recent decades,the field of nanotribology has become firmly established through the introduction of new experimental tools,which have made nanometric and atomic scales accessible to tribologists[Bhushan,Israelachvili and Landmann(1995);Carpick,Ogletree and Salmeron(1997);Urbakh,Klafter,Gourdon and Israelachvili(2004)].While surface force apparatus(SFA)is generally used with molecular thick liquid films sandwiched between atomically smooth surfaces,atomic force microscopy/friction force microscopy(AFM/FFM),a technique derived from scanning force microscopy(SFM),simulates a solid-solid interface with numerous asperities.These techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to micro;such studies including surface roughness,adhesion,friction,scratching,wear,indentation,the detection of material transfer and boundary lubrication[Bhushan(2000);H?lscher,Schwarz and Wiesendanger(1996)].

    However,theoretical understanding of the individual processes involved in friction force microscopy is still insufficient[H?lscher,Schwarz and Wiesendanger(1996)],and numerical simulations are crucial in this respect.Indeed,simulations have evolved since the first simple theoretical models of friction at atomic scale[Tomlinson(1929);Frenkel and Kontorova(1938);Alhama,Marín and Moreno(2011)]which were applied to the friction force microscope[Zhong and Toánek(1990);Tománek,Zhong and Thomas(1991);Gyalog,Bammerlin,?uthi,Meyer and Thomas(1995)]and which are able to explain essential features of atomic friction processes.Nowadays,theoretical simulations of AFM images for systems include movable substances like flakes or molecules on surfaces[Miura,Sasaki and Kamiya(2004);Verhoeven,Dienwiebel and Frenken(2004)].In this way,molecular-dynamics simulations provide valuable insight into atomic processes and interactions,but still need much computer time to provide quantitative results[H?lscher,Schwarz and Wiesendanger(1996)].

    The aim of this work was to design a reliable and efficient model for nanoscale friction,following the rules of network simulation[González-Fernández(2001)],which can be simulated in commercial circuit analysis software such as PSpice[Microsim Corporation(1994);Nagel(1977)].The model,which provides both transient and steady state solutions,is based on the formal equivalence between the differential equations of the mathematical and network models,going beyond the scope of classical electrical analogy of many books[Kreith(2000);Mills(1998)]which mainly deal with linear problems.The network method is a numerical tool whose efficiency has been demonstrated in many science and engineering problems,such as heat transfer,electrochemistry, fluid flow and solute transport,inverse problems,etc[González-Fernández,Alhama and López-Sánchez(1998);Horno,González-Fernández and Hayas(1995);Soto,Alhama and González-Fernández(2007);Zueco and Alhama(2006)].Once the equivalence between electric and mechanical variables has been chosen,linear terms of the PDE are easily implemented by linear electrical devices such as resistors,capacitors and coils,while non-linear and coupled terms are implemented using auxiliary circuits or controlled current and voltage sources.The last are a special kind of source whose output can be defined(by software)as a function of the dependent or independent variables defined in any node or any electrical component of the model.In addition,boundary and initial conditions–linear or not–are also immediately implemented by suitable electric components.Once the network model has been designed,it is run with no need for other mathematical manipulations since the simulation code does this.The well-tried and powerful software for circuit simulation PSpice,requires relatively short computing times thanks to the continuous adjusting of the internal time step required for the convergence.In addition,the solution simultaneously provides all the variables of interest:displacements and velocities.

    Compared with a wide variety of complex schemes,our network model provides a simple scheme to simulate the different microscopes used to study the phenomenon of friction on different sample surfaces,at nanometre and atomic scales,at the same time reducing the computational time needed.Despite of its simplicity,the network model is able to integrate a multiplicity of parameters,which either improve the accuracy of the simulation or integrate additional parameters.

    2 The governing equations

    The physical scheme of the FFM,AFM or SFM tip on a sample surface model,Fig.1,assumes one rigid sliding body connected by three springs(one for each spatial direction)to the mobile microscope support.Each spring reflects the elastic interaction between the two surfaces during the contact[H?lscher,Schwarz and Wiesendanger(1996);Sasaki,Kobayashi and Tsukada(1996)].The sliding body involves inertial effect and the interaction with the sample surface.

    The hypotheses currently assumed in FFM,AFM and SFM models are:(i)the microscope support is rigid and moves at a constant velocity,vM,(ii)the cantilever and the tip show elastic behaviour,and(iii)interactional force between the tip and the sample surface is a function of the relative distances between the tip and the atoms forming the sample surface.

    Several forces act on the tip in x-direction:inertial force represented by ‘m·(d2xt/dt2)’,where xtis the absolute displacement of the tip of mass m;elastic force from the spring,represented by the term ‘kx·(xM-xt)’;and damping force represented by the term ‘cx·(dxt/dt)’.The coefficients of these forces are constants.Similar forces act in the other directions.In addition,the interaction force between the tip and the sample surface is implemented from a surface potential[H?lscher,Schwarz and Wiesendanger(1996);Sasaki,Kobayashi and Tsukada(1996);H?lscher,Schwarz,Zw?rner and Wiesendanger(1998)].Thus,the surface potential for NaF with an FFM tip,as used by H?lscher et al.[H?lscher,Schwarz and Wiesendanger(1996)]is:

    Figure 1:Model of AFM,FFM and SFM tip.

    where the potential amplitude,V0,is 1 eV,while axand ay,the double of the lattice constant,are 4.62 ? for both parameters.The same surface potential formula is used by H?lscher et al.[H?lscher,Schwarz and Wiesendanger(1997)]for MoS2with SFM tip,where V0is equal to 1 eV and axand ayare equal to 3.16 ? and 5.48,respectively.H?lscher et al.[H?lscher,Schwarz,Zw?rner and Wiesendanger(1998)]use a slight modification of Eq.1 to study HOPG with a SFM tip:

    where V0is 0.5 eV and the lattice constant,a,is 2.46 ?.

    Sasaki et al.[Sasaki,Kobayashi and Tsukada(1996)]used the Lennard-Jones potential to study the graphite with an AFM tip:

    昆明冶金研究院通過對霧化噴嘴的改進,在溫度1 800℃,霧化壓力2.0MPa條件下,采用氮氣霧化技術(shù)制備316 L不銹鋼金屬粉末,并與德國EOS公司粉體形貌進行對比,微觀結(jié)構(gòu)情況見圖3。

    where the strength of the potential,ε,is 0.87381·10?2eV,and the value of the distance between the tip and the surface atom at which the potential is zero,σ,is 2.4945 ?.The distance between the tip and the i-th atom of the surface,r0i,is calculated from the i-th atom position inside the lattice,which is defined by its constant,2.46 ?,and the nearest distance between 2 carbon atoms,1.42 ?.H?lscher et al.used the same potential with the same sample surface and microscope[H?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2000)],but σ is equal to 3.4 ?.The surface potential for xenon with an AFM tip used by H?lscher et al.[?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2001)]is the same as that used in graphite.The value of σ is equal to 3.3 ?.

    As a result of the balance of the forces on the tip,Fig.1,the following equations can be written:

    The movement of the microscope support is a set of trips in the x-direction.For each of these trips,the initial condition of tip displacement in the x-direction is null,and in the z-direction is null except for the AFM tip on graphite and xenon sample.In the y-direction,the initial condition for this displacement is the same as for the microscope support.The initial condition of tip velocity is null for each direction.

    3 The network model and the PS pice code

    The design of a reliable network model requires a formal equivalence between the equations of the model and those of the process,including the initial conditions.Since Eq.4,the basic network model is related to this equation,to which initial conditions must be added.Basic rules for designing the model can be found in González-Fernández[González-Fernández(2001)].The first step is to choose the equivalence between mechanical and electric variables(different choices give rise to different networks).For the problem under consideration,the following equivalence is established:xt(tip displacement in the x-direction)≡q(electric charge in the network),ordxt/dt(tip velocity in the x-direction)≡dq/dt=i(electric current at the network).In the other directions,similar equivalences are applied.

    Now,each term of the Eq.4 is considered as a voltage in an electric component whose constitutive equation is defined by the mathematical expression of such a term.Hence,the equation itself can be considered as a voltage balance(second Kirchhoff’s law)of a network that contains as many electrical components connected in series as there are terms in the equation.The linear term of Eq.4‘(d2xt/dt2)’is associated to a coil(inductance)since the constitutive equation of this component is VL=L(di/dt)=L(d2q/dt2),with L=1H.The same electrical ele-ment is used for the other two directions.The non-linear terms cannot be implemented directly,and require the use of controlled current(or voltage)sources or auxiliary circuits.The first are devices whose output is defined by software as an arbitrary,continuous mathematical function of the dependent variables:voltages at any node of the network or the current in any component.This capability,which is beyond the scope of the classical electrical analogy that appears in most text books,makes the network method an interesting and efficient tool in the field of numerical computation.

    To implement the term ‘xt’,the value of this variable must be determined by integrating the current in the network model,dxt/dt.To this end,an auxiliary circuit is implemented,Fig.2(b),in the models of FFM on the NaF sample and SFM on the MoS2sample;Fig.3(c)in the model of AFM on a graphite sample;and Fig.4(c)in the model of AFM on xenon sample.The terms ytand ztare implemented in similar network models.F1xis the controlled current source whose output is the current,dxt/dt,that crosses the voltage generator(used as an ammeter),Vx.The voltage of this generator is zero so as not to disturb the network model of Eq.4.The current of F1xis integrated using a capacitor with Cx1=Cy1=Cx=1F;in this way,the voltage through this capacitor,VCx1=VCy1=VCx=C?1x∫(dxt/dt)dt,is simply the variable xt(a resistor of very high value,RINF,is needed for electrical continuity).

    The initial conditions related to displacements,xM-xt=yM-yt=zM-zt=0,and velocities,dxt/dt=dyt/dt=dzt/dt=0,are introduced in the specifications of the initial conditions of the capacitors(initial voltage value)and of the coils(initial current value),respectively.The whole network model is now run in a Duo Core,using the code PSpice[Microsim Corporation(1994);Nagel(1977)]and very few rules are required since the model contains very few electrical devices.

    Figure 2:Network model,in x and y directions,of FFM on NaF,SFM on MoS2 and SFM on HOPG.a)and d)Main circuits,b)and e)auxiliary circuits to obtain xtand yt,and c)auxiliary circuit to obtain the time.

    Figure 3:Network model,in x direction,of AFM on graphite.a)Main circuit,b)auxiliary circuit to obtain the force from Lennard-Jones potential,c)auxiliary circuit to obtain xt,d)auxiliary circuit to obtain the time,and e)auxiliary circuit to obtain the square of the distance between the AFM tip and the carbon atom.

    Figure 4:Network model,in x direction,of a AFM on xenon.a)Main circuit,b)auxiliary circuit to obtain the force from Lennard-Jones potential,c)auxiliary circuit to obtain xt,d)auxiliary circuit to obtain the time,and e)auxiliary circuit to obtain the square of the distance between the AFM tip and the xenon atom.

    4 Applications

    The Network Simulation Method has been applied to sample surfaces and tips for which data are available:FFM tip on NaF[H?lscher,Schwarz and Wiesendanger(1996)],AFM tip on Xe[?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2001)],SFM tip on MoS2[H?lscher,Schwarz and Wiesendanger(1997)],SFM tip on HOPG[H?lscher,Schwarz,Zw?rner and Wiesendanger(1998)],and AFM tip on graphite[H?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2000)].The first two samples have the same cubic crystal net and the others have a hexagonal crystal net,which tests the potential of the network model.

    The characteristics of the tip,the test conditions and the sample size for the different tests are:

    ?the FFM tip on NaF sample is characterized by mx=my=10?8kg,cx=cy=10?3N·s/m and kx=ky=10 N/m.The microscope support moves with a constant velocity of 400 ?/s,and the results are depicted with a scan range of 20x20 ? and scan angle of 0°[H?lscher,Schwarz and Wiesendanger(1996)].The proposed model solves the Eq.4 using the potential defined in Eq.1.

    ?theAFMtiponXeis characterizedbycx=cy=0N·s/m,andkx=ky=kz=40N/m.The results are depicted with a scan range of 36x36 ? and scan angle of 15°[?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2001)].Moreover,to obtain similar results to those obtained by the above authors,the following parameters were assumed:mx=my=10?6kg,a constant velocity of 10 ?/s for the microscope support,and a vertical displacement of-6 ? for the tip,parameters not mentioned by H?lscher et al.[?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2001)].

    ?the SFM tip on MoS2sample is characterized by mx=my=10?8kg,cx=cy=10?3N·s/m and kx=ky=10 N/m.The microscope support moves with a constant velocity of 400 ?/s,and the results are depicted with a scan range of 25x25? and scan angle of0o[H?lscher,Schwarz and Wiesendanger(1997)].

    ?the SFM tip on HOPG sample is characterized by mx=my=10?8kg,cx=cy=10?3N·s/mandkx=ky=25N/m.The microscope support moves with constant velocity of 400 ?/s,and the results are depicted with a scan range of 20x20 ? and scan angle of 7o.The surface of the sample is composed of 271 hexagons with a carbon atom in each vertex(600 altogether);and it is assumed that the sample surface has a very high stiffness[H?lscher,Schwarz,Zw?rner and Wiesendanger(1998)].

    ?the AFM tip on graphite is characterized by cx=cy=0N·s/m,kx=ky=0.25-2.5 N/m,kz=0.25N/m,and a vertical displacement of-6? for the tip.The results are depicted with a scan range of 9.8x8.5 ? and scan angle of 15o[Sasaki,Kobayashi and Tsukada(1996)].Besides,mx=my=10?6kg and a constant velocity of 10 ?/s for the microscope support,parameters not mentioned by Sasaki et al.[Sasaki,Kobayashi and Tsukada(1996)],were assumed to obtain results similar to theirs.

    Eq.4 is solved in each test for the potential functions defined in the following equations:

    ?Eq.1 in the FFM tip on NaF and in the SFM tip on MoS2sample models

    ?Eq.2 in the SFM tip on HOPG sample model

    ?Eq.3 in the AFM tip on Xe and graphite samples models

    In the last case,for Xe and graphite samples,only short computational times are necessary for the software to find the right values of the parameters not supplied by H?lscher et al.[?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2001)]and Sasaki et al.[Sasaki,Kobayashi and Tsukada(1996)],respectively.

    Fig.5(b)shows the components of the tip elastic force,Fxand Fy,in each position on the NaF sample surface,whose crystal net is shown in Fig.5(a).The correspondence between both depicted images enables us to use this software as a tool to interpret those images from the microscope.Thus,this software is able to manage different theoretical crystal nets,even with crystallographic defects,providing the corresponding theoretical elastic forces,which can be compared with those from the microscope.The results of the simulation agree with those obtained by H?lscher et al.[H?lscher,Schwarz and Wiesendanger(1996)].

    Fig.6(b)shows the x-direction component of the tip elastic force,Fx,in each position on the Xe sample surface,whose crystal net is shown in Fig.6(a).As mentioned for Fig.5(b),the results agree with those obtained by H?lscher et al.[?lscher,Allers,Schwarz,Schwarz and Wiesendanger(2001)].

    Fig.7(b)shows the components of the tip elastic force,Fxand Fy,in each position on the MoS2sample surface,whose crystal net is shown in Fig.7(a).The results of the simulation agree with those obtained by H?lscher et al.[H?lscher,Schwarz and Wiesendanger(1997)].

    Figure 5:a)Position of the atoms in the NaF crystal net b)Elastic force in the tip:Fxin the left hand side and Fyin the right hand side.

    Figure 6:a)Position of the atoms in the xenon crystal net b)Elastic force in the tip,Fx.

    Figure 7:a)Position of the atoms in the MoS2crystal net b)Elastic force in the tip:Fxin the left hand side and Fyin the right hand side.

    Figure 8:a)Position of the atoms in the HOPG crystal net b)Elastic force in the tip:Fxin the left hand side and Fyin the right hand side.

    Figure 9:a)Position of the atoms in the HOPG crystal net b)Elastic force in the tip,Fx.

    Fig.8(b)shows the components of the tip elastic force,Fx and Fy,in each position on the HOPG sample surface,whose crystal net is shown in Fig.8(a).The results of the simulation agree with those obtained by H?lscher et al.[H?lscher,Schwarz,Zw?rner and Wiesendanger(1998)].Besides,Fig.9(b)shows the x-direction component of the tip elastic force,Fx,in each position on the graphite sample surface,whose crystal net is shown in Fig.9(a).In this case,a 3D graph is used to show the details better,to be more precise the stick–slip mechanism.The lines of the graph are traced at different y-coordinates,separated by a fixed step.When one of these lines crosses the sample surface at a critical position,the instabilities appear,Fig.9(b).These critical positions have a relation with the minimal threshold of the distance between the tip and the atom on the surface.The results of the simulation agree with those obtained by Sasaki et al.[Sasaki,Kobayashi and Tsukada(1996)].

    5 Conclusions

    A numerical model based on the network method has been designed to simulate several types of microscope and sample surfaces with different crystal nets.The results were successfully compared with those of different authors obtained with different methodologies.The software is flexible enough to implement the different values of the main parameters with no important changes,and allows different types of graph to be used.Thus,this software is able to manage different theoretical crystal nets,even with crystallographic defects,providing the corresponding theoretical elastic forces that can be compared with those obtained by microscope.Furthermore,the short computational time necessary means that the software can be used to determine the values of the microscope parameters from experimental images of certain materials,whose data are not available.The calculated parameters allow other sample materials to be simulated.The final potential use of this software is to test the effect of microscope parameters on the quality of the image assisting to the use of the microscope.

    Alhama,F.;Marín,F.;Moreno,J.A.(2011):An efficient and reliable model to simulate microscopic mechanical friction in the Frenkel-Kontorova-Tomlinson model.Computer Physics Communications,vol.182,pp.2314-2325

    Bhushan,B.(2000):Handbook of Modern Tribology.CRC Press:London,pp.717.

    Bhushan,B.;Israelachvili,J.N.;Landmann,U.(1995):Nanotribology:friction,wear and lubrication at the atomic scale.Nature,vol.374,pp.607-616.

    Blau,P.J.(1986):Friction Science and Technology.Marcel Dekker:New York,pp.285.

    Blau,P.J.(2001):The significance and use of the friction coefficient.Tribology International,vol.34,pp.585-591.

    Carpick,R.W.;Ogletree,D.F.;Salmeron,M.(1997):Lateral stiffness:a new nanomechanical measurement for the determination of shear strengths with friction force microscopy.Applied Physics Letters,vol.70,pp.1548–1550.

    Dowson,D.(1998):History of Tribology.Professional Engineering Publishers:London,pp.43.

    Frenkel,F.C;Kontorova,T.(1938):Zh.Eksp.Teor.Fiz.,vol.8,pp.1340.

    González-Fernández,C.F.(2001):Heat transfer and the Network Simulation Method.J.Horno(Ed.):Research Signpost,Trivandrum,pp.30.

    González-Fernández,C.F.;Alhama,F.;López-Sánchez,J.F.(1998):Application of the network method to heat conduction processes with polynomial and potential-exponentially varying termal properties.Numerical Heat Transfer.Part A-Applications,vol.33,no.5,pp.549-559.

    Gyalog,T.;Bammerlin,M.;L?uthi,R.;Meyer,E.;Thomas,H.(1995):Mechanism of atomic friction.Europhysics Letters 1995,vol.31,pp.269-274

    H?lscher,H.;Allers,W;Schwarz,U.D.;Schwarz,A.;Wiesendanger,R.(2001):Simulation of NC-AFM images of xenon(111).Applied Physics A,vol.72,pp.S35-S38.

    H?lscher,H.;Allers,W.;Schwarz,U.D.;Schwarz,A;Wiesendanger,R.(2000):Interpretation of“true atomic resolution”images of graphite(0001)in noncontact atomic force microscopy.Physical Review B,vol.62,no.11,pp.6967-6970.

    H?lscher,H.;Schirmeisen,A.;Schwarz,U.D.(2008):Principles of atomic friction:from sticking atoms to superlubric sliding.Philosophical Transactions of the Royal Society A,vol.366,pp.1383-1404.

    H?lscher,H.;Schwarz,U.D.;Wiesendanger,R.(1996):Simulation of a scanned tip on a NaF(001)surface in friction force microscopy.Europhysics Letters,vol.36,pp.19–24.

    H?lscher,H.;Schwarz,U.D.;Wiesendanger,R.(1997):Modelling of the scan process in lateral force microscopy.Surface Science,vol.375,no.2-3,pp.395-402.

    H?lscher,H.;Schwarz,U.D.;Zw?rner,O.;Wiesendanger,R.(1998):Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite.Physical Review B,vol.57,no.4,pp.2477-2481.

    Horno,J.;González-Fernández,C.F.;Hayas,A.(1995):The Network Method for solutions of oscillating reaction-diffusion systems.Journal of Computational Physics,vol.118,no.2,pp.310-319.

    Kreith,F.(2000):The CRC Handbook of Thermal Engineering.CRC Press:London.

    Microsim Corporation Fairbanks.(1994):PSpice 6.0.Irvine,California.

    Mills,A.F.(1998):Heat Transfer.Prentice Hall:Concord.

    Miura,K.;Sasaki,N.;Kamiya,S.(2004):Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip.Physical Review B,vol.69,p.075420.

    Müser,M.H.(2006):Theory and simulation of friction and lubrication.Lecture Notes in Physics,vol.704,pp.65-104.

    Nagel,L.W.(1977):SPICE:Simulation Program with Integrated Circuit Emphasis.University of California,Berkeley,pp.43.

    Perry,S.S.(2001):Progress in the persuit in the fundamentals of tribology.Tribology Letters,vol.10,no.1-2,pp.1-4.

    Sasaki,N.;Kobayashi,K.;Tsukada,M.(1996):Atomic-scale friction image of graphite in atomic-force microscopy.Physical Review B,vol.54,no.3,pp.2138-2149.

    Soto,A.;Alhama,F.;González-Fernández,C.F.(2007):An efficient model for solving density driven groundwater flow problems based on the network simulation method.Journal of Hydrology,vol.339,no.1-2,pp.39-53.

    Toánek,D.;Zhong,W.;Thomas,H.(1991):Calculation of an atomically modulated friction force in atomic force microscopy.Europhysics Letters,vol.15,pp.887-891.

    Tomlinson,G.A.(1929):A molecular theory of friction.Philosophical Magazine,vol.7,no.46,pp.905-939.

    Urbakh,M.;Klafter,J.;Gourdon,D.;Israelachvili,J.(2004):The nonlinear nature of friction.Nature,vol.430,pp.525–528.

    Verhoeven,G.S;Dienwiebel,M.,Frenken,J.W.M.(2004):Model calculations of superlubricity of graphite.Physical Review Letters B,vol.70,pp.165418

    Zhong,W.;Tománek,D.(1990):First-principles theory of atomic-scale friction.Physical Review Letters,vol.64,pp.3054-3057.

    Zueco,J.;Alhama,F.(2006):Inverse determination of heat generation sources in two-dimensional homogeneous solids:application to orthotropic medium.International Communications in Heat and Mass Transfer,vol.33,no.1,pp.49-55.

    猜你喜歡
    金屬粉末冶金粉體
    《山東冶金》征稿簡則
    山東冶金(2022年2期)2022-08-08 01:51:42
    金屬粉末增材在飛行器發(fā)動機的應(yīng)用及挑戰(zhàn)
    《山東冶金》征稿簡則
    山東冶金(2022年1期)2022-04-19 13:40:42
    《中國粉體技術(shù)》期刊入選WJCI
    金屬粉末在冶金抗磨復(fù)合材料中的應(yīng)用研究
    金屬粉末注射成形用塑基喂料研制及應(yīng)用
    昆鋼科技(2021年1期)2021-04-13 07:55:00
    包裹型SiO2/Al復(fù)合粉體的制備及燒結(jié)性能研究
    超細鉬銅復(fù)合粉體及細晶鉬銅合金的制備
    鋁合金產(chǎn)品及其生產(chǎn)方法
    鋁加工(2020年3期)2020-12-13 18:38:03
    《山東冶金》征稿簡則
    山東冶金(2019年2期)2019-05-11 09:12:22
    尾随美女入室| 有码 亚洲区| 久久久久久久精品精品| 日本黄色片子视频| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人 | av网站免费在线观看视频| 亚洲国产av新网站| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影| 麻豆成人av视频| 国产女主播在线喷水免费视频网站| 成人国产麻豆网| 一级二级三级毛片免费看| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av涩爱| 久久久亚洲精品成人影院| 亚州av有码| 国产免费一区二区三区四区乱码| 内地一区二区视频在线| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线 | 亚洲丝袜综合中文字幕| 大话2 男鬼变身卡| 少妇的逼好多水| 一本大道久久a久久精品| av线在线观看网站| 久久女婷五月综合色啪小说| 久久久久久久久大av| 91久久精品国产一区二区成人| 国产视频内射| 十八禁网站网址无遮挡| 街头女战士在线观看网站| 久久ye,这里只有精品| 欧美日韩av久久| 久久狼人影院| 边亲边吃奶的免费视频| 国产亚洲最大av| 老司机影院成人| 国产色爽女视频免费观看| .国产精品久久| 人人妻人人澡人人看| 亚洲国产精品一区三区| 人人妻人人添人人爽欧美一区卜| 美女内射精品一级片tv| 亚洲精品第二区| 国产深夜福利视频在线观看| 午夜福利视频在线观看免费| 亚洲三级黄色毛片| 熟女av电影| 女人久久www免费人成看片| 国产精品久久久久久久电影| 高清黄色对白视频在线免费看| 天天操日日干夜夜撸| 亚洲精品久久久久久婷婷小说| 少妇丰满av| 3wmmmm亚洲av在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美日韩在线播放| 久久鲁丝午夜福利片| 久久99精品国语久久久| 国产综合精华液| 国产乱来视频区| 国产av一区二区精品久久| 人妻夜夜爽99麻豆av| 亚州av有码| 我要看黄色一级片免费的| 曰老女人黄片| 亚洲人成网站在线播| 考比视频在线观看| 日本av免费视频播放| 最近中文字幕高清免费大全6| 91精品国产九色| 国产一区二区三区综合在线观看 | 久久午夜综合久久蜜桃| 欧美日韩亚洲高清精品| 久久久久久久久久人人人人人人| 精品久久蜜臀av无| 亚洲五月色婷婷综合| 亚洲无线观看免费| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 午夜影院在线不卡| 中文天堂在线官网| 一级毛片电影观看| 黄片播放在线免费| 大片免费播放器 马上看| 色婷婷久久久亚洲欧美| 蜜桃国产av成人99| av线在线观看网站| av有码第一页| 男女啪啪激烈高潮av片| av有码第一页| 国产黄频视频在线观看| 亚洲av.av天堂| 一本色道久久久久久精品综合| 午夜免费鲁丝| 水蜜桃什么品种好| 高清毛片免费看| 久久狼人影院| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| 老女人水多毛片| 成年美女黄网站色视频大全免费 | 热99久久久久精品小说推荐| 国产一区二区在线观看日韩| 日韩免费高清中文字幕av| 又黄又爽又刺激的免费视频.| 国产免费福利视频在线观看| 在线观看美女被高潮喷水网站| 飞空精品影院首页| 狠狠婷婷综合久久久久久88av| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 最近最新中文字幕免费大全7| 亚洲精品日本国产第一区| av视频免费观看在线观看| 国产精品国产三级专区第一集| 欧美性感艳星| 中文字幕人妻熟人妻熟丝袜美| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 美女cb高潮喷水在线观看| av黄色大香蕉| 亚洲av中文av极速乱| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 性高湖久久久久久久久免费观看| 又粗又硬又长又爽又黄的视频| 最近2019中文字幕mv第一页| 欧美老熟妇乱子伦牲交| 亚洲国产精品专区欧美| 午夜激情福利司机影院| 欧美日本中文国产一区发布| 久久久久久伊人网av| a级毛片黄视频| 免费看不卡的av| 欧美日韩精品成人综合77777| 国产精品久久久久久av不卡| 一区二区日韩欧美中文字幕 | 26uuu在线亚洲综合色| 成人无遮挡网站| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| 毛片一级片免费看久久久久| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 美女福利国产在线| 午夜免费男女啪啪视频观看| 日本wwww免费看| 国内精品宾馆在线| 伊人久久精品亚洲午夜| 国产精品免费大片| 亚洲人成网站在线播| 精品熟女少妇av免费看| 天堂8中文在线网| av黄色大香蕉| 欧美精品一区二区免费开放| 久久午夜福利片| 夜夜爽夜夜爽视频| 在线观看免费日韩欧美大片 | 午夜福利网站1000一区二区三区| 久久97久久精品| 18禁观看日本| 男女边摸边吃奶| 最近中文字幕高清免费大全6| 国产日韩欧美亚洲二区| 欧美日韩成人在线一区二区| 一本一本综合久久| 日韩熟女老妇一区二区性免费视频| 免费不卡的大黄色大毛片视频在线观看| 午夜激情av网站| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片| 欧美精品亚洲一区二区| 国产成人精品在线电影| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 欧美三级亚洲精品| 亚洲色图综合在线观看| 亚洲av成人精品一区久久| freevideosex欧美| 男男h啪啪无遮挡| 中文字幕久久专区| 最新中文字幕久久久久| 在现免费观看毛片| 成人免费观看视频高清| 中文字幕最新亚洲高清| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| 人妻人人澡人人爽人人| 在线精品无人区一区二区三| 精品久久国产蜜桃| 中文字幕亚洲精品专区| 男女啪啪激烈高潮av片| 2021少妇久久久久久久久久久| 97超碰精品成人国产| 成人国产麻豆网| 国产成人aa在线观看| 性高湖久久久久久久久免费观看| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩精品成人综合77777| av不卡在线播放| 亚洲性久久影院| 亚洲av男天堂| 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 国产高清国产精品国产三级| 一级爰片在线观看| 免费播放大片免费观看视频在线观看| 久久人人爽人人片av| 成年女人在线观看亚洲视频| 欧美三级亚洲精品| 精品久久久久久电影网| 欧美少妇被猛烈插入视频| 97精品久久久久久久久久精品| 赤兔流量卡办理| 18在线观看网站| 久久综合国产亚洲精品| 国产日韩欧美视频二区| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 欧美少妇被猛烈插入视频| 熟妇人妻不卡中文字幕| 国产午夜精品久久久久久一区二区三区| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲国产欧美日韩在线播放| 婷婷色麻豆天堂久久| 99久久综合免费| 国产精品国产av在线观看| 极品人妻少妇av视频| 最近的中文字幕免费完整| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 亚洲少妇的诱惑av| 精品久久久久久久久亚洲| 亚洲精品日本国产第一区| 五月开心婷婷网| av一本久久久久| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| av卡一久久| 蜜桃在线观看..| 桃花免费在线播放| 纯流量卡能插随身wifi吗| 欧美精品人与动牲交sv欧美| 免费观看的影片在线观看| 亚洲在久久综合| 色哟哟·www| 老熟女久久久| 26uuu在线亚洲综合色| 99热6这里只有精品| 黑丝袜美女国产一区| 观看美女的网站| 欧美97在线视频| 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 国产成人av激情在线播放 | a级毛色黄片| av.在线天堂| 久久 成人 亚洲| 日韩成人伦理影院| 亚洲欧洲日产国产| 免费人成在线观看视频色| 国产 一区精品| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| 国产黄色免费在线视频| 99久久综合免费| 丝袜喷水一区| 日韩av不卡免费在线播放| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区三区在线 | 中文字幕av电影在线播放| 久久这里有精品视频免费| 极品人妻少妇av视频| 91精品国产九色| 2022亚洲国产成人精品| 五月天丁香电影| 亚洲经典国产精华液单| 国产av国产精品国产| 18+在线观看网站| 啦啦啦在线观看免费高清www| 久久久久久久久久久丰满| 欧美日韩在线观看h| 国产精品久久久久久精品电影小说| 欧美日韩综合久久久久久| 亚洲精品av麻豆狂野| 午夜福利,免费看| 少妇的逼好多水| 老女人水多毛片| 少妇人妻 视频| 性色av一级| 男的添女的下面高潮视频| 夜夜骑夜夜射夜夜干| 大香蕉久久网| 国产免费视频播放在线视频| 少妇高潮的动态图| 91精品国产国语对白视频| 欧美激情国产日韩精品一区| 青青草视频在线视频观看| av视频免费观看在线观看| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 国产伦精品一区二区三区视频9| 丝袜在线中文字幕| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 三级国产精品欧美在线观看| 国产精品久久久久成人av| 国产高清不卡午夜福利| 丰满少妇做爰视频| 亚洲成人av在线免费| 啦啦啦中文免费视频观看日本| a级片在线免费高清观看视频| 国产亚洲欧美精品永久| 夜夜爽夜夜爽视频| 九色成人免费人妻av| 丝袜喷水一区| 大码成人一级视频| 美女中出高潮动态图| 成人国产av品久久久| 婷婷色综合大香蕉| 91精品国产九色| 中文欧美无线码| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频 | 成人国产av品久久久| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 搡女人真爽免费视频火全软件| 另类精品久久| 日本av免费视频播放| 丰满饥渴人妻一区二区三| 最新的欧美精品一区二区| 国产 精品1| 边亲边吃奶的免费视频| 国产黄色视频一区二区在线观看| av网站免费在线观看视频| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 简卡轻食公司| 国产精品 国内视频| 午夜激情av网站| 母亲3免费完整高清在线观看 | 精品一区在线观看国产| 久久毛片免费看一区二区三区| √禁漫天堂资源中文www| 久久国产精品男人的天堂亚洲 | 美女国产高潮福利片在线看| 狠狠婷婷综合久久久久久88av| av电影中文网址| 老司机影院毛片| 国产成人a∨麻豆精品| 国产视频首页在线观看| 久久婷婷青草| a级毛片免费高清观看在线播放| 亚洲三级黄色毛片| √禁漫天堂资源中文www| 精品人妻在线不人妻| 国国产精品蜜臀av免费| 国产精品国产av在线观看| 精品一区在线观看国产| 麻豆成人av视频| 日本av手机在线免费观看| 日本黄色日本黄色录像| av卡一久久| 亚洲人成77777在线视频| 毛片一级片免费看久久久久| 九九在线视频观看精品| 春色校园在线视频观看| 国产成人精品久久久久久| 高清欧美精品videossex| 成年美女黄网站色视频大全免费 | 亚洲精品,欧美精品| 99热这里只有是精品在线观看| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 成人手机av| 免费看av在线观看网站| 精品久久久久久久久亚洲| 中文字幕免费在线视频6| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 国产精品人妻久久久影院| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| 国产免费现黄频在线看| 国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 18禁在线播放成人免费| 又黄又爽又刺激的免费视频.| 亚洲一区二区三区欧美精品| 日韩免费高清中文字幕av| 欧美一级a爱片免费观看看| 91久久精品电影网| 国产在视频线精品| 日韩欧美一区视频在线观看| a级毛片在线看网站| 精品国产国语对白av| 国产午夜精品一二区理论片| 国产精品国产三级国产av玫瑰| 欧美3d第一页| 久久免费观看电影| videossex国产| 人妻制服诱惑在线中文字幕| 成人漫画全彩无遮挡| 精品亚洲成a人片在线观看| freevideosex欧美| 国产在视频线精品| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 欧美97在线视频| 国产成人91sexporn| 丝袜在线中文字幕| 亚洲av中文av极速乱| 五月天丁香电影| 欧美日韩视频精品一区| a级毛片黄视频| 久久久久久久久久人人人人人人| 日本爱情动作片www.在线观看| av视频免费观看在线观看| 国产精品人妻久久久影院| 丝瓜视频免费看黄片| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看| 夫妻性生交免费视频一级片| 日本av手机在线免费观看| 国产成人freesex在线| 99久久综合免费| 国产成人精品久久久久久| 久久久久国产精品人妻一区二区| 婷婷色综合大香蕉| av在线老鸭窝| 国产精品欧美亚洲77777| 国产成人一区二区在线| 91精品伊人久久大香线蕉| 精品国产露脸久久av麻豆| 亚洲欧美中文字幕日韩二区| 国产一区二区三区av在线| 久久精品国产亚洲av天美| xxx大片免费视频| 国产不卡av网站在线观看| 国产高清有码在线观看视频| 波野结衣二区三区在线| 在线 av 中文字幕| 亚洲一区二区三区欧美精品| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄| av线在线观看网站| 免费久久久久久久精品成人欧美视频 | 久久精品夜色国产| 久久精品国产自在天天线| 十八禁高潮呻吟视频| xxx大片免费视频| 亚洲欧美成人精品一区二区| 丝袜美足系列| 美女大奶头黄色视频| 婷婷成人精品国产| 亚洲av男天堂| 国产又色又爽无遮挡免| 午夜福利视频精品| 男的添女的下面高潮视频| 超碰97精品在线观看| 国产成人91sexporn| av专区在线播放| 精品亚洲乱码少妇综合久久| 国产精品欧美亚洲77777| 国产在线视频一区二区| 国产亚洲精品久久久com| 亚洲av国产av综合av卡| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日本国产第一区| av在线观看视频网站免费| 亚洲精品乱码久久久v下载方式| 国产成人精品婷婷| 亚洲性久久影院| av国产久精品久网站免费入址| 我的老师免费观看完整版| 亚洲欧美清纯卡通| av.在线天堂| 精品国产一区二区久久| 欧美日韩视频精品一区| 丁香六月天网| 中国国产av一级| 亚洲中文av在线| 免费日韩欧美在线观看| 亚洲色图 男人天堂 中文字幕 | 欧美 日韩 精品 国产| 女人精品久久久久毛片| 91精品一卡2卡3卡4卡| 18禁在线无遮挡免费观看视频| 成人毛片a级毛片在线播放| 99热这里只有是精品在线观看| 亚洲怡红院男人天堂| 精品人妻在线不人妻| 免费观看无遮挡的男女| 欧美精品一区二区大全| 三上悠亚av全集在线观看| 欧美精品国产亚洲| 久久久久久久久久成人| 插阴视频在线观看视频| 亚洲精品,欧美精品| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲最大av| 久久女婷五月综合色啪小说| 午夜激情福利司机影院| 色婷婷av一区二区三区视频| 少妇的逼水好多| 91精品国产国语对白视频| 中文天堂在线官网| 99热这里只有精品一区| 97在线视频观看| 色94色欧美一区二区| 久久精品夜色国产| 亚洲伊人久久精品综合| 国产av一区二区精品久久| 91精品伊人久久大香线蕉| 日韩人妻高清精品专区| 老熟女久久久| 国产精品一区二区在线不卡| 老司机影院毛片| 日韩一区二区三区影片| 美女国产视频在线观看| 中国美白少妇内射xxxbb| 最近手机中文字幕大全| 亚洲精品,欧美精品| 一个人免费看片子| xxxhd国产人妻xxx| 日本黄大片高清| 国产精品蜜桃在线观看| 有码 亚洲区| 久久精品人人爽人人爽视色| 国产成人aa在线观看| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看| 性色avwww在线观看| 91国产中文字幕| 一级爰片在线观看| av在线播放精品| 久久久久久久久久久久大奶| 99久久人妻综合| 在线观看国产h片| 女人久久www免费人成看片| 精品国产国语对白av| 老女人水多毛片| 亚洲av欧美aⅴ国产| 丝袜脚勾引网站| 91午夜精品亚洲一区二区三区| 秋霞在线观看毛片| av在线观看视频网站免费| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 亚洲国产精品一区二区三区在线| 纯流量卡能插随身wifi吗| 99久久中文字幕三级久久日本| 日韩精品免费视频一区二区三区 | 制服人妻中文乱码| 欧美xxⅹ黑人| 99热这里只有精品一区| 搡老乐熟女国产| 免费观看av网站的网址| 纯流量卡能插随身wifi吗| a级毛片免费高清观看在线播放| 精品国产一区二区三区久久久樱花| 国产69精品久久久久777片| 一级片'在线观看视频| 色94色欧美一区二区| 天堂俺去俺来也www色官网| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 日韩在线高清观看一区二区三区| 我要看黄色一级片免费的| av福利片在线| 97超碰精品成人国产| 亚洲色图综合在线观看| 欧美日韩综合久久久久久| 一本一本综合久久| 男女边摸边吃奶| 婷婷色av中文字幕| 26uuu在线亚洲综合色| av在线app专区| 在线观看三级黄色| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 十八禁网站网址无遮挡| 一区二区三区免费毛片| 国产女主播在线喷水免费视频网站| 日韩一区二区三区影片| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 亚洲av欧美aⅴ国产| 亚洲国产欧美日韩在线播放| 亚洲av.av天堂| 少妇被粗大的猛进出69影院 | 久久久国产一区二区|