• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non Probabilistic Solution of Fuzzy Fractional Fornberg-Whitham Equation

    2014-04-16 02:31:29ChakravertyandSmitaTapaswini
    關(guān)鍵詞:禁忌癥仁濟(jì)綠色通道

    S.Chakraverty and Smita Tapaswini

    1 Introduction

    Fractional order differential equations have become an important research area due to its wide range of application in science and engineering.Many important works have been reported regarding fractional calculus in the last few decades.Several excellent books related to this have also been written by different authors representing the scope and various aspects of fractional calculus such as in[Podlubny(1999);Miller and Ross(1993);Oldham and Spanier(1974);Samko et al.(1993);Kiryakova(1993)].These books also give an extensive review on fractional derivative and its applications which may help the reader for understating the basic concepts of fractional calculus and its application.Most fractional differential equationsdo nothave exactanalytic solutions.Asregards,many authorshave developed various numerical methods to solve fractional differential equations[Li(2014);Chen et al.(2014);Pang et al.(2014)].

    Study of travelling wave problem plays a very important role in many areas of physics.The Fornberg-Whitham equation is a type of traveling wave solutions called kink-like or antikink like wave solutions.This equation is analyzed by various authors[Abidi and Omrani(2010);Lu(2011);Fornberg and Whitham(1978);Nuseir(2012);He et al.(2010);Zhou and Tian(2009);Zhou and Tian(2008);Mahmoudi and Kazemian(2012);Sakar and Erdogan(2013);Sakar and Erdogan(2012);Merdan etal.(2012)].Abidiand Omrani(2010)applied homotopy analysis method for solving the Fornberg–Whitham equation and compared with Adomian’s decomposition method.Variational iteration method is used by Lu(2011)to obtain the approximate solution of Fornberg–Whitham equation.Fornberg and Whitham(1978)studied numerical and theoretical study of Fornberg–Whitham equation.A new exact solution of modified Fornberg-Whitham equation is obtained by Nuseir(2012).Bifurcation theory and the method of phase portraits analysis are done by He et al.(2010)for the study of modified Fornberg–Whitham equation.Zhou and Tian(2009)investigated a new travelling wave solution viz.periodic and solitary wave solution.Also Zhou and Tian(2008)used bifurcation method to study the solution of Fornberg–Whitham equation.The homotopy analysis method is successfully implemented by Mahmoudi and Kazemian(2012)to obtain an approximate analytical solution.Sakar and Erdogan(2013)compared the solution obtained by the homotopy analysis method and Adomian’s decomposition method for the solution of time fractional Fornberg–Whitham equation.Sakar and Erdogan(2012)used variational iteration method for the solution of time-fractional Fornberg–Whitham equation.Differential transformation method is used by Merdan et al.(2012)to obtain numerical solution.Behera and Chakraverty(2013)successfully applied homotopy perturbation method to obtain the numerical solution of fractionally damped beam equation.Fractional B-Spline method was implemented by Jafari et al(2013)to get the numerical solution of fractional differential equations.Also Jafari et al.(2013)applied homotopy analysis method for solving fractional Abel differential equation.We may observe from the above cited papers that the parameters and initial conditions are considered as crisp in their investigations.But in actual practice,rather than the particular value,only uncertain or vague estimates about the variables and parameters are known.Because those are found in general by some observation,experiment or experience.So,to handle these uncertainties and vagueness,one may use fuzzy parameters and variables in the governing differential equations.

    As such,both uncertainty and fractional differential equations play a vital role in real life problems.Some recent contributions to the theory of fuzzy differential equation and fuzzy fractional differential equations can be found in[Khastan et al.(2011);Bede et al.(2007);Jafari et al.(2012);Malinowski(2013);Akin et al.(2013);Agarwal et al.(2010);Arshad and Lupulescu(2011a);Arshad and Lupulescu(2011b);Jeong(2010);Wang and Liu(2011);Allahviranloo et al.(2012);Khodadadi and Celik(2013);Mohammed(2011);Salahshour et al.(2012);Salah et al.(2013);Behera and Chakraverty(2014);Ahmad et al.(2013);Allahviranloo et al.(2013);Tapaswini and Chakraverty(2013);Ghaemi et al.(2013)].The concept of fuzzy fractional differential equation was introduced recently by Agrawal et al.(2010).Arshad and Lupulescu(2011a)proved some results on the existence and uniqueness of solutions of fuzzy fractional differential equations based on the concept of fuzzy differential equations of fractional order introduced by Agrawal et al.(2010).Arshad and Lupulescu(2011b)investigated the fractional differential equation with the fuzzy initial condition.Jeong(2010)discussed existence and uniqueness results for fuzzy fractional di?erential equations with in?nite delay.Boundary value problem for fuzzy fractional differential equations with finite delay has been solved by Wang and Liu(2011).They established the existence of a solution by contraction mapping principle.Based on Riemann–Liouville H-differentiability,Allahviranloo et al.(2012)studied explicit solutions of fuzzy/uncertain fractional differential equations.Variational iteration method is applied by Khodadadi and Celik(2013)for the solution of fuzzy fractional differential equations.Mohammed et al.(2011)applied differential transform method for solving fuzzy fractional initial value problems.Salahshour et al.(2012)developed Riemann-Liouville differentiability by using Hukuhara difference called Riemann-Liouville H-differentiability and solved fuzzy fractional differential equations by Laplace transforms.Recently Salah et al.(2013)applied homotopy analysis transform method for the solution of fuzzy fractional heat equation.In Salah et al.(2013),the authors have solved fuzzy fractional differential equation by solving lower and upper bound problems separately to get the solution bounds.Behera and Chakraverty(2014)successfully applied HPM method to find uncertain impulse response of imprecisely defined fractional order mechanical system.Zadeh’s Extension Principle is used by Ahmad et al.(2013)for the solution of fuzzy fractional differential equations.Allahviranloo et al.(2013)solved the fuzzy fractional differential equations under generalized fuzzy Caputo derivative.Numerical solution of fuzzy arbitrary order predator-prey system is obtained by Tapaswini and Chakraverty(2013).Ghaemi et al.(2013)solved a fuzzy fractional kinetic equation of acid hydrolysis reaction.

    HPM is found to be a powerful tool for the analysis of linear and non-linear physical problems.HPM was first developed by He(1999;2000)and then many authors applied this method to solve various linear and non-linear functional equations of scienti fic and engineering problems.The solution is considered as the sum of infinite series,which converges rapidly.In the homotopy technique(in topology),a homotopy is constructed with an embedding parameterp∈[0,1]which is considered as a “small parameter”.Very recently homotopy perturbation method has been applied to a wide class of physical problems[Chen and Jiang(2010);Yazdi(2012);Abolarin(2013);Tapaswini and Chakraverty(2013a);Tapaswini and Chakraverty(2013b)].

    In the present analysis,HPM is used for the numerical solution of uncertain nonlinear fractional Fornberg-Whitham Equation subject to fuzzy initial condition.Uncertainty in the initial condition is defined in term of triangular and Gaussian fuzzy numbers.Literature review reveals that fuzzy fractional differential equations are always converted to two crisp fractional differential equations in general to obtain the solution bounds.But in this paper,a new approach is proposed based on a double parametric form of fuzzy numbers as defined in Definition 2.4 where fractional fuzzy differentialequation hasbeen converted to a single crisp parametric fractional differential equation.Finally the corresponding single crisp parametric fractional differential equation may be solved by any known numerical method symbolically to obtain the solution in the double parametric form.Then substituting the parametric values one may obtain the final solution bounds.

    This paper is organized as follows.In Section 2,some basic preliminaries related to the present investigation are given.HPM is applied with the proposed technique in Section 3 to solve fuzzy fractional Fornberg-Whitham equation.In Section 4,uncertain solutions for different type of fuzzy initial condition are given.Next numerical results and discussions are presented.Finally in the last section conclusions are drawn.

    2 Preliminaries

    In this section,we present some notations,definitions and preliminaries which are used further in this paper[Zimmermann(2001);Jaulin et al.(2001);Hanss(2005);Ross(2004)].

    Definition 2.1Fuzzy number

    where,μ?Uis called the membership function of the fuzzy set and it is piecewise continuous.

    Definition 2.2Triangular fuzzy number

    A triangular fuzzy number?Uis a convex normalized fuzzy set?Uof the real lineRsuch that

    Definition 2.3Gaussian fuzzy number

    where,the modal value is denoted asmandσl,σrdenote the left-hand and righthand spreads(fuzziness)corresponding to the Gaussian distribution.

    where,γ=1/2σ2.

    Definition 2.4Single parametric form of fuzzy numbers

    Similarly,for symmetric Gaussian fuzzy numberU=(m,σ,σ)in parametric form is written as

    Ther?cut form is known as parametric form or single parametric form of fuzzy numbers.

    It may be noted that the lower and upper bounds of the fuzzy numbers satisfy the following requirements

    Definition 2.5Double parametric form of fuzzy number

    Definition 2.6Fuzzy arithmetic

    3 Double parametric based fuzzy fractional Fornberg-Whitham equation

    First we convert the fuzzy fractional Fornberg-Whitham equation in-to an interval based fuzzy fractional Fornberg-Whitham equation using single parametric form of fuzzy numbers.Then the interval based differential equation is reduced to crisp differential equation by using double parametric form of fuzzy numbers.Next,we have applied HPM to obtain the solution in double parametric form.

    Let us now consider the fuzzy fractional Fornberg-Whitham equation

    Here the initial condition has been taken as fuzzy with an idea that the condition may actually be uncertain viz.due to the error in observation or experiment etc.where we may take the error or uncertainty in term of fuzzy triangular or Gaussian membership functions.As such,this will make the governing differential equation as uncertain and the corresponding outcome or the output(result)will be in uncertain form.This way we may have the actual essence of the uncertainty.So,we need to have efficient methods to handle these problems.

    According to the single parametric form we may write the above fuzzy fractional Fornberg-Whitham equation(Eq.(1))as

    subject to fuzzy initial condition

    Using the double parametric form(as discussed in Definition 2.4),Eq.(2)can be expressed as

    subject to the fuzzy initial condition

    Substituting these in Eq.(3)we get

    Solution by HPM[He(1999;2000)]using proposed methodology

    We have applied HPM to solve Eq.(4).According to HPM,we may construct a simple homotopy for an embedding parameterp∈[0,1],as follows

    are called homotopic.Next,we can assume the solution of Eq.(5)or(6)as a power series expansion inpas

    and so on.

    該模式規(guī)范了患者管理,經(jīng)管理的65例患者,HbA1c水平較管理前下降明顯,上轉(zhuǎn)患者通過(guò)“綠色通道”得到方便;通過(guò)仁濟(jì)醫(yī)院專家的指導(dǎo),全科醫(yī)生診療水平和能力得到提高,特別是在胰島素使用方面更加規(guī)范、降糖藥物聯(lián)合使用方面更加合理、降糖藥物禁忌癥方面更加重視、對(duì)患者的用藥指導(dǎo)方面更加全面。

    Now substituting these terms in Eq.(7)withp→1we get the approximate solution of Eq.(4)as

    The above series obtained by HPM converges very rapidly and only few terms are required to get the approximate solutions.The proof may be found in[He(1999;2000)].

    4 Solution bounds for different fuzzy initial conditions

    In this section we have considered different fuzzy initial conditions as discussed in the following cases to find the uncertain solution bounds for fuzzy fractional Fornberg-Whitham equation.

    Case 1:Triangular fuzzy initial condition viz.

    The solution can be written as

    To obtain the solution bounds in single parametric form,we may substituteβ=0 and 1 for lower and upper bounds of the solution respectively.So we get

    One may note that in the special case whenr=1 the results(crisp)obtained by the proposed method are exactly same as that of the solution obtained by Sakar&Erdogan[17]

    Case 2:Gaussian fuzzy initial condition viz.

    Again,by applying the proposed procedure,we get the solution as

    Puttingβ=0 and 1 in?u(x,t;r,β)we get the lower and upper bounds of the fuzzy solutions respectively as

    The solution obtained by the proposed method forr=1 is again found to be exactly same as that of(crisp result)Sakar and Erdogan(2013)

    5 Numerical results and discussions

    Numerical results for fuzzy fractional Fornberg-Whitham equation with different fuzzy initial conditions are computed.Obtained results of the present analysis are compared with the existing solution of Sakar&Erdogan(2013)in special cases to show the validation of the proposed analysis.Computed results are depicted in term of plots.

    Triangular and Gaussian fuzzy solutions for Cases 1 and 2 are depicted in Figs.1 and 2 respectively by varying the timetfrom 0 to 3 andx=1 withα=0.3.Next,interval solutions for.x=1 in both the cases have been given in Figs.3 to 4 forx=1 andα=0.3,0.7,0.9,1.It may be worth mentioning that in both the cases,present results exactly agree with the solution of Sakar&Erdogan(2013)in special case ofr=1 Also it is interesting to note from Figs.3 and 4 that the left and right bounds of the uncertain fluid velocity that is?u(x,t)(with particular values ofα,randx)gradually decreases with the increase of the fractional orderαand timet.Figs.5 and 6 show for particular values ofr=0.2 andt=1,the uncertain fluid velocity increases with increase inxand decreases with the increase of fractional orderα.

    Figure 1:Fuzzy solution for Case 1.

    Figure 2:Fuzzy solution for Case 2.

    Figure 3:Interval solutions for Case 1 at x=1.

    Figure 4:Interval solutions for Case 2 at x=1.

    Figure 5:Interval solutions for Case 1 at t=1.

    Figure 6:Interval solutions for Case 2 at t=1.

    6 Conclusions

    In this paper double parametric form of fuzzy numbers has been successfully employed for the solution of fuzzy fractional Fornberg-Whitham equation with triangularand Gaussian fuzzy initialcondition using the homotopy perturbation method.The double parametric form approach is found to be easy and straight-forward.It is interesting to note in both the examples that the lower solution is equal to the upper solution whenr=1.Though the solution by HPM is of the form of an infinite series but it can be written in a closed form.The main advantage of HPM may also be seen in the process of solution of uncertain differential equations that it has the capability to achieve exact solution and rapid convergence with few terms.

    Acknowledgement:The authors would like to thank the Editor and anonymous reviewers for their valuable suggestions and comments to improve the paper.Also,we would like to thank Mr.Diptiranjan Behera,National Institute of Technology Rourkela for his valuable help.The second author would like to thank the UGC,Government of India,for financial support under Rajiv Gandhi National Fellowship(RGNF).

    Abidi,F.;Omrani,K.(2010):The homotopy analysis method for solving the Fornberg–Whitham equation and comparison with Adomian’s decomposition method.Comput.Math.Appl.vol.59,pp.2743–2750.

    Abolarin,O.E.(2013):New improved variational homotopy perturbation method for Bratu-type problems.American J.Comput.Math.,vol.3,pp.110-113.

    Agarwal,R.P.;Lakshmikantham,V.;Nieto,J.J.(2010):On the concept of solution for fractional differential equations with uncertainty.Nonlinear Analy.:Theory,Methods Appl.,vol.72,pp.2859–2862.

    Ahmad,M.Z.;Hasan,M.K.;Abbasbandy,S.(2013)Solving fuzzy fractional differential equations using Zadeh’s extension principle.Sci.World J.,vol.2013,pp.1-11.

    Akin,O.;Khaniyev,T.;Oruc,O.;Turksen,I.B.(2013):An algorithm for the solution of second order fuzzy initial value problems.Expert Syst.Appl.,vol.40,pp.953-957.

    Arshad,S.;Lupulescu,V.(2011):On the fractional differential equations with uncertainty.Nonlinear Anal.:Theory,Methods Appl.,vol.74,pp.3685-3693.

    Arshad,S.;Lupulescu,V.(2011):Fractional differential equation with the fuzzy initial condition.Elect.J.Diff.Equ.,vol.2011,pp.1–8.

    Allahviranloo,T.;Gouyandeh,Z.;Armand,A.(2013):Fuzzy fractional differential equations under generalized fuzzy Caputo derivative.J.Intelligent Fuzzy Syst.,vol.26,pp.1481-1490.

    Allahviranloo,T.;Salahshour,S.;Abbasbandy,S.(2012)Explicit solutions of fractional differential equations with uncertainty.Soft Comp.,vol.16,pp.297-302.

    Bede,B.;Rudas,I.;Bencsik,A.(2007):First order linear fuzzy differential equations under generalized differentiability.Inf.Sci.,vol.177,pp.1648-1662.

    Behera,D.;Chakraverty,S.(2013):Numerical solution of fractionally damped beam by homotopy perturbation method.Cent.Eur.J.Phys.,vol.11,pp.792-798.

    Behera,D.;Chakraverty,S.(2014):Uncertain impulse response of imprecisely defined half order mechanical system.Annals Fuzzy Math.Inf.,vol.7,pp.401-419.

    Chen,Y.;Han,X.;Liu,L.(2014):Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis.Comput.Model.Eng.Sci.,vol.97,pp.391-405.

    Chen,A.;Jiang,G.(2010):Periodic solution of the Duffing-Van der Pol oscillator by homotopy perturbation method.Int.J.Comput.Math.,vol.87,pp.2688-2696.

    Fornberg,B.;Whitham,G.B.(1978):A numerical and theoretical study of certain nonlinear wave phenomena.Phil.Trans.Royal Soc.London A.,vol.289,pp.373–404.

    Ghaemi,F.;Yunus,R.;Ahmadian,A.,Salahshour,S.;Suleiman,M.;Saleh,S.F.(2013):Application of fuzzy fractional kinetic equations to modelling of the acid hydrolysis reaction.Abst.Appl.Analy.,vol.2013,pp.1-19.

    Hanss M.(2005):Applied Fuzzy Arithmetic:An Introduction with Engineering Applications.Springer-Verlag,Berlin.

    He,J.H.(1999):Homotopy perturbation technique.Computer Methods in Appl.Mech.Eng.vol.178,pp.257-262.

    He,J.H.(2000):A coupling method of homotopy technique and perturbation technique for nonlinear problems.Int.J.Non-Linear Mech.,vol.35,pp.37-43.

    He,B.;Meng,Q.;Li,S.(2010):Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation.Appl.Math.Comput.,vol.217,pp.1976-1982.

    Jafari,H.;Khalique,C.M.;Ramezani,M.;Tajadodi,H.(2013)Numerical solution of fractional differential equations by using fractional B-spline.Cent.Eur.J.Phys.doi:10.2478/s11534-013-0222-4.

    Jafari,H.;Saeidy,M.;Baleanu,D.(2012):The variational iteration method for solving n-th order fuzzy differential equations.Cent.Eur.J.Phys.,vol.10,pp.76-85.

    Jafari,H.;Sayevand,K.;Tajadodi,H.;Baleanu,D.(2013)Homotopy analysis method for solving Abel differential equation of fractional order.Cent.Eur.J.Phys.,doi:10.2478/s11534-013-0209-1.

    Jaulin,L.;Kieffer,M.;Didrit,O.;Walter,E.(2001):Applied Interval Analysis.Springer,France.

    Jeong,J.U.(2010):Existence results for fractional order fuzzy di?erential equations with infinite delay.Int.Math.Forum.,vol.5,pp.3221–3230.

    Khastan,A.;Nieto,J.J.;Rodríguez-López,R.(2011):Variation of constant formula for first order fuzzy differential equations.Fuzzy Sets Syst.,vol.177,pp.20–33.

    Kiryakova,V.S.(1993):GeneralizedFractionalCalculusandApplications.Longman Scientific&Technical.Longman House:Burnt Mill,Harlow England.

    Khodadadi,E.;Celik,E.(2013):The variational iteration method for fuzzy fractional differential equations with uncertainty.Fixed Point Theory Appl.,vol.2013,pp.1-7.

    Li,B.(2014):Numericalsolution offractionalFredholm-Volterra integro-differential equations by means of generalized hat functions method.Comput.Model.Eng.Sci.,vol.99,pp.105-122.

    Lu,J.(2011):An analytical approach to the Fornberg–Whitham type equations by using the variational iteration method.Comput.Math.Appl.vol.61,pp.2010–2013.

    Mahmoudi,Y.;Kazemian,M.(2012):Some notes on homotopy analysis method for solving the Fornberg-Whitham equation.J.Basic Appl.Sci.Res.vol.2,pp.2985-2990.

    Malinowski,M.T.(2013):Some properties of strong solutions to stochastic fuzzy differential equations.Inf.Sci.,vol.252,pp.62-80.

    Merdan,M.;Gokdogan,A.;Y?ld?r?m A.;Mohyud-Din,S.T.(2012):Numerical simulation of fractional Fornberg-Whitham equation by differential transformation method.Abstract Appl.Anal.,vol.2012,pp.1-8.

    Miller,K.S.;Ross,B.(1993):An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley and Sons,New York.

    Mohammed,O.H.;Fadhel,F.S.;Abdul-Khaleq,F.A.(2011):Differential transform method for solving fuzzy fractional initial value problems.J.Basrah Res.(Sci.).vol.37,pp.158-170.

    Nuseir,A.S.(2012):New exactsolutions to the modified Fornberg-Whitham equation.Taiw.J.Math.,vol.16,pp.2083-2091.

    Oldham,K.B.;Spanier,J.(1974):The Fractional Calculus,Academic Press,New York.

    Pang,G.;Chen,W.;Sze,K.Y.(2014):Differential quadrature and cubature methods for steady-state space-fractional Advection-Diffusion equations.Comput.Model.Eng.Sci.,vol.97,pp.299-322.

    Podlubny,I.(1999):Fractional Differential Equations.Academic Press,New York.

    Ross,T.J.(2004):Fuzzy Logic with Engineering Applications.John Wiley&Sons New York.

    Samko,S.G.;Kilbas,A.A.;Marichev,O.I.(1993):Fractional integrals and Derivatives-TheoryandApplications.Gordon and Breach Science Publishers Langhorne.

    Sakar,M.G.;Erdogan,F.(2013):The homotopy analysis method for solving the time fractional Fornberg–Whitham equation and comparison with Adomian’s decomposition method.Appl.Math.Modell.vol.37,pp.8876-8885.

    Sakar,M.G.;Erdogan,F.;Yildirim,A.(2012)Variational iteration method for the time-fractional Fornberg–Whitham equation.Comput.Math.Appl.,vol.63,pp.1382–1388.

    Salahshour,S.;Allahviranloo,T.;Abbasbandy,S.(2012):Solving fuzzy fractional differential equations by fuzzy laplace transforms.Comm.Non.Sci.Num.Simul.,vol.17,pp.1372-1381.

    Salah,A.;Khan,M.;Gondal,M.A.(2013):A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method.Neu.Comp.Appl.,vol.23,pp.269–271.

    Tapaswini,S.;Chakraverty,S.(2013):Numerical solution of fuzzy arbitrary order Predator-prey equations.Appl.Appl.Math.:An Int.J.,vol.8,pp.647–672.

    Tapaswini,S.;Chakraverty,S.(2013):Numerical solution of uncertain beam equations using double parametric form of fuzzy numbers.Appl.Comput.Intell.Soft Comput.,vol.2013,pp.1-8.

    Tapaswini,S.;Chakraverty,S.(2013):Numerical solution of fuzzy quadratic Riccati differential equation.Coupled Syst.Mech.,vol.2,pp.255-269.

    Wang,H.;Liu,Y.(2011):Existence results for fractional fuzzy differential equations with finite delay.Int.Math.Forum.,vol.6,pp.2535-2538.

    Yazdi,A.A.(2012):Homotopy perturbation method for nonlinear vibration anal-ysis of functionally graded plate.J.Vib.Acoust.,vol.135,pp.021012-1-6.

    Zhou,J.;Tian,L.(2009):Periodic and solitary wave solutions to the Fornberg-Whitham equation.Math.Prob.Eng.,vol.2009,pp.1-10.

    Zhou,J.;Tian,L.(2008)A type of bounded traveling wave solutions for the Fornberg-Whitham equation.J.Math.Anal.Appl.,vol.346,pp.255–261.

    Zimmermann,H.J.(2001):Fuzzy Set Theory and its Application.Kluwer academic publishers,London.

    猜你喜歡
    禁忌癥仁濟(jì)綠色通道
    便捷的交通讓生活豐富多彩
    8月,山西開始為12~17歲人群接種新冠疫苗
    高速公路綠色通道信息管理系統(tǒng)開發(fā)與實(shí)踐
    加拿大的政治正確和“禁忌癥” 文
    世界博覽(2016年19期)2016-12-19 04:16:55
    VSD護(hù)理新進(jìn)展探討
    人人健康(2016年21期)2016-11-05 11:32:22
    TC-SCAN綠色通道系統(tǒng)日常維護(hù)淺析
    請(qǐng)為醫(yī)療創(chuàng)新開通綠色通道
    骨髓腔輸液的歷史與現(xiàn)狀
    為青年創(chuàng)新人才脫穎而出開辟“綠色通道”
    “倒藥渣”的由來(lái)
    保健與生活(2004年8期)2004-04-29 00:44:03
    天堂中文最新版在线下载| 高清在线视频一区二区三区| 亚洲精品第二区| 在现免费观看毛片| 插阴视频在线观看视频| 美女视频免费永久观看网站| 国产精品蜜桃在线观看| 美女中出高潮动态图| 高清毛片免费看| 妹子高潮喷水视频| 中文字幕亚洲精品专区| 久久精品国产亚洲av天美| 91成人精品电影| 少妇的逼水好多| 你懂的网址亚洲精品在线观看| 亚洲欧洲国产日韩| 视频中文字幕在线观看| 少妇人妻精品综合一区二区| 99热这里只有是精品50| a级一级毛片免费在线观看| 91成人精品电影| tube8黄色片| 80岁老熟妇乱子伦牲交| 国产在线男女| 国产精品99久久久久久久久| 亚洲精品日韩av片在线观看| 青青草视频在线视频观看| 国产中年淑女户外野战色| 美女中出高潮动态图| 久久国产精品大桥未久av | 水蜜桃什么品种好| 久久99蜜桃精品久久| √禁漫天堂资源中文www| 一本色道久久久久久精品综合| 亚洲欧洲日产国产| 日本av手机在线免费观看| 亚洲成人手机| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 日韩制服骚丝袜av| 2021少妇久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 黄色日韩在线| 18禁裸乳无遮挡动漫免费视频| 人妻人人澡人人爽人人| 男女无遮挡免费网站观看| 三级国产精品欧美在线观看| 精品一区在线观看国产| 少妇熟女欧美另类| 亚洲欧美日韩东京热| 国产 一区精品| 在线观看美女被高潮喷水网站| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 免费观看性生交大片5| 建设人人有责人人尽责人人享有的| 欧美高清成人免费视频www| 久久女婷五月综合色啪小说| 欧美精品一区二区免费开放| 一级二级三级毛片免费看| 免费观看无遮挡的男女| 日日啪夜夜爽| 91久久精品电影网| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的| 中国美白少妇内射xxxbb| 在线观看免费日韩欧美大片 | 嫩草影院入口| 久久精品久久久久久久性| 午夜激情福利司机影院| 天天躁夜夜躁狠狠久久av| 国产成人精品无人区| 91午夜精品亚洲一区二区三区| 欧美日韩在线观看h| 亚洲精品,欧美精品| 我的女老师完整版在线观看| 亚洲av电影在线观看一区二区三区| 亚洲成人手机| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 欧美三级亚洲精品| 国产成人精品婷婷| 97精品久久久久久久久久精品| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 99re6热这里在线精品视频| 国产精品无大码| 久久99热这里只频精品6学生| 18禁动态无遮挡网站| 亚洲av二区三区四区| 99热网站在线观看| 国产老妇伦熟女老妇高清| 在线观看免费视频网站a站| 久久久亚洲精品成人影院| 噜噜噜噜噜久久久久久91| 国产乱来视频区| 国产伦在线观看视频一区| 69精品国产乱码久久久| 好男人视频免费观看在线| 亚洲国产毛片av蜜桃av| 久久久午夜欧美精品| 一级毛片久久久久久久久女| av黄色大香蕉| 一级,二级,三级黄色视频| 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 久久精品国产亚洲av天美| 亚洲经典国产精华液单| 中国三级夫妇交换| 国产视频内射| 大陆偷拍与自拍| 各种免费的搞黄视频| 国产精品一区www在线观看| 18+在线观看网站| 午夜av观看不卡| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 国产成人精品久久久久久| 国产亚洲午夜精品一区二区久久| 中文字幕制服av| 久久久久久久久久人人人人人人| 国产亚洲91精品色在线| 色视频www国产| 大香蕉久久网| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| 波野结衣二区三区在线| 日韩大片免费观看网站| 热re99久久精品国产66热6| 亚洲中文av在线| 最近最新中文字幕免费大全7| 麻豆成人午夜福利视频| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| 三级国产精品片| 黄色一级大片看看| 美女国产视频在线观看| 久久精品夜色国产| av天堂中文字幕网| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 亚洲精品日韩在线中文字幕| 一二三四中文在线观看免费高清| 在线观看免费视频网站a站| 亚洲美女黄色视频免费看| 美女福利国产在线| 另类亚洲欧美激情| 日韩精品有码人妻一区| a 毛片基地| 精品人妻熟女毛片av久久网站| 精品久久久久久电影网| 人妻系列 视频| 五月开心婷婷网| 亚洲精品色激情综合| 最近的中文字幕免费完整| 99国产精品免费福利视频| 极品人妻少妇av视频| 老司机影院成人| 国产伦理片在线播放av一区| 大码成人一级视频| 建设人人有责人人尽责人人享有的| 久久久久久久久久久免费av| 777米奇影视久久| 久久人人爽人人片av| 国产在线免费精品| 精品一区在线观看国产| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 午夜视频国产福利| 精品国产一区二区久久| 国产美女午夜福利| 欧美区成人在线视频| 夫妻午夜视频| 丁香六月天网| 亚洲精品日韩av片在线观看| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 欧美另类一区| 丝袜喷水一区| 久久精品国产自在天天线| 热99国产精品久久久久久7| 日韩成人伦理影院| 国产亚洲91精品色在线| 国产一级毛片在线| 亚洲精品aⅴ在线观看| 啦啦啦中文免费视频观看日本| 国产色爽女视频免费观看| av在线观看视频网站免费| 精品少妇内射三级| 亚洲无线观看免费| 国产男女内射视频| 日日啪夜夜爽| 美女主播在线视频| 午夜激情福利司机影院| 久久久欧美国产精品| 高清视频免费观看一区二区| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av天美| 五月开心婷婷网| 精华霜和精华液先用哪个| 嫩草影院新地址| 亚洲成人一二三区av| 黄色配什么色好看| 91午夜精品亚洲一区二区三区| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 亚洲情色 制服丝袜| 丝袜喷水一区| 精品国产一区二区久久| 青春草国产在线视频| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 精品久久久噜噜| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 在线精品无人区一区二区三| 一级a做视频免费观看| 中文字幕免费在线视频6| 永久免费av网站大全| 最近中文字幕高清免费大全6| 日本欧美视频一区| 久久久久久久久大av| 韩国高清视频一区二区三区| av网站免费在线观看视频| 男男h啪啪无遮挡| 国产在线男女| 国产成人精品婷婷| 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 五月玫瑰六月丁香| 国产乱人偷精品视频| 亚洲精品,欧美精品| 国产亚洲精品久久久com| 99国产精品免费福利视频| 免费久久久久久久精品成人欧美视频 | 秋霞伦理黄片| 亚洲精品乱久久久久久| 亚洲国产欧美日韩在线播放 | 欧美3d第一页| 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 成年美女黄网站色视频大全免费 | 久久久久久久国产电影| 国产精品福利在线免费观看| 国产黄色视频一区二区在线观看| 欧美xxⅹ黑人| 最近手机中文字幕大全| 成人亚洲精品一区在线观看| 各种免费的搞黄视频| 日本欧美国产在线视频| 国产精品一区www在线观看| 91久久精品电影网| 少妇人妻一区二区三区视频| 啦啦啦中文免费视频观看日本| 麻豆精品久久久久久蜜桃| 免费看光身美女| 日韩中文字幕视频在线看片| 少妇熟女欧美另类| 国产成人午夜福利电影在线观看| 亚洲一区二区三区欧美精品| 夫妻午夜视频| 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 欧美日韩精品成人综合77777| 国产免费视频播放在线视频| 日日啪夜夜爽| 天天躁夜夜躁狠狠久久av| 六月丁香七月| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 国产精品欧美亚洲77777| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 丝袜在线中文字幕| av播播在线观看一区| 中文乱码字字幕精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久综合国产亚洲精品| 亚洲欧美成人精品一区二区| 欧美另类一区| 国产av一区二区精品久久| 国产黄频视频在线观看| 性色avwww在线观看| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| 日本黄色片子视频| 国产永久视频网站| 亚洲国产精品成人久久小说| 永久免费av网站大全| 婷婷色综合www| 免费大片黄手机在线观看| 亚洲精品色激情综合| 一级黄片播放器| 亚洲性久久影院| 只有这里有精品99| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 最近中文字幕2019免费版| 日韩av免费高清视频| 在线免费观看不下载黄p国产| 伊人久久精品亚洲午夜| 七月丁香在线播放| 嘟嘟电影网在线观看| 亚洲精品视频女| 亚洲国产色片| 免费观看在线日韩| 一本一本综合久久| 我的老师免费观看完整版| 欧美日韩国产mv在线观看视频| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频| 十八禁网站网址无遮挡 | 纯流量卡能插随身wifi吗| 三级经典国产精品| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 国产在线视频一区二区| 亚洲自偷自拍三级| 欧美3d第一页| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 免费观看在线日韩| 18禁在线播放成人免费| av在线app专区| 91午夜精品亚洲一区二区三区| 国产精品久久久久久av不卡| a级一级毛片免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边吃奶边做爰视频| 午夜视频国产福利| 在线观看国产h片| 午夜免费观看性视频| 亚洲自偷自拍三级| 一级爰片在线观看| 日韩av免费高清视频| 国产色婷婷99| 日日撸夜夜添| a级毛色黄片| 伊人久久精品亚洲午夜| 日韩欧美一区视频在线观看 | 国产精品一区二区在线不卡| 亚洲av不卡在线观看| 欧美精品一区二区大全| 嫩草影院新地址| 免费人成在线观看视频色| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 九草在线视频观看| 中文字幕av电影在线播放| 看免费成人av毛片| 大片免费播放器 马上看| 看十八女毛片水多多多| 18禁在线无遮挡免费观看视频| 亚洲经典国产精华液单| 一本久久精品| 亚洲国产精品一区二区三区在线| 久久久久精品性色| 亚洲av国产av综合av卡| 国产中年淑女户外野战色| 亚洲精品日韩在线中文字幕| 国产日韩欧美视频二区| 日日啪夜夜撸| 免费在线观看成人毛片| 久久国产乱子免费精品| 国产成人aa在线观看| 人体艺术视频欧美日本| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 国产成人免费无遮挡视频| 男女无遮挡免费网站观看| 少妇被粗大猛烈的视频| 亚洲四区av| 18+在线观看网站| av福利片在线| 国语对白做爰xxxⅹ性视频网站| 男女无遮挡免费网站观看| 久久国产乱子免费精品| 丝袜脚勾引网站| 色网站视频免费| 国产综合精华液| 国产淫语在线视频| 国产伦精品一区二区三区视频9| 亚洲精品成人av观看孕妇| 日韩人妻高清精品专区| 韩国高清视频一区二区三区| 欧美bdsm另类| 中文字幕人妻熟人妻熟丝袜美| 最近最新中文字幕免费大全7| 亚洲国产毛片av蜜桃av| 免费av中文字幕在线| 国产精品人妻久久久久久| 18禁在线播放成人免费| 五月开心婷婷网| 美女内射精品一级片tv| 国产成人精品久久久久久| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 另类精品久久| 成人国产麻豆网| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩中文字幕视频在线看片| 成人午夜精彩视频在线观看| 视频中文字幕在线观看| .国产精品久久| 中文字幕精品免费在线观看视频 | 黑丝袜美女国产一区| 春色校园在线视频观看| 男的添女的下面高潮视频| 久久人人爽人人片av| 日本av免费视频播放| 精品99又大又爽又粗少妇毛片| 亚洲怡红院男人天堂| 桃花免费在线播放| 丁香六月天网| 欧美国产精品一级二级三级 | 王馨瑶露胸无遮挡在线观看| 永久网站在线| 麻豆乱淫一区二区| 观看av在线不卡| 国产在线一区二区三区精| 爱豆传媒免费全集在线观看| 国产精品国产av在线观看| 午夜免费鲁丝| 亚洲成人av在线免费| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 99热全是精品| 亚洲欧美精品专区久久| 久久久久久人妻| 我的女老师完整版在线观看| 人妻 亚洲 视频| 在线观看国产h片| 久久久久国产网址| 午夜免费鲁丝| 久久亚洲国产成人精品v| 精品久久久久久久久av| av一本久久久久| 18禁动态无遮挡网站| 99久久精品一区二区三区| 精品午夜福利在线看| 日本黄色片子视频| 国产精品福利在线免费观看| 免费看av在线观看网站| a级毛片免费高清观看在线播放| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 免费看av在线观看网站| 街头女战士在线观看网站| 国产中年淑女户外野战色| 国产免费一级a男人的天堂| 亚洲四区av| 亚洲第一区二区三区不卡| 大香蕉97超碰在线| 肉色欧美久久久久久久蜜桃| 我要看黄色一级片免费的| 久久久久久久久久人人人人人人| 丰满少妇做爰视频| av福利片在线观看| 精品国产国语对白av| 亚洲成色77777| 久久精品久久精品一区二区三区| 欧美97在线视频| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲 | 中文字幕免费在线视频6| 日韩中字成人| 亚洲av不卡在线观看| 这个男人来自地球电影免费观看 | 91久久精品国产一区二区成人| 内射极品少妇av片p| 9色porny在线观看| 熟女av电影| 中国国产av一级| 亚洲精品一二三| 青春草亚洲视频在线观看| 熟女av电影| 久久午夜综合久久蜜桃| 久久毛片免费看一区二区三区| 欧美少妇被猛烈插入视频| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 国产精品人妻久久久久久| 久久人人爽av亚洲精品天堂| 伦精品一区二区三区| 国产黄片视频在线免费观看| 伊人久久精品亚洲午夜| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 日日爽夜夜爽网站| h日本视频在线播放| 精品国产国语对白av| 成人亚洲欧美一区二区av| 一区二区三区乱码不卡18| 国产熟女欧美一区二区| 大香蕉97超碰在线| 亚洲av欧美aⅴ国产| 久久久久国产精品人妻一区二区| 亚洲精品视频女| 色视频www国产| 日本av免费视频播放| 女的被弄到高潮叫床怎么办| 最新中文字幕久久久久| 晚上一个人看的免费电影| 少妇丰满av| 亚洲精品一区蜜桃| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 丁香六月天网| 久久人人爽人人爽人人片va| 午夜视频国产福利| 久久影院123| 岛国毛片在线播放| 午夜91福利影院| 日本免费在线观看一区| 老司机亚洲免费影院| a级毛片在线看网站| 国产精品一二三区在线看| 69精品国产乱码久久久| 精品99又大又爽又粗少妇毛片| 99热网站在线观看| 成人美女网站在线观看视频| 亚洲av福利一区| 精品一品国产午夜福利视频| 大片电影免费在线观看免费| 国产av一区二区精品久久| 日韩成人av中文字幕在线观看| h日本视频在线播放| 一本大道久久a久久精品| 永久免费av网站大全| 久久人人爽人人片av| 日韩伦理黄色片| 国产成人精品一,二区| 多毛熟女@视频| 亚洲无线观看免费| 日日爽夜夜爽网站| 99视频精品全部免费 在线| 老司机影院成人| 国产亚洲5aaaaa淫片| 亚洲人与动物交配视频| 久久国产乱子免费精品| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 欧美 亚洲 国产 日韩一| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看| 最新的欧美精品一区二区| 中文字幕亚洲精品专区| 女人精品久久久久毛片| 久久婷婷青草| 国产日韩一区二区三区精品不卡 | 国产日韩欧美在线精品| 国产亚洲最大av| 亚洲欧美日韩东京热| 国模一区二区三区四区视频| 亚洲第一区二区三区不卡| 丝袜脚勾引网站| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 黑人高潮一二区| 久久毛片免费看一区二区三区| 日本av手机在线免费观看| 99视频精品全部免费 在线| 欧美日韩av久久| 亚洲欧美精品专区久久| 国产在线一区二区三区精| 一边亲一边摸免费视频| 18+在线观看网站| 黄色毛片三级朝国网站 | 热99国产精品久久久久久7| 亚洲av国产av综合av卡| 亚洲国产成人一精品久久久| 十分钟在线观看高清视频www | 街头女战士在线观看网站| 亚洲精品乱码久久久v下载方式| 女人精品久久久久毛片| 午夜视频国产福利| 国精品久久久久久国模美| 国产有黄有色有爽视频| 午夜激情福利司机影院| 最黄视频免费看| 国产成人精品一,二区| 9色porny在线观看| 99精国产麻豆久久婷婷| 午夜激情福利司机影院| 日韩不卡一区二区三区视频在线| 国产成人精品一,二区| 少妇裸体淫交视频免费看高清| 国产男女超爽视频在线观看| 国产 精品1| 国产一区二区在线观看日韩| 日本91视频免费播放| 国国产精品蜜臀av免费| 欧美日本中文国产一区发布| 久久精品国产鲁丝片午夜精品| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看|