• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structure and Magnetic Properties of New Rare-earth Half-metallic Materials AcFe2O4 and ThFe2O4:Ab Initio Investigation

    2014-04-16 08:53:36JingguoYanXudongWangManYaoandNingHu
    Computers Materials&Continua 2014年1期

    Jingguo YanXudong WangMan Yao and Ning Hu

    1 Introduction

    Half-metals,as a new kind of ideal spintronic functional materials,have drawn much attention due to their 100%spin polarization at the Fermi level and being able to control the spins of electrons and transmission of charges simultaneously to realize efficient information storage and processing[de Grootet al.(1983);Prinz(1999);Coeyet al.(2002);Kopcewiczet al.(2005);Tanet al.(2012);Zhaoet al.(2012)].Compared to ordinary semiconductor electronic devices,devices made of half-metals have such outstanding features as non-volatile,low power consumption and high integration.What’s more,more dimensions considered in the research of half-metal materials will produce more new excellent properties and more applications[Wolfet al.(2001);Minget al.(2012);Yaoet al.(2012)].To date,many half-metals have been found experimentally and theoretically[Coeyet al.(2002);Dedkowet al.(2002);Fonget al.(2004);Houet al.(2011);Chenet al.(2012)].Among them,the II B-type half-metal Fe3O4has attracted much more attention due to their special advantages,such as stable performance,larger roomtemperature spin-polarization,higher courier temperature,easy preparation[Kimet al.(2003)].However,its magnetoresistance is not large enough to give access to huge magnetoresistance effects when used as magnetic electrodes in spintronic devices.Consequently,it is an urgent mission to design new spinel half-metals with larger magnetoresistance and higher conductivity.

    First principle calculation has been a very effective method to predict and analyze the properties of crystal materials and many Fe3O4based half-metals have been designed by this method[Liu,Chenet al.(2007);Liu,Wanget al.(2007);Liuet al.(2008)].However,this research effort is still in the initial stage of exploration.Many micromechanisms about spinel half-metals is still unknown,especially exploration of doping effect of rare-earth metals on the half-metallicity of Fe3O4is very limited.

    In this paper,we will find out the doping effect of 6d transition rare-earth metals Ac and Th on the electronic structure and half-metallicity of Fe3O4by first principle and manage to predict new spinel half-metals with more excellent properties.

    2 Model and method

    As shown in Fig.1 is a 14-atom primitive cell of Fe3O4with two Fe atoms on A-sites and the other four on B-sites.Fe atoms were suitably doped by Ac or Th atoms with different concentration to form,namely,Fe1-xRexFe2-yReyO4(Re=Ac,Th;x=0,0.5,1;y=0,0.5,1.0,1.5,2.0).The subscript x represents the doping fraction of A-site Fe atoms while y B-site.

    First principle calculation,also known as ab initio calculation,is based on the principles of quantum mechanism.It is mainly used to deal with the Hamilton equation,as shown in Eq.1.

    where on the right side of Eq.1,the parts from left to right represent the kinetic energy of electrons,the Coulomb potential energy between electrons and nucleus,interaction between electrons,kinetic energy of nucleus and Coulomb potential energy between nucleus,in which r and R represent the positions of the electron and nuclear respectively,Z the charge number of a nuclear,e the electronic charge,m and M the mass of the electron and nuclear.By self-consistent calculating electron motion and the interaction between electrons and nucleus,it can obtain the geometry structure,electronic,magnetic,thermodynamic properties of the materials[Kohn et al.(1965)].To solve this equation,we need to use some approximations.Based on the Born-Oppenheimer approximation[Born et al.(1954)],density functional theory(DFT)[Kohn et al.(1965)]was proposed in which the ground state physical properties of electrons,atoms and materials are all functionalized by electron densities and the energy function E[ρ]is minimized by the electron densityρ(r).Based on Hohenberg-Kohn principle[Hohenberg et al.(1964)],the Hamilton energy H is divided into three parts:kinetic energy T,interaction energy between electrons V and external electric field energy U,as shown in Eq.2

    Figure 1:Primitive cell of Fe3O4.

    Then with Φ presenting wave function the total energy function can be expressed as:

    Kohn and Sham further derived this equation and by introducing electron exchange and correlation function Exc[ρ],the total energy function is expressed:

    Kohn-Sham equation is derived as follows:

    Finally the purpose of using DFT method to calculate the total energy of multiple electrons system and deal with charge density distribution is achieved.

    We can see from Eq.6 that Exc[ρ]is the key for the accuracy of the calculating results.

    Two approximation methods are used to treat Exc[ρ]:Local Density Approximation(LDA)and Generalized Gradient Approximation(GGA)[Kohnet al.(1965)].Electron density gradient is considered in GGA compared LDA,therefore,GGA is more suitable for treating systems with very large charge density fluctuation.Perdew-Wang 91(PW91)and Perdew-Burke-Ernzerhof(PBE)etc.are all the parameterized formation for GGA.

    In this paper,the spin-polarized structural optimization,electronic structure and magnetic moments calculations were performed with the PBE parameterized GGA and projector augmented wave methods.The interaction between the valence electrons and ion cores were described by ultrasoft pseudo-potentials[Kresseet al.(1999)].The self-consistent calculations were performed with a 5×5×5 k-mesh and the cutoff energy of plane-wave expansion was 500eV.The relaxations of lattices were performed until the force on each atom was smaller than 0.03eV/?,and all components of the stress tensor on the unit cell less than 0.05GPa.

    3 Results and Discussion

    To obtain the equilibrium lattice constant and determine the stable magnetic state of Fe1-xRexFe2-yReyO4(Re=Ac,Th;x=0,0.5,1;y=0,0.5,1.0,1.5,2.0),for each structure,structural optimizations were performed for the nonmagnetic(NM),ferromagnetic(FoM),ferrimagnetic(FiM)or antiferromagnetic(AFM)state.After optimization the structure of the lowest energy is believed to be stable with the corresponding lattice parameters and the corresponding magnetism.The electronic structure of the stable structure will then be calculated and their half-metallicity will also be determined.

    3.1 Half-metallicity and Magnetic properties of Ac and Th doped Fe3 O4

    Among these structures,besides Fe3O4,only AcFe2O4,FeAc2O4and ThFe2O4are calculated to be half-metallic materials.Population analysis of the resulting halfmetals is then performed using Mulliken formalism.Parameters listed in Table 1 are the equilibrium lattice constants and molecular(Ms)and atomic magnetic moments for Fe3O4,AcFe2O4,FeAc2O4and ThFe2O4within which MAmeans the A-site atom moment and MBthe B-site atom moment.Our calculated molecular magnetic moment of Fe3O4is 4.0μBat equilibrium lattice constant 5.94?,agrees quite well with other’s[Liu,Chenetal.(2007)],which is4.0μBat5.935?.And MAis-3.60μBwhile MBis 3.60μB,consistent with the reported characteristic that the A-site atoms have spin directions opposite to the B-site ones in Fe3O4,exhibiting ferromagnetic[Kimet al.(2007)],all conforming the accuracy of the method we used.In AcFe2O4,FeAc2O4and ThFe2O4,there are almost no spin moments for Ac and Th due to only one and two 6d electrons,respectively.But the Fe atom magnetic moments in AcFe2O4,FeAc2O4and ThFe2O4are 3.90,3.78 and 3.82μB,respectively,both slightly largerthan thatin Fe3O4.The impressive finding is that the calculated Msof AcFe2O4and ThFe2O4are 9.0μBand 8.1μB,much larger than that of Fe3O4.Higher magnetic molecule moment may cause stronger spin-correlation scattering for conductive electrons resulting in higher variation of resistance,and consequently obtaining higher magnetoresistance effects which is the key for spintronic devices.

    Table 1:Calculated lattice constants,molecular and atomic magnetic moments for Fe3O4,AcFe2O4,FeAc2O4 and ThFe2O4.

    3.2 Electronic structure of AcFe2 O4 and ThFe2 O4

    The total and partial spin-polarized density of states(DOS)of a)AcFe2O4and b)ThFe2O4are calculated and shown in Fig.2.We can see that there is much difference in DOS of up-spin and down-spin electrons near the Fermi energy level.Especially,at the Fermi level,the down-spin states cross the Fermi energy level,indicating a strong metallic nature of the spin-down electrons while the spin-up band structure exhibits a band gap indicating semiconducting nature.Therefore,our results reveal that AcFe2O4and ThFe2O4alloys exhibit half-metallic properties.The electrons are 100%spin-polarized for AcFe2O4and almost 100%for ThFe2O4.High spin polarization is the base for high sensitivity of spintronic devices considering magnetoresistance effects.So they are of great interest for scientific research and industrial applications.To show the electronic structures in detail,we plotted the down-spin energy bands of a)Fe3O4,b)AcFe2O4and c)down-spin and d)up-spin energy bands of ThFe2O4along high symmetry directions in the Brillouin zone in Fig.3.It is clear that the bottom of the conductance band touches the Fermi level at the G point but is rather weak,and the calculated spin-polarization for ThFe2O4is near 99%.Therefore,AcFe2O4and ThFe2O4are all considered to be typical II B-type half-metallic materials.Comparing the down-spin sub-bands of the three materials,we see that,there are some limited parabolas near the Fermi level meaning that electrons at the Fermi level are localized but not completely.And parabolas at both b)and c)are more clear than a),which means down-spin electrons of AcFe2O4and ThFe2O4at the Fermi level are less localized than that of Fe3O4.It is also seen that there is up-spin sub-bands in ThFe2O4.According to the two-fluid model of magnetoresistance effect,the up-spin and down-spin electrons transmit in parallel.So we believe that AcFe2O4and ThFe2O4both have higher conductivity than that of Fe3O4,and ThFe2O4has the highest.Higher conductivity is very important for the transmission of charges in half-metallic materials which plays a significant role in effective function.So AcFe2O4and ThFe2O4may be better than Fe3O4for spintronic devices.

    We can see that for AcFe2O4and ThFe2O4in both majority and minority spin states,the total DOS are divided into bonding,nonbonding and antibonding states by an energy gap.The region from-7.2eV to-2.2eV corresponds to the bonding states,-1.8eV~0.9eV corresponds to the nonbonding states,states from 1.2eV to 6.3eV are associated with the antibonding states in AcFe2O4while the bonding,nonbonding and antibonding states of ThFe2O4are divided into-7.5eV~-2.4eV region,-2.1eV~0.7eV region and 0.9eV~3.6eV region.So the band region of AcFe2O4and ThFe2O4are about 13.5eV and 12.1eV,respectively which are very broad.The broad bands for AcFe2O4and ThFe2O4stem from their greater dependence on bonding-antibonding splitting and less on exchange splitting.And the large bonding-antibonding splitting is exactly the origin of the gap for AcFe2O4and ThFe2O4.

    What’s more,for both AcFe2O4and ThFe2O4,the partial DOS of Fe shows a twopeak structure due to the strong hybridization between the Fe 3d states,Ac or Th 6d state and O 2p states caused by the crystal field effect.In upspin,the antibonding peak is below the Fermi level and occupied,but in down spin the splitting effect moves the antibonding peak high above the Fermi level.This distribution results in a large magnetic moment at Fe and makes Fe 3d electrons mostly responsible for the magnetization.The Fe 3d down-spin states cross the Fermi level,so they also have main contribution to the down-spin DOS atthe Fermilevel.The distribution of majority-and minority-spin of Ac or Th 6d and O 2p states are all nearly symmetry.So they make almost no contribution to the magnetization.As we have seen in Table1,the Fe spin moment is very large while the Ac,Th and O spin moments are all quite small.

    Figure 2:Total and partial DOS of a)AcFe2O4and b)ThFe2O4 at their stable states,the dotted line represent the Fermi level.

    Figure 3:The energy band structure for Fe3O4,AcFe2O4 and ThFe2O4,where the horizontal lines at 0 eV represent the Fermi energy level.

    3.3 Half-metallicity of AcFe2 O4 and ThFe2 O4 under lattice distortion

    Lattice distortion,mostly compression is often inevitably introduced in the production process and application,a small change of the lattice parameter may shiftEF(Fermi level)with respect to the half-metallic gap,which clearly affects the halfmetallicity as well as the transport properties.So it is necessary to consider the influence of lattice compression on half-metallicity.First,the lattice constants of the cells of Fe3O4,AcFe2O4and ThFe2O4are reduced by 0.05 ? which we consider as compressing condition.Geometry optimization was performed on the half-metal under compressing condition so that the optimized cell under compression was got.Then the magnetic properties and electronic character were performed and ana-lyzed.The changes of the molecular spin moments,spin-polarization of Fe3O4,AcFe2O4and ThFe2O4with lattice compression are presented in Fig.4.We can see that the spin-polarization of Fe3O4,AcFe2O4and ThFe2O4can maintain almost 100%up to 5.49 ? (-8%),6.10 ? (-3%)and 6.16 ? (-4%),respectively at which the molecular magnetic moments all witness a sudden decrease.Especially,ThFe2O4,when compressed to 6.21?,its atomic spin moments all turn into zero,which means it lose the magnetism.That is because,as the lattice parameter is decreased,3d localization would become weaker,which can reduce the Fe spin moment.When it is decreased to a certain value,the atomic spin moments will be strongly reduced,resulting in significant magnetic losing.What is interestingis that in 5.49 ?~5.59 ? region,the magnetic properties of Fe3O4change significantly.A-site Fe spin changes from high and down into high and up while the B-site Fe spin becomes low and up from high and up,resulting in a 6μBmolecular magnetic moment compared to its 4.0μBat the equilibrium lattice constant.

    Figure 4: Molecular magnetic moments and spin polarization rate for Fe3O4,AcFe2O4 and ThFe2O4 as a function of lattice parameter.

    4 Conclusion

    The half-metallicity and magnetroresistance of rare-earth metals Ac and Th doped Fe3O4are investigated using DFT method.Two better half-metallic candidates for spintronic devices,i.e.,AcFe2O4and ThFe2O4are predicted.Both of them are II B-type half-metallic materials at equilibrium lattice parameter 6.30 ? and 6.41 ?,respectively.Their molecular magnetic moments are calculated to be 8.1μBand 9.0μB,both are much larger than that of Fe3O4,i.e.,4.0μB.The large bondingantibonding splitting is believed to the origin of gaps for AcFe2O4and ThFe2O4.What’s more,the half-metallicity of AcFe2O4and ThFe2O4cannot be affected up to 3.0%and 4%compression,respectively,while that of Fe3O4can be maintained up to 8%compression.That is very important for application.

    Acknowledgement:We would like to acknowledge the financial supports of the National Natural Science Foundation of China(21233010 and 11372104).This Project was granted financial support from China Postdoctoral Science Foundation(2012M520621/2013T60511).

    Born,M.;Huang,K.(1954):Dynamical Theory of Crystal Lattices.London:Oxford University Press.

    Chen,Z.H.;Li,J.B.;Li,S.S.(2012):First principles and Monte Carlo study of Mn-doped CuCl/CuBr as room-temperature ferromagnetism materials.J.Appl.Phys.,vol.111 no.6,pp.063913-1-063913-6.

    Coey,J.M.D.;Venkatesan,M.(2002):Half-metallic ferromagnetism:Example of CrO2(invited).J.Appl.Phys.,vol.91,no.10,pp.8345-8350.

    Dedkow,Y.S.;Rudiger,U.;Guntherodt,G.(2002):Evidence for the halfmetallic ferromagnetic state of Fe3O4by spin-resolved photoelectron spectroscopy.Phys.Rev.B,vol.65,no.6,pp.064417-064421.

    De Groot,R.A.;Mueller,F.M.;Van Engen,P.G.;Buschow,K.H.J.(1983):New class of materials:half-metallic ferromagnets.Phys.Rev.Lett.,vol.50,no.25,pp.2024-2027.

    Fong,C.Y.;Qian,M.C.;Pask,J.E.;Yang;L.H.;Dag,S.(2004):Electronic and magnetic properties of zinc blende half-metal superlattices.Appl.Phys.Lett.,vol.84,no.2,pp.239-241.

    Hohenberg,P.;Kohn,W.(1964):Inhomogeneous Electron Gas.Phys.Rev.B,vol.136,no.3B,pp.B864-B871.

    Hou,Y.H.;Zhao,Y.J.;Liu,Z.W.;Yu,H.Y.;Zhong,X.C.;Qiu,W.Q.(2011):First-principles investigations of Zn(Cd)doping effects on the electronic structure and magnetic properties of CoFe2O4.J.Appl.Phys.,vol.109,no.7,pp.07A502-1-07A502-3.

    Kim,K.J.;Choi,S.;Lee,J.H.;Lee,H.J.;Park,J.Y.(2007):Variations of the electronic,optical and magnetic properties caused by V doping in magnetite thin films.J.Korean Phys.Soc.,vol.51,no.3,pp.1138-1142.

    Kim,W.;Kawaguchi,K.;Koshizaki,N.;Mitsugu,S.;Tetsuro,M.(2003):Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4.J.Appl.Phys.,vol.93,no.10,pp.8032–8034.

    Kohn,W.;Sham,L.J.(1965):Self-consistent equations including exchange and correlation effects.Phys.Rev.A,vol.140,no.4,pp.1133-1138.

    Kopcewicz,M.;Stobiecki,F.;Jagielski,J.;Szymanski,B.;Urbaniak,M.;Lucinski,T.(2005):Modification of microstructure and magnetic properties of Fe/Cr multilayers caused by ion irradiation.J.Magn.Magn.Mater.,vol.286,pp.437–441.

    Kresse,G.;Joubert,D.(1999):From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B,vol.59,no.3,pp.1758-1775.

    Liu,J.;Chen,X.M.;Liu,Y.;Dong,H.N.(2007):First principle calculation on electronic and magnetic properties of new half-metal TiFe2O4.Phys.Scr.,vol.T129,pp.144–148.

    Liu,J.;Chen,X.M.;Liu,Y.;Dong,H.N.(2008):Electric and magnetic properties of new rare-earth half-metal LiPr2O4.Solid State Ionics,vol.179,pp.881–886.

    Liu,J.Wang,X.Q.;Liu,Y.;Dong,H.N.(2007):First principle calculation of electric and magnetic properties for new half-metal Fe2ScO4.Chin.J.Chem.Phys.vol.20,no.3,pp.291-295.

    Ming,X.;Wang,X.L.;Du,F.;Han,B.;Wang,C.Z.;Chen,G.(2012):Unusual intermediate spin Fe3+ion in antiferromagnetic Li3FeN2.J.Appl.Phys.,vol.111,no.6,pp.063704-1-063704-6.

    Prinz,G.A.(1999):Magnetoelectronics.Science,vol.282,no.5394,pp.1660-1663.

    Tan,C.L.;Huang,Y.W.;Tian,X.H.;Jiang,J.X.;Cai,W.(2012):Origin of magnetic properties and martensitic transformation of Ni-Mn-In magnetic shape memory alloys.Appl.Phys.Lett.,vol.100,no.13,pp.132402-1-132402-4.

    Wolf,S.A.;Acoschalom,D.D.;Buhrmanm R.A.;Daughton,J.M.;von Molnár,S.;Roukes,M.L.(2001):Spintronics:a spin based electronics vision for future.Science,vol.294,no.5546,pp.1488–1495.

    Yao,Q.W.;Kimura,H.;Wang,X.L.;Konstantinov,K.;Zhao,H.Y.;Qiu,H.(2012):Density of states,magnetic and transport properties of Nd doped two dimensional perovskite compound Sr2CoO4.J.Appl.Phys.,vol.111,no.7,pp.07D708-1-07D708-3.

    Zhao,Y.H.;Li,Y.F.;Liu,Y.(2012):Half-metallic p-electron ferromagnetism in alkaline earth doped AlAs:A first-principles calculation.Appl.Phys.Lett.,vol.100,no.9,pp,092407-1-092407-3.

    肉色欧美久久久久久久蜜桃| 亚洲综合色惰| 狂野欧美激情性xxxx在线观看| 最近中文字幕高清免费大全6| 亚洲国产精品成人久久小说| 夜夜爽夜夜爽视频| 两个人的视频大全免费| 中国三级夫妇交换| 一区二区三区免费毛片| 乱码一卡2卡4卡精品| 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 激情 狠狠 欧美| 久久久久精品性色| 久久这里有精品视频免费| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 日本爱情动作片www.在线观看| 少妇 在线观看| 国产淫语在线视频| 永久网站在线| 多毛熟女@视频| 热99国产精品久久久久久7| 狠狠精品人妻久久久久久综合| 欧美高清成人免费视频www| 成人毛片a级毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 久久久精品免费免费高清| 三级国产精品欧美在线观看| 在线观看三级黄色| 丝袜脚勾引网站| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线观看99| 美女主播在线视频| 毛片一级片免费看久久久久| videos熟女内射| 网址你懂的国产日韩在线| 观看av在线不卡| 欧美一区二区亚洲| 婷婷色av中文字幕| 国产成人一区二区在线| 精品国产乱码久久久久久小说| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 99国产精品免费福利视频| 国产亚洲5aaaaa淫片| 国产亚洲最大av| 欧美精品亚洲一区二区| kizo精华| 国产黄色免费在线视频| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 国产在线免费精品| 七月丁香在线播放| 高清欧美精品videossex| 中文字幕人妻熟人妻熟丝袜美| 一个人看的www免费观看视频| 日韩不卡一区二区三区视频在线| 国产视频首页在线观看| 我要看日韩黄色一级片| 尤物成人国产欧美一区二区三区| 精品一区二区三卡| 人妻制服诱惑在线中文字幕| 国产av精品麻豆| 精品人妻视频免费看| 欧美国产精品一级二级三级 | 我的老师免费观看完整版| 精品国产乱码久久久久久小说| 欧美另类一区| 能在线免费看毛片的网站| 99热6这里只有精品| 老女人水多毛片| 国产精品欧美亚洲77777| 大片电影免费在线观看免费| 国产视频首页在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品久久久精品久久久| 男人和女人高潮做爰伦理| 免费在线观看成人毛片| 特大巨黑吊av在线直播| 99久久人妻综合| 国产成人a区在线观看| 国产精品不卡视频一区二区| 亚洲色图av天堂| 欧美精品一区二区免费开放| 九色成人免费人妻av| 99久久综合免费| 热re99久久精品国产66热6| 亚洲av成人精品一区久久| 亚洲国产精品999| 免费观看在线日韩| 欧美精品人与动牲交sv欧美| 一区在线观看完整版| 久久久国产一区二区| 亚洲国产色片| 久久久久久久久久成人| 亚洲伊人久久精品综合| 国产黄色视频一区二区在线观看| 久久久久国产网址| 亚州av有码| 中文乱码字字幕精品一区二区三区| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 欧美zozozo另类| 老熟女久久久| 国产高潮美女av| 国产亚洲最大av| 婷婷色av中文字幕| 一级毛片黄色毛片免费观看视频| 精品久久国产蜜桃| 晚上一个人看的免费电影| 国产精品.久久久| 国产成人91sexporn| 99久久精品国产国产毛片| 成人综合一区亚洲| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 18禁动态无遮挡网站| .国产精品久久| 大码成人一级视频| 成年免费大片在线观看| 插逼视频在线观看| 舔av片在线| 干丝袜人妻中文字幕| 国产欧美亚洲国产| 在线观看三级黄色| 久热久热在线精品观看| 国产av精品麻豆| 久久久国产一区二区| 免费在线观看成人毛片| 色网站视频免费| 国产成人精品婷婷| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 一级毛片电影观看| 99久久人妻综合| av在线蜜桃| 亚洲av电影在线观看一区二区三区| 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 男女国产视频网站| 久久久久久久久久久丰满| 大话2 男鬼变身卡| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 午夜日本视频在线| 18禁在线无遮挡免费观看视频| 在线观看一区二区三区激情| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 国产极品天堂在线| 少妇裸体淫交视频免费看高清| 晚上一个人看的免费电影| 高清午夜精品一区二区三区| 久久人人爽av亚洲精品天堂 | 国产伦精品一区二区三区视频9| 高清欧美精品videossex| 小蜜桃在线观看免费完整版高清| 亚洲av男天堂| 久久99热6这里只有精品| 女性生殖器流出的白浆| 一级片'在线观看视频| 韩国高清视频一区二区三区| 黑丝袜美女国产一区| 一级a做视频免费观看| 超碰97精品在线观看| 色网站视频免费| 麻豆国产97在线/欧美| 国产无遮挡羞羞视频在线观看| 亚洲经典国产精华液单| 高清av免费在线| 欧美3d第一页| 欧美精品一区二区大全| 99久久综合免费| 亚洲丝袜综合中文字幕| 精品国产三级普通话版| 在线免费观看不下载黄p国产| 日本黄色日本黄色录像| 一级毛片电影观看| 亚洲精品一区蜜桃| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 秋霞伦理黄片| 七月丁香在线播放| 美女高潮的动态| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区| 高清毛片免费看| 边亲边吃奶的免费视频| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 一级毛片 在线播放| 51国产日韩欧美| www.av在线官网国产| 啦啦啦在线观看免费高清www| 美女高潮的动态| 在线天堂最新版资源| 日韩强制内射视频| 亚洲国产毛片av蜜桃av| 久久精品久久久久久噜噜老黄| 简卡轻食公司| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久久免| 亚洲一区二区三区欧美精品| 日日摸夜夜添夜夜爱| 日韩电影二区| 我的女老师完整版在线观看| 香蕉精品网在线| 久久人妻熟女aⅴ| 观看美女的网站| 99热这里只有是精品50| 亚洲欧洲国产日韩| 国产精品久久久久久精品古装| 午夜福利在线观看免费完整高清在| 青青草视频在线视频观看| 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 国产精品福利在线免费观看| 国产 精品1| 国产精品一区二区三区四区免费观看| 亚洲精品国产成人久久av| 精品亚洲乱码少妇综合久久| 2022亚洲国产成人精品| 国产精品熟女久久久久浪| 欧美人与善性xxx| 亚洲国产精品专区欧美| 欧美3d第一页| 男人舔奶头视频| 一级毛片我不卡| 国产精品不卡视频一区二区| 一级a做视频免费观看| 亚洲美女搞黄在线观看| 亚洲欧美日韩无卡精品| 成年人午夜在线观看视频| 五月开心婷婷网| 成人特级av手机在线观看| 97在线人人人人妻| 久久精品久久久久久噜噜老黄| 亚洲人与动物交配视频| 国产探花极品一区二区| 搡老乐熟女国产| 精品亚洲乱码少妇综合久久| 少妇丰满av| 少妇人妻精品综合一区二区| 一级毛片黄色毛片免费观看视频| 六月丁香七月| 人妻制服诱惑在线中文字幕| 免费大片18禁| 国产又色又爽无遮挡免| 日韩av免费高清视频| 丝瓜视频免费看黄片| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 99久久人妻综合| 久久99蜜桃精品久久| 免费观看的影片在线观看| 久久久久性生活片| 99国产精品免费福利视频| 精品久久久久久久久av| 久久久久久久亚洲中文字幕| 99热国产这里只有精品6| 久久精品夜色国产| 人妻夜夜爽99麻豆av| 91精品国产国语对白视频| 日韩在线高清观看一区二区三区| 97在线视频观看| 国产亚洲av片在线观看秒播厂| 亚洲天堂av无毛| 最近2019中文字幕mv第一页| 夜夜看夜夜爽夜夜摸| 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 欧美少妇被猛烈插入视频| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看日韩| 嘟嘟电影网在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 国产午夜精品一二区理论片| 久久久久视频综合| 久久精品国产a三级三级三级| 日本av免费视频播放| 亚洲欧美中文字幕日韩二区| 日本-黄色视频高清免费观看| 毛片一级片免费看久久久久| 亚洲色图av天堂| 国产综合精华液| 国产伦精品一区二区三区四那| 七月丁香在线播放| 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 欧美3d第一页| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 大陆偷拍与自拍| 色视频在线一区二区三区| 国产又色又爽无遮挡免| 精品一区在线观看国产| 成人午夜精彩视频在线观看| 亚洲欧洲日产国产| a级一级毛片免费在线观看| 免费不卡的大黄色大毛片视频在线观看| 九九爱精品视频在线观看| 国产精品福利在线免费观看| 美女高潮的动态| 午夜日本视频在线| 免费在线观看成人毛片| 日产精品乱码卡一卡2卡三| 乱系列少妇在线播放| 午夜福利在线观看免费完整高清在| 亚洲高清免费不卡视频| 国产黄片美女视频| 久久 成人 亚洲| 久久精品国产亚洲av涩爱| 激情 狠狠 欧美| 午夜免费观看性视频| 亚州av有码| videos熟女内射| 九九久久精品国产亚洲av麻豆| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 极品教师在线视频| 亚洲成人中文字幕在线播放| 亚洲精品中文字幕在线视频 | 久久久久精品久久久久真实原创| 午夜精品国产一区二区电影| 久久久久精品久久久久真实原创| 蜜桃久久精品国产亚洲av| 一区在线观看完整版| 美女高潮的动态| 2022亚洲国产成人精品| 免费黄色在线免费观看| 亚洲一区二区三区欧美精品| 久久久久性生活片| 久久99蜜桃精品久久| 久久久久性生活片| av播播在线观看一区| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 国内精品宾馆在线| 国产免费福利视频在线观看| 国产精品嫩草影院av在线观看| 在线天堂最新版资源| 日韩欧美精品免费久久| .国产精品久久| 91精品国产国语对白视频| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| www.av在线官网国产| 啦啦啦中文免费视频观看日本| 亚洲在久久综合| 久久人人爽av亚洲精品天堂 | 国模一区二区三区四区视频| 在线天堂最新版资源| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 99久久综合免费| 波野结衣二区三区在线| 亚洲精品国产av成人精品| 老司机影院毛片| 国模一区二区三区四区视频| 欧美三级亚洲精品| 五月天丁香电影| av在线蜜桃| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 春色校园在线视频观看| 午夜福利网站1000一区二区三区| 国产黄色视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 成人二区视频| 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| xxx大片免费视频| 成人综合一区亚洲| 成人特级av手机在线观看| 另类亚洲欧美激情| 欧美一区二区亚洲| 伊人久久精品亚洲午夜| 六月丁香七月| 夜夜看夜夜爽夜夜摸| 国产精品久久久久成人av| 制服丝袜香蕉在线| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久久久按摩| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 国产无遮挡羞羞视频在线观看| 欧美日韩视频精品一区| 熟妇人妻不卡中文字幕| 亚洲一级一片aⅴ在线观看| 在线观看一区二区三区激情| 国产精品欧美亚洲77777| 久久久欧美国产精品| 一级二级三级毛片免费看| 色5月婷婷丁香| 久久青草综合色| 成人免费观看视频高清| 高清欧美精品videossex| 高清黄色对白视频在线免费看 | 青春草视频在线免费观看| 夫妻午夜视频| 尾随美女入室| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| videossex国产| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 亚洲欧美精品自产自拍| 国产成人aa在线观看| 2022亚洲国产成人精品| 久久久久久久大尺度免费视频| 搡女人真爽免费视频火全软件| 久久久久久久久久久丰满| 一本色道久久久久久精品综合| 夜夜爽夜夜爽视频| 舔av片在线| 日本黄色日本黄色录像| 最后的刺客免费高清国语| 亚洲av日韩在线播放| 国产美女午夜福利| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 亚洲综合色惰| h视频一区二区三区| 舔av片在线| 国产成人freesex在线| 亚洲成人手机| 日本黄大片高清| 亚洲人与动物交配视频| 日本午夜av视频| 亚洲图色成人| 国产国拍精品亚洲av在线观看| 国产又色又爽无遮挡免| 女人十人毛片免费观看3o分钟| 成人亚洲欧美一区二区av| 老司机影院成人| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 美女国产视频在线观看| 国产淫语在线视频| 又黄又爽又刺激的免费视频.| 大片电影免费在线观看免费| 久久av网站| 免费观看性生交大片5| 亚洲经典国产精华液单| 国产淫片久久久久久久久| 欧美亚洲 丝袜 人妻 在线| 晚上一个人看的免费电影| 99热网站在线观看| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 国产久久久一区二区三区| 精品午夜福利在线看| 国产在线男女| 国产黄片视频在线免费观看| 国产av精品麻豆| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 又黄又爽又刺激的免费视频.| 免费av中文字幕在线| 国产一区二区三区综合在线观看 | 91久久精品电影网| 国产一级毛片在线| 亚洲精品乱久久久久久| 国产精品不卡视频一区二区| 六月丁香七月| 午夜福利高清视频| 欧美 日韩 精品 国产| 99热网站在线观看| 另类亚洲欧美激情| 男男h啪啪无遮挡| 人妻夜夜爽99麻豆av| 国产69精品久久久久777片| 成人国产麻豆网| 亚洲三级黄色毛片| 超碰av人人做人人爽久久| 免费av不卡在线播放| 女性被躁到高潮视频| 一区二区三区精品91| 内地一区二区视频在线| 国产亚洲欧美精品永久| 国产一区二区三区综合在线观看 | 午夜福利在线在线| av线在线观看网站| 欧美少妇被猛烈插入视频| 免费大片黄手机在线观看| 午夜福利视频精品| 欧美日韩综合久久久久久| av国产久精品久网站免费入址| 插逼视频在线观看| 亚洲精品国产av成人精品| 国产白丝娇喘喷水9色精品| 在线观看免费高清a一片| 国产精品一区二区性色av| 国产无遮挡羞羞视频在线观看| 国产精品一及| 欧美老熟妇乱子伦牲交| 好男人视频免费观看在线| av网站免费在线观看视频| 美女视频免费永久观看网站| 亚洲av福利一区| 亚洲性久久影院| 一区二区三区乱码不卡18| 男女边摸边吃奶| 国产精品久久久久久精品古装| 亚洲天堂av无毛| 久久久久久久国产电影| 日韩中字成人| 如何舔出高潮| 亚洲精品日韩av片在线观看| 青春草国产在线视频| 久久国产乱子免费精品| 亚洲av不卡在线观看| 国内揄拍国产精品人妻在线| 建设人人有责人人尽责人人享有的 | 少妇精品久久久久久久| 一级二级三级毛片免费看| 九九在线视频观看精品| 天堂俺去俺来也www色官网| 久久久久久久久大av| 久久毛片免费看一区二区三区| 亚洲高清免费不卡视频| 久久久午夜欧美精品| av在线app专区| 亚洲精品国产色婷婷电影| av福利片在线观看| 日韩一区二区三区影片| 一区二区av电影网| 欧美高清成人免费视频www| 欧美成人一区二区免费高清观看| 成人毛片60女人毛片免费| 51国产日韩欧美| 国产精品福利在线免费观看| 国产亚洲av片在线观看秒播厂| 偷拍熟女少妇极品色| 国产在线免费精品| 亚洲va在线va天堂va国产| av在线蜜桃| 久久久久久久国产电影| 成人特级av手机在线观看| 成人亚洲欧美一区二区av| 建设人人有责人人尽责人人享有的 | 99久久综合免费| 亚洲精品日韩在线中文字幕| 精品亚洲成国产av| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区黑人 | 伦理电影大哥的女人| 日韩 亚洲 欧美在线| 日韩制服骚丝袜av| 久久av网站| 国产精品嫩草影院av在线观看| 欧美bdsm另类| 国产精品国产av在线观看| 最后的刺客免费高清国语| 国产午夜精品久久久久久一区二区三区| 国产日韩欧美在线精品| 亚洲aⅴ乱码一区二区在线播放| 日韩av不卡免费在线播放| 新久久久久国产一级毛片| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 成人影院久久| 高清午夜精品一区二区三区| 国产v大片淫在线免费观看| 麻豆国产97在线/欧美| 老司机影院毛片| 妹子高潮喷水视频| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 人妻系列 视频| 国产欧美另类精品又又久久亚洲欧美| 九草在线视频观看| 97精品久久久久久久久久精品| 日韩大片免费观看网站| 国产欧美亚洲国产| 亚洲精品成人av观看孕妇| 黑人高潮一二区| 成人免费观看视频高清| 国产精品一二三区在线看| 777米奇影视久久| 亚洲成色77777| 欧美3d第一页| 亚洲欧洲日产国产| 插逼视频在线观看| 久久久久久久大尺度免费视频| 精品一区在线观看国产| 天堂中文最新版在线下载| 免费黄网站久久成人精品| 18禁在线播放成人免费| 我的老师免费观看完整版| 伊人久久国产一区二区| 久久99热这里只频精品6学生| 日本-黄色视频高清免费观看| 免费在线观看成人毛片| 最新中文字幕久久久久| 亚洲第一av免费看| 99热这里只有是精品50| 亚洲,一卡二卡三卡|