• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of an Edge Finite Element Space and a Contribution to the Mesh Selection in the Approximation of the Second Order Time Harmonic Maxwell System

    2014-04-16 02:31:33SeboldLacerdaandCarrer

    J.E.Sebold,L.A.Lacerda and J.A.M.Carrer

    1 Introduction

    In a numerical formulation,if one needs to directly represent a vector quantity in a discretized form,the alternative when using nodal basis functions is the separate treatment of each component of the vector field,which individually reduces to scalar functions.

    Arises from this fact a dificulty related with the continuity of the discretized vector quantity across adjacent elements in the finite element mesh.For instance,in a common side of adjacent elements,nodes are shared and since the approximation is performed component by component,this approach results in continuity of all components of the vector quantity across the elements.However,if each element belongs to a different material domain,the imposed continuity produces a fisically incorrect solution.Such solutions are obtained since the nodal basis functions approach do not guarantee the continuity of the interpolation function derivatives between adjacent elements.

    Along time,novel approaches were conceived to overcome this problem.Among them,one may highlight the development of techniques characterized by the use of another variety of finite elements as an alternative to the original nodal approach.Such alternatives were introduced in the works of Whitney(1957)and Nédélec(1980).

    Despite using edge vectors sets in a completely different context to the finite element method developed in this work,Whitney pioneered the use of polynomials vector space to generate such sets Monk(2003b).These edge vectors or zero order elements in the context of the finite element method are an approximation by function with constant tangential components at the element edges.Such type of elements are commonly referred in the literature as Whitney elements.

    The Sobolev spacesH(curl,?)play a central role in the variational theory of Maxwell’s equations since,according to Monk(2003b)this space corresponds to the space of finite energy solutions.In this sense,it can be guaranteed the existence,uniqueness and regularity of physically significant discrete solutions Greenleaf et al.(2007).Thus,it is convenient to take this finite element space to retrieve a subspace class of suitable finite elements for the Maxwell’s equations system.

    Anotherfeature ofthisspace isthe choice ofthe finite elementdiscretization,which is necessary for the continuity of the tangential components of the field E across adjacent elements.Moreover,there is no obligation for the normal vector components being continuous.

    Another relevant issue is the dispersion relation for the edge finite elements.Several authors have considered the dispersive behaviour of the finite element method.Christon(1999)considered the dispersive behaviour of a variety of finite element methods for the wave equation,presenting numerical comparisons of the discrete phase and group velocities with exact values.Monk and Parrot(1994)considered the dispersive behaviour of fisrt order triangular finite elements for Maxwell’s equations,while refining meshes.Monk and Cohen(1998)conducted a dispersion analysis for Nédélec type elements for time dependent Maxwell’s equations using a mass matrix lumping on tensor products in two and three dimensional meshes.Ihlenburg and Babu?ka(1997)studied the dispersive properties of higher order finite elements for the Helmholtz equation in one dimension,obtaining estimates for the approximation to the fifth order in whichωh<1.Numerical evidences led to the conjecture that elements of orderpprovide an approximation of order 2pin dispersion relation when the mesh size parameterhtends to zero.Monk(2003a)showed proof of convergence of the Nédélec finite elements applied to a cavity problem with Maxwell’s equations.The cavity was assumed to be a Lipschitz polyhedron,modelled with a rectangular non-uniform mesh.Ainsworth(2003)demonstrated that the numerical dispersion relation displays three different behaviours depending on the order of the method in relation to the mesh parameter and to the wave number.These behaviours are described as:Oscillation Phase,Transition Zone and Super-Exponential Decay.Ainsworth and Coyle(2001)studied a hierarchical basis functions set for the Galerkin discretization ofH(curl,?)space for both hybrid meshes containing quadrilaterals and triangles with a non-uniform arbitrary polynomial order.

    In this work,it is shown a second order time-harmonic Maxwell system problem with its approximation with edge finite elements.From the numerical results a dispersion relation analysis is performed using the numerical phase velocity,allowing the selection of an edge size parameter for a uniform quadratic elements mesh.

    2 Surface Differential Operators

    2.1 Surface Cross Product

    2.2 Surface Gradient

    LetSbe a surface with smooth boundary and unit normal vectorn n n.For a scalar functionφ∈H1(S)the surface gradient?Sφ∈L2t(S)is defined as:

    2.3 Surface Scalar Rotational

    2.4 Surface Vector Rotational

    IfSdenotes a Lipschitz domain in the planexy,Reddy(1986),then for a given scalar functionφ=φ(x,y),defined onS,one can denote and define the suface vector rotational,respectively,by:

    Note that equation(6)is nothing more than the product between the rotation matrix and theφgradient.

    2.5 Surface Divergence

    One can denote the surface divergence by the operator?S·:L2t(S)?→H1(S)′and define it as

    The Finite Element Method is based on the variational formulation or weak formulation of boundary value problems.Thus,the following theorem is very useful in the variational formulation of the second order time harmonic Maxwell system,which will be discussed below.

    3 Second Order Time Harmonic Maxwell System

    Lemma 3.1:If Re(A1e?iω0t)=Re(A2e?iω0t)for all t,then A1=A2.

    Proof:SupposeA1/=A2.Consider thatA1=a+biandA2=c+di,wherea,b,c,d∈R.By hypotesisRe(A1e?iω0t)=Re(A2e?iω0t)for allt,thus fort=0,one hasRe(A1)=Re(A2).Consider nowt=π/2ω0,so one hasIm(A1)=Im(A2)(imaginaries parts),which contradicts the choiceA1/=A2.Therefore,A1=A2.

    Likewise,similar conclusions can be found for the other equations(I1.a),Jackson(1999).So,the time harmonic Maxwell system can be written

    and using(19),the first order time harmonic Maxwell system obtained;it is written as:

    4 Description of Edge Finite Elements Space

    4.1 Degree of Freedom

    whereφ1∈Sk?2,k?1andφ2∈Sk?1,k?2.One has a total of 2p(p+1)degrees of freedom within the reference element?K.

    Hence,according to Kaplan(1970),one has

    whereJKis an invertible square matrix andb b bis a translation vector.Note thatFKis a differentiable bijection,and that the Jacobian matrix transformation is given bydFK=JK.It comes from the covariant transformation,Kaplan(1970),that the tangent vectorsχandτare related by

    Therefore,equation(27)can be represent by:

    By using the mappingFγ,restricted to reference edgeγand withm=k,one has

    The degreesoffreedom on the edgesensuresthat(K,P,Σ)isH(curl,?)-conforming;complementing them with the degrees of freedom inside of element,it is ensured that(K,P,Σ)is unisolvente(see Theorem 5 of Nédélec(1986)).

    4.2 Hierarchical Basis Functions

    Inspite of the representations(33)and(34)be well simplified,a notation to differentiate the"edges functions"were used.This classification takes into account the edges of a quadrilateral reference element:

    Thus,the basis function associated with the edges satisfy

    whereδis the Kronecker delta.Similarly,the basis functions associated to the inside of an element satisfies

    4.3 Basis Function for Whitney Elements(p=0)

    An emphasis on the definition of Epfor the casep=0,implies S0,1={1,?y}and S1,0={1,?x};therefore:

    For Whitney elements each edge presents only one degree of freedom(see equation(24)),thus we can define the basis functions can be defined as:

    4.4 Basis Function for Nédélec Elements(p=1)

    The space of polynomials associated with the Nédélec elements of orderp=1 on the reference element?Kis defined as

    and E1is constructed by increasing the space E0–Hierarchical basis.Furthermore,we note that there are four new basis functions on edges that are generated by the elements?x,?x?y∈S1,2and?y,?y?x∈S2,1,which will be added to the edges together with the basis functions for elements of Whitney.

    Figure 1:(a)Degrees of freedom for Whitney elements.The arrows indicate the zero-order moment of the tangential field?E E E.Note that the direction of the tangent remains in the anti-clockwise around the element;(b)The arrows indicate the degrees of freedom of the elements of order p=1 distributed on the edges.The black squares in the interior of the element represent the degrees of freedom necessary for a quadrilateral.

    Note that,the elements of orderp=1 are provided degrees of freedom on the edges and inside the element.Thus,the basic functions of these elements are organized as follows:

    1.Basis function in the edges:

    Note that the first four basis functions of the edge are the same basic functions for elements of orderp=0.The basis functions in(42)are built using the weight functionvk=Lk,satisfying(36).

    Basis functions in(43)are constructed in order to satisfy(37).

    5 Numerical Tests

    Now,in order to illustrate the performance of Whitney-Nédélec edge finite elements,the problem of the propagation of a plane wave through of a square domain? =(0,1)2with boundary Γ is analysed.Suppose ? in the vacuum,thusε=ε0andμ=μ0.

    will not be coercive,Monk(1991).To avoid this problem,the use of Fredholm theory to provides the conditions that will ensure the existence and uniqueness of a solution,Monk(2003b).Consequently,for any value imposed toσa solution to(46)can be find.

    6 Mesh parameter selection

    In the preceedings section it could be seen that the error of approximation by finite elements may cause a phase difference and a amplitude difference with respect to the exactsolution,see Figure 4(b).Thiseffectdependsnotonly on the mesh parameterh,but also on the temporal frequencyω,see Figures 5(a)and 5(b).This factcan be analyzed through the study of the dispersive properties of numerical solution for homegeneous scalar Helmholtz equation in an infinity mesh,Ainsworth(2003).Aiming to find an expression for the discrete dispersion relation for Whitney and N???d???lec Elements,one can consider some relations between the Helmholtz equation and the equation(44),withσ=0,i.e.,

    Figure 2:Example particular mesh used in the numerical experiments,with n2=16,being n the number of elements in the base domain,i.e.h=1/n.

    Consideringdet(ω2I+Mκ)=0,the following relation arises

    Equation(53)is the dispersion relation for(51).According to the next lemma solutions to the equation(51)can be obtained from solutions to scalar homogeneous Helmholtz equation.

    Figure 3:Variation along the main diagonal of the exact solution(continuous line)and of the numerical solution(dashed line)using Whitney elements in the levels:(a)h=1/15;(b)h=1/20;(c)h=1/40;(d)h=1/60.

    Figure 4:Variation along the main diagonal of the exact solution(continuous line)and of the numerical solution(dashed line)using first order Nédélec elements in the levels:(a)h=1/5;(b)h=1/10;(c)h=1/30;(d)h=1/60

    Figure 5:(a)Variation along the main diagonal(h=1/20)of the exact solution(continuous line)and of the numerical solution with first order Nédélec elements of the first order(dashed line)with ω2=200π2 and with(b)ω2=800π2.

    where Z is the integer set and

    It is noteworthy that the basis functions used in this section are different from the basic functions used in Section 4.The reason for this change is that theθnfunctions are interpolants simplifying and so facilitate the dispersion analysis.However,the spaces generated by the two basis is the same.

    Using equation(56)in thedthspatial component,the following expression arises:

    Replacing equation(62)in(56),one finds

    and thus,decoupling the sum for each component ofn n n,it follows that

    It follows from(60)that

    Letu∈H1(?)be an analytic solution of the homogeneous scalar Helmholtz equation in one dimension,defined byu(s)=eiκs.ConsiderVha finite element space.Note that equation(65)can be seen as a discrete version ofu,i.e.,

    Hence,the following variational problem can be considered:Finduh∈Vhsuch that

    whereωh(κ)2can be calculated by replacing(66)in(68),by definingvh=θm,withm∈Z,and by noting thatθn(s)θm(s)/=0 just whens∈(mh?h;mh+h).By taking the integral in each of the three plots(n=mh?h,mh,mh+h),one has

    After solving the integrals and using the identity 2cos(κh)=eihκ+e?ihκ,the following expression arises:

    Thus,equation(49)simplifies to the algebraic equation

    Expression(78)is the discrete dispersion relation corresponding to the Whitney elements.By following the same steps,and making appropriate considerations to the degreepof the interpolation functions,an expression for the general case can be found;it reads:

    Using linear interpolants(p=0 order in the case of Whitney elements)in the discretization of the homogeneous Helmholtz equation,Babu?ka and Ihlenburg(1995),Thompson and Pinsky(1994)and Ainsworth(2003)demonstrated the following expression for relation discrete dispersion

    which isthe same equation(70),written in terms ofωh(κ).Theorem 1 in Ainsworth(2003),showshow to build rationalexpressions forthe cosine through Padéapproximation,which are related to the orderq=p+1 of the finite element method for the approximation of the Helmholtz equation.Such rational functions demonstrate better accuracy with the growth of theq-order used in interpolants of the discretized solution.In particular,forp=1(first-order Nédélec elements),the cosine rational expression is:

    The purpose of this section is to show how to select a mesh parameterh,which will make the difference in phase velocity,between the exact and approximate solution of the problem(47)-(48),become negligible.With this purpose,consider that the numerical phase velocityCis defined according to thep-order of the edge finite elemens used,as:

    Note that equations(80)and(81)can be expressed in terms ofωhp(κ),i.e.

    respectively,whereα=(16cos(hκ)+104)2?4(cos(hκ)?3)(cos(hκ)?1).Figure 6(a)depicts the comparison between the exact phase velocityc=ω/|κ |of the continuous problem(considerc=1,see equation(53))and the numerical phase velocity when expressions(83)and(84),are substituted,in equation(82).Figure 6(b)depicts a closer view of Figure 6(a)that estimates,for example,the largest possible value of the parameterhso that the estimated phase error is less than 0.01%.To do so,simply observe the points where the velocity curves reach the value 1.0001,i.e.,κh≈0,05 andκh≈0,62 for Whitney and Nédélec elements,respectively.

    Equations(83)and(84)are employed to show the phase velocity approximation for a fixedκand an increasingn.This is shown in Figures 7(a)and 7(b)for three differentκvalues.As expected,it is clear that improving the approximation forc=1 requires smallerhvalues for larger frequency numbers,in a similar way followed by the approximate with edge finite element,see Figures 5(a)and 5(b).Therefore,we can characterize the error in the phase velocity can be characterized as error estimator in the edge finite element approximation.

    Figure 6:(a)Numerical phase velocity for Whitney and Nédélec elements,and phase velocity c=1.;(b)Closer view Figure 6(a)

    7 Conclusion

    In this work the edge finite elements space of zero-order and first-order,known by Whitney elements and Nédélec elements,respectively,were described,furthermore,the hierachical basis function set to each finite element studied were built.A brief presentation of the second order time harmonic Maxwell system was also presented,together with some numerical experiments concerned with its solutions.Note that some interesting results in the approximation were found:The results revealed phase differences between the approximate and the exact solutions when a fixed wave vector and a fixed temporal frequency.Another aspect that deserves attention is the presence of an amplitude difference when the frequency is changed.Two lemmas,which show a clear relationship between the scalar homogeneous Helmholtz equation and the second order time harmonic Maxwell system were presented,turning possible to adapt the dispersive effects,caused by finite element approximation of the Helmholtz equation,for the second order time harmonic Maxwell system approximation.The goal arises in the search of the proper mesh parameter,which provides quantitative information about the level of mesh re finement and necessary approximation in order to control the dispersive effects.For simplicity,this analysis was restricted to plane waves propagating with an angle of 45 degrees with the horizontal(as in the numerical experiments presented).Note that plane waves propagating in other directions presents no additional dif ficulties.Due to the numerical experiments it was observed that the error in the approximation by edge finite element have a strong correlation with the phase velocity error from the analyzed problem.This evidence suggests that the numerical phase velocity de fined from the discrete relation dispersion can be used as an error estimator in the approximation of the second order time harmonic Maxwell system by edge finite element method.

    Figure 7:(a)Error between the phase velocity of the continuous problem and the numerical phase velocity for Whitney elements;(b)Nédélec elements of first order.The number of elements in the mesh is given by n2,where the mesh parameter is h=1/n.(see Figure 2).

    Adjerid,S.(2002):Hierarchical finite element bases for triangular and tetrahedral elements.Comput.Methods Appl.Mech.Engrg.,vol.190,pp.2925–2941.

    Ainsworth,M.(2003):Discrete dispersion for hp-version finite element approximation at high wavenumber.SIAM J.Numer.Analysis,vol.42,pp.553–575.

    Ainsworth,M.;Coyle,J.(2001): Hierarchic hp-edge element families for Maxwell’sequationson hybrid quadrilateraland triangularmeshes.Comput.Methods Appl.Mech.Engrg.,vol.190,pp.6709–6733.

    Babu?ka,I.;Ihlenburg,F.(1995): Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation.International Journal for Numerical Methods in Engineering,vol.38,pp.3745–3774.

    Boff i,D.;Perugia,I.(1999):Computation model of electromagnetic resonator:analysis of edge element approximation.SIAM J.Numer.Ana.,vol.36,pp.1264–1290.

    Christon,M.(1999):The influence of the mass Matrix on the dispersive nature of the semi-discrete,second-order wave equation.Methods Appl.Mech.Engrg.,vol.173,pp.146–166.

    Ciarlet,G.(1978):The Element Method for Elliptic Problems.North-Holland Pub,New York.

    Colton,D.;Kress,R.(1983):Integral Equations Methods in Scattering Theory.John Wiley and Sons InC.,New York.

    Greenleaf,A.et al.(2007): Full-Wave Invisibility of Active Devices at All Frequencies.Communications in Mathematical Physics,vol.275,pp.749–789.

    Harari,I.et al.(1996): Recent Developments in Finite Element Methods for Structural Acoustic.Archives of Computational Methods in Engineering,vol.36,pp.131–311.

    Ihlenburg,F.;Babu?ka,I.(1997): Finite element solution of the Helmholtz equation with high wave number.Society for Industrial and Applied Mathematics,vol.34,pp.315–358.

    Jackson,J.D.(1999):Classical Electrodynamics.John Wiley and Sons InC.,Berkeley.

    Jin,J.(2002):The Finite Element Method in Electromagnetism Second Edition.John Wiley and Sons InC.,New York.

    Kaplan,W.(1970):Advanced Calculus.House of Electronics Industry,New York.

    Kreyszig,E.(1978):Introductory Functional Analysis With Applications.John Wiley and Sons,New York.

    Macedo,A.(1988):Eletromagnetismo.Guanabara,Rio de Janeiro.

    Monk,P.(1991):A finite element method for approximating the time-harmonic Maxwell equation.Numerische Mathematik,vol.63,pp.243–261.

    Monk,P.(2003): A simple Proof of Convergence for an Edge Element Discretization of Maxwell Equations.Lecture Notes in Computational Science and Engineering,vol.28,pp.127–141.

    Monk,P.(2003):Finite Element Methods for Maxwell’s Equations.Oxford Science Publications,New York.

    Monk,P.;Cohen,G.(1998): Gauss point mass lumping schemes for Maxwell equations.Numerical Methods for PDEs,vol.14,pp.63–88.

    Monk,P.;Parrot,A.(1994): Dispersion analysis of finite element methods for Maxwell equations.SIAM J.Sci.Comput.,vol.15,pp.916–937.

    Nédélec,J.(1980):Mixed finite elements in R3.Numerische Mathematik,vol.35,pp.315–341.

    Nédélec,J.(1986): A new family of mixed finite elements in R3.Numerische Mathematik,vol.50,pp.57–81.

    Olver,F.et al.(2010):NIST-Handbook of mathematical functions.Cambridge University Press,New York.

    Reddy,B.(1986):Funcional Analysis and Boundary-Value Problems:an Introductory Treatment.John Wiley and Sons,New York.

    Soares,D.et al.(2008): Numerical Computation of Electromagnetic Fields by the Time-Domain Boundary Element Method and the Complex Variable Method.Computer Modeling in Engineering&Sciences,vol.25,no.1,pp.1–8.

    Thompson,L.;Pinsky,P.(1994):Complex wavenumber Fourier analysis of the p-version finite element method.Computat.Mech.,vol.13,pp.255–275.

    Whitney,H.(1957):Geometry Integration Theory.Princeton University Press.,New Jersey.

    Zhang,X.etal.(2014):Wave Propagation in Piezoelectric Rodswith Rectangular Cross Sections.Computer Modeling in Engineering&Sciences,vol.100,no.1,pp.1–17.

    ponron亚洲| 2018国产大陆天天弄谢| 六月丁香七月| 国产视频内射| 人妻一区二区av| 精品国产一区二区三区久久久樱花 | 亚洲欧美成人综合另类久久久| 久久久久国产一级毛片高清牌| 中国三级夫妇交换| 日日摸夜夜添夜夜爱| 久久久久久免费高清国产稀缺| 欧美变态另类bdsm刘玥| 亚洲精品视频女| 亚洲综合色网址| 精品久久久精品久久久| 亚洲精品一区蜜桃| 99国产综合亚洲精品| 日韩中字成人| 亚洲 欧美一区二区三区| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 满18在线观看网站| 高清av免费在线| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区四区五区乱码 | 久久精品国产自在天天线| 黑人欧美特级aaaaaa片| 国产无遮挡羞羞视频在线观看| 亚洲第一青青草原| 如日韩欧美国产精品一区二区三区| 国产亚洲最大av| 97人妻天天添夜夜摸| 国产色婷婷99| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| tube8黄色片| 狠狠婷婷综合久久久久久88av| 国产欧美日韩综合在线一区二区| 久久午夜福利片| 韩国精品一区二区三区| 色网站视频免费| 久久这里只有精品19| 久久韩国三级中文字幕| 涩涩av久久男人的天堂| 亚洲欧美精品自产自拍| √禁漫天堂资源中文www| 在线 av 中文字幕| 亚洲人成网站在线观看播放| 国产精品一国产av| 美女福利国产在线| 久久久国产欧美日韩av| 免费观看在线日韩| 男女边吃奶边做爰视频| 亚洲三区欧美一区| 国产欧美亚洲国产| 一区二区av电影网| 老司机亚洲免费影院| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 欧美成人午夜精品| 日韩,欧美,国产一区二区三区| 99香蕉大伊视频| 久久久久久久精品精品| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 免费观看在线日韩| 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 国产淫语在线视频| 亚洲精品,欧美精品| 青青草视频在线视频观看| 妹子高潮喷水视频| 免费大片黄手机在线观看| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| 十八禁高潮呻吟视频| 欧美日韩综合久久久久久| 日韩大片免费观看网站| 97人妻天天添夜夜摸| 热99久久久久精品小说推荐| 大香蕉久久成人网| 啦啦啦在线免费观看视频4| 久久久久久人妻| 久久久国产精品麻豆| 菩萨蛮人人尽说江南好唐韦庄| 99九九在线精品视频| 自线自在国产av| videosex国产| 久久久久国产一级毛片高清牌| 曰老女人黄片| 在线精品无人区一区二区三| av片东京热男人的天堂| 嫩草影院入口| 国产野战对白在线观看| 日韩一本色道免费dvd| 亚洲国产精品一区三区| 久久久久久久大尺度免费视频| 看十八女毛片水多多多| 熟女少妇亚洲综合色aaa.| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 色吧在线观看| 少妇 在线观看| 亚洲,欧美,日韩| 久久精品国产自在天天线| 精品卡一卡二卡四卡免费| 日本91视频免费播放| 最近最新中文字幕大全免费视频 | 七月丁香在线播放| www日本在线高清视频| 国产精品香港三级国产av潘金莲 | 大话2 男鬼变身卡| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 日本免费在线观看一区| 一级毛片电影观看| 九九爱精品视频在线观看| 精品国产一区二区三区久久久樱花| 亚洲av福利一区| 久久久久国产精品人妻一区二区| 国产在线免费精品| 有码 亚洲区| 丰满饥渴人妻一区二区三| 黄色一级大片看看| av网站在线播放免费| 97精品久久久久久久久久精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久成人av| h视频一区二区三区| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 人妻 亚洲 视频| 国产精品无大码| 美女福利国产在线| 精品国产一区二区三区四区第35| freevideosex欧美| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看| 永久免费av网站大全| 青春草亚洲视频在线观看| 中文字幕制服av| 国产有黄有色有爽视频| 男女国产视频网站| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜制服| 国产人伦9x9x在线观看 | 777米奇影视久久| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| www.精华液| 超碰97精品在线观看| 女性生殖器流出的白浆| 久久久久国产一级毛片高清牌| 韩国av在线不卡| 黄色配什么色好看| 18禁裸乳无遮挡动漫免费视频| 久久久久国产精品人妻一区二区| 亚洲人成77777在线视频| 一级片'在线观看视频| 亚洲精品在线美女| 天堂中文最新版在线下载| 国产精品一区二区在线不卡| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 国产av国产精品国产| 少妇精品久久久久久久| 看非洲黑人一级黄片| 免费在线观看视频国产中文字幕亚洲 | 国产国语露脸激情在线看| 免费在线观看视频国产中文字幕亚洲 | 久久这里只有精品19| 久久久久精品性色| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 国产精品蜜桃在线观看| 免费女性裸体啪啪无遮挡网站| 国产高清国产精品国产三级| 波多野结衣av一区二区av| 1024视频免费在线观看| 人妻人人澡人人爽人人| 伦精品一区二区三区| 国产成人免费观看mmmm| 青春草国产在线视频| videosex国产| 两个人看的免费小视频| 亚洲三级黄色毛片| 亚洲天堂av无毛| 亚洲av免费高清在线观看| 少妇被粗大的猛进出69影院| 亚洲一级一片aⅴ在线观看| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久久久99蜜臀 | 日韩伦理黄色片| 超碰成人久久| 国产精品.久久久| 大片电影免费在线观看免费| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 青青草视频在线视频观看| av在线老鸭窝| 69精品国产乱码久久久| 国产 精品1| 看免费成人av毛片| 高清av免费在线| 中文字幕制服av| 在线看a的网站| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩综合在线一区二区| 日韩中文字幕欧美一区二区 | 亚洲国产日韩一区二区| 夫妻午夜视频| 国产深夜福利视频在线观看| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 国产探花极品一区二区| 久久久国产一区二区| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 国精品久久久久久国模美| h视频一区二区三区| 亚洲美女视频黄频| 欧美亚洲日本最大视频资源| 亚洲一区二区三区欧美精品| 亚洲精品日本国产第一区| 国产一区二区激情短视频 | 制服丝袜香蕉在线| av卡一久久| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 国产极品天堂在线| 亚洲国产色片| 90打野战视频偷拍视频| 我的亚洲天堂| kizo精华| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 午夜福利网站1000一区二区三区| 午夜老司机福利剧场| 99国产精品免费福利视频| 久久久久视频综合| 老熟女久久久| 美女主播在线视频| 久久人人爽人人片av| 黄频高清免费视频| 高清不卡的av网站| 欧美+日韩+精品| 日日撸夜夜添| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 在现免费观看毛片| 十八禁网站网址无遮挡| 成人影院久久| 成年动漫av网址| 美女国产视频在线观看| 一区二区三区激情视频| 午夜福利网站1000一区二区三区| 中文字幕精品免费在线观看视频| 国产男女超爽视频在线观看| 在线观看免费高清a一片| 赤兔流量卡办理| 国产成人免费观看mmmm| 18禁观看日本| 国产精品无大码| 国产精品99久久99久久久不卡 | 亚洲综合色惰| 久久久久久人妻| 亚洲精品,欧美精品| 亚洲一区中文字幕在线| 亚洲欧美一区二区三区黑人 | 男的添女的下面高潮视频| 亚洲欧美一区二区三区久久| 五月开心婷婷网| 欧美精品av麻豆av| 丝袜喷水一区| 日韩制服骚丝袜av| 日韩制服丝袜自拍偷拍| 婷婷色综合大香蕉| 妹子高潮喷水视频| 中文欧美无线码| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 不卡av一区二区三区| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 亚洲视频免费观看视频| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 亚洲精品乱久久久久久| 亚洲伊人色综图| 观看av在线不卡| 亚洲五月色婷婷综合| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 亚洲成色77777| 我的亚洲天堂| 欧美+日韩+精品| 国产片内射在线| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9 | 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 性色avwww在线观看| 免费大片黄手机在线观看| 久久热在线av| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 中国国产av一级| 久久这里有精品视频免费| 精品久久蜜臀av无| 日本欧美视频一区| xxx大片免费视频| 免费黄频网站在线观看国产| 亚洲成国产人片在线观看| 亚洲av在线观看美女高潮| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 两性夫妻黄色片| 欧美成人午夜精品| 亚洲精品,欧美精品| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 春色校园在线视频观看| 久久精品国产亚洲av高清一级| av电影中文网址| 欧美最新免费一区二区三区| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 久久97久久精品| 精品人妻熟女毛片av久久网站| 久久午夜综合久久蜜桃| 人妻一区二区av| 在线观看国产h片| 少妇被粗大的猛进出69影院| 搡老乐熟女国产| 午夜免费男女啪啪视频观看| 男女国产视频网站| 国产精品不卡视频一区二区| 国产综合精华液| 亚洲精品一二三| 97在线视频观看| 日韩欧美一区视频在线观看| 国产精品免费大片| 国产午夜精品一二区理论片| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 男女高潮啪啪啪动态图| 黄片小视频在线播放| 久久午夜综合久久蜜桃| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 18禁国产床啪视频网站| 亚洲国产精品一区三区| 老汉色av国产亚洲站长工具| 91精品国产国语对白视频| 看免费成人av毛片| 丝袜美足系列| 日本免费在线观看一区| 成年人午夜在线观看视频| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 亚洲一区中文字幕在线| 男女边摸边吃奶| 少妇 在线观看| freevideosex欧美| 蜜桃国产av成人99| 少妇人妻 视频| 精品亚洲乱码少妇综合久久| 成年女人毛片免费观看观看9 | 丝袜脚勾引网站| 国产成人精品无人区| 五月天丁香电影| 在线看a的网站| 曰老女人黄片| 国产精品国产三级专区第一集| 精品少妇一区二区三区视频日本电影 | av.在线天堂| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦中文免费视频观看日本| 日本黄色日本黄色录像| 亚洲婷婷狠狠爱综合网| 日本-黄色视频高清免费观看| 咕卡用的链子| 国产成人精品久久二区二区91 | 久久久久久久大尺度免费视频| 日韩中字成人| 女人高潮潮喷娇喘18禁视频| 日韩中文字幕视频在线看片| 国产色婷婷99| 国产精品欧美亚洲77777| 18+在线观看网站| 成人漫画全彩无遮挡| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 大陆偷拍与自拍| 超碰成人久久| 亚洲精品自拍成人| 少妇被粗大猛烈的视频| 亚洲国产精品国产精品| 中文精品一卡2卡3卡4更新| 午夜福利乱码中文字幕| 两个人看的免费小视频| 美女高潮到喷水免费观看| 亚洲国产欧美网| 中文字幕人妻丝袜制服| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 如何舔出高潮| 最新中文字幕久久久久| tube8黄色片| 国产精品免费大片| 尾随美女入室| 男男h啪啪无遮挡| 香蕉丝袜av| av女优亚洲男人天堂| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| 男女午夜视频在线观看| 欧美中文综合在线视频| 国产精品二区激情视频| 国产免费一区二区三区四区乱码| 寂寞人妻少妇视频99o| 国产精品免费视频内射| 日本av免费视频播放| 免费黄网站久久成人精品| 99久久中文字幕三级久久日本| 美女午夜性视频免费| 多毛熟女@视频| 伦精品一区二区三区| 卡戴珊不雅视频在线播放| 国产有黄有色有爽视频| 一级a爱视频在线免费观看| 青草久久国产| 久久精品国产a三级三级三级| 国产97色在线日韩免费| 80岁老熟妇乱子伦牲交| 午夜免费鲁丝| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 这个男人来自地球电影免费观看 | 国产在线免费精品| 久久国内精品自在自线图片| freevideosex欧美| 熟妇人妻不卡中文字幕| 桃花免费在线播放| 人妻 亚洲 视频| 午夜免费鲁丝| 香蕉丝袜av| 九色亚洲精品在线播放| 69精品国产乱码久久久| 老女人水多毛片| 国产精品欧美亚洲77777| 99re6热这里在线精品视频| 午夜日韩欧美国产| 男女免费视频国产| 久久精品久久久久久久性| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久| 男女高潮啪啪啪动态图| 国产在线免费精品| 色婷婷久久久亚洲欧美| 香蕉国产在线看| 亚洲国产精品国产精品| 国产精品 欧美亚洲| 深夜精品福利| 日韩欧美精品免费久久| 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 人妻系列 视频| 久久久久精品久久久久真实原创| 精品国产一区二区三区四区第35| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 久久久久网色| 91aial.com中文字幕在线观看| 日日啪夜夜爽| 亚洲欧洲精品一区二区精品久久久 | 久久久精品免费免费高清| 国产综合精华液| 精品国产一区二区三区久久久樱花| 国产精品99久久99久久久不卡 | 啦啦啦视频在线资源免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 99香蕉大伊视频| 亚洲欧美色中文字幕在线| 制服人妻中文乱码| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 免费在线观看黄色视频的| 国产免费又黄又爽又色| 日本爱情动作片www.在线观看| 欧美激情高清一区二区三区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久欧美国产精品| 国产av国产精品国产| 亚洲av日韩在线播放| 一区二区三区激情视频| 色吧在线观看| 久久av网站| 人妻人人澡人人爽人人| 只有这里有精品99| 日本91视频免费播放| 成人18禁高潮啪啪吃奶动态图| 欧美最新免费一区二区三区| 免费黄色在线免费观看| 精品久久久久久电影网| 18+在线观看网站| 亚洲成人手机| 麻豆av在线久日| 免费黄网站久久成人精品| 午夜久久久在线观看| 欧美日本中文国产一区发布| 国产老妇伦熟女老妇高清| 两性夫妻黄色片| 一个人免费看片子| 综合色丁香网| 久久99一区二区三区| 如何舔出高潮| 国产男女内射视频| 免费大片黄手机在线观看| 亚洲一区中文字幕在线| 看非洲黑人一级黄片| 久久婷婷青草| 美女福利国产在线| 午夜日本视频在线| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 欧美激情高清一区二区三区 | 日本黄色日本黄色录像| 亚洲国产色片| 亚洲欧洲国产日韩| 久久久欧美国产精品| 久久精品国产综合久久久| 亚洲精品久久久久久婷婷小说| 乱人伦中国视频| 久久ye,这里只有精品| 99精国产麻豆久久婷婷| 韩国高清视频一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 在线观看一区二区三区激情| www.精华液| 精品亚洲乱码少妇综合久久| 亚洲第一青青草原| 欧美另类一区| 国产成人午夜福利电影在线观看| 亚洲综合色网址| 国产又爽黄色视频| 一边亲一边摸免费视频| h视频一区二区三区| 搡老乐熟女国产| 在线精品无人区一区二区三| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 日韩免费高清中文字幕av| 纵有疾风起免费观看全集完整版| 久久精品夜色国产| 成人黄色视频免费在线看| 欧美成人午夜免费资源| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久 | 久久久精品94久久精品| 黄片小视频在线播放| 免费观看无遮挡的男女| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 亚洲av国产av综合av卡| 香蕉精品网在线| 99久久中文字幕三级久久日本| 在线观看一区二区三区激情| 中国国产av一级| 亚洲欧美精品自产自拍| 久久久久久人妻| 亚洲av电影在线观看一区二区三区| 亚洲欧美精品自产自拍| 熟妇人妻不卡中文字幕| 亚洲av电影在线观看一区二区三区| 亚洲欧美精品自产自拍| 自线自在国产av| 成人漫画全彩无遮挡| 久久99一区二区三区| 久久精品国产亚洲av天美| 国产精品女同一区二区软件| 亚洲一码二码三码区别大吗| 亚洲图色成人| 国产综合精华液| 一级片免费观看大全| 新久久久久国产一级毛片| 免费观看性生交大片5| 男的添女的下面高潮视频| 新久久久久国产一级毛片| 久久久久久久精品精品| 日韩一本色道免费dvd| 天天躁狠狠躁夜夜躁狠狠躁| 久久 成人 亚洲| 超色免费av| 免费少妇av软件| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| 日韩一区二区视频免费看| 国产在视频线精品|