• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Instability of Rectangular Composite Plates under Parametric Excitation

    2014-04-16 08:53:28MengKaoYehChiaShienLiuandChienChangChen
    Computers Materials&Continua 2014年1期

    Meng-Kao Yeh,Chia-Shien Liu and Chien-Chang Chen

    1 Introduction

    The problem of dynamic instability has been playing an important role for the safety of structures.Bazant(2000)reported the following structural failure examples due to theirinstability hehavior:the resonance ofTacoma Narrows Bridge due to air flow which resulted in its failure in 1940;the failure of space frame,Hartford Arena,in 1978;the failure of Quebec bridge at St.Lawrence in 1907.Bolotin(1965)summarized the parametrically excited instability problems for various structural elements.Evan-Iwanowski(1965)and Nayfeh and Mook(1979)also reviewed the similar problems.The governing equation of the parametrically excited instability problem is a Mathieu equation,which was analyzed by many researchers[Hsu(1963);Nayfeh and Mook(1977);Fox(1990)]to obtain the system instability solution for the problem of multiple degrees of freedom.

    Researchers also investigated the parametrically excited instability problem of the basic structural elements,such as beams,columns,plates and shells for different material properties,different boundary conditions,and different excitation forces analytically.Yeh and Chen(1998)and Chen and Yeh(1999)investigated analytically a general column under a periodic load in the direction of the tangency coefficient at any axial position;they also assessed the simple and combination resonances of a general column carrying an axially oscillating mass and gave physical explanations ofthe parametric resonances by viewing the system energy.Ganapathi and Balamurugan(1998)investigated the dynamic instability of circular cylindrical shells using the finite element method.Deolasi and Datta(1995;1997)studied the simple and combination resonances for a simply-supported rectangular plate under nonuniform edge loading with damping and under localized edge loading.

    As the rapid development of aeronautical technology,although the basic structural elements(beams,columns,plates and shells),made from traditional metal materials,have enough strengths in design,their relative heavy weights make themselves not suitable in aeronautical use.Composite materials,with high specific strength,high specific stiffness and the ability of variable lamination to have required mechanical property,becomes an competitive substitute for use in various aerospace substructures.The composite structure has excellent mechanical property from static analysis.However,the composite structure may become unstable due to external dynamic disturbances resulted from external resonance or parametrically excited resonance,caused by periodic forces.Srinivasan and Chellapandi(1986)investigated the dynamic instability of composite plate by the finite strip method.Chen and Yang(1990)studied the dynamic stability of angle-ply composite plates under compressive forces by finite element method.Moorthy and Reddy(1990)investigated the parametric instability of composite plates with transverse shear deformation.As the instability experiment is conserned,Bassiouniet al(1999)studied the dynamic instability of composite beams analytically and experimentally.Chen and Yeh(2001)investigated the parametrically excited instability problem of beams under electromagnetic excitation analytically and experimentally.Yeh and Kuo(2004)studied the instability problem of composite beams analytically and experimentally.

    From the above-mentioned literature,most researchers investigated the parametrically excited instability problem of structures analytically or numerically.The experimental work on the dynamic instability for parametrically excited composite plate is rather limited.In this paper,the dynamic instability of rectangular graphite/epoxy composite plates under parametric excitation was investigated analytically and experimentally.The electromagnetic device,acting as a spring of variable stiffness,was used as a non-contacting transversely parametric exciter in experiment,and the effects caused by the geometric imperfection,the eccentricity of the planar excitation forces could be avoided.

    2 Instability Analysis of Composite Plate

    The dynamic instability equation of rectangular composite plate is obtained based on the assumed-modes method.The finite element code ANSYS?was used to obtain the natural frequencies and natural modes of the composite plate and finally the instability regions of the composite plate under parametric excitation were found.The composite plate under electromagnetic excitation is idealized as shown in Figure 1,with left end fixed and free at right end.The electromagnetic device was modeled as a concentrated massmoand a spring with stiffnessk(t)connected at point P at the mid-plane of composite plate.The composite plate has lengtha,widthb,thicknessh,massMThe composite plate is made from the prepreg,which is assumed transversely isotropic with material principal axis on thex-yplane.The composite plate,symmetric to the mid-plane,satisfies the Kirchhoff assumption.The gravitational effect was ignored in analysis.

    The dynamic equation of the composite plat,without springk(t),can be expressed as

    in whichD11D12D22andD66obtained from the integration of transformed lamina stiffnesses in the thickness direction,represent the laminate-bending stiffnesses of the composite plate;ρa(bǔ)ndcare the density and damping coefficient of the composite plate;δ(x-xo)andδ(y-yo)are unit pulse functions;(xo,yo)represents the central position of the electromagnetic device with massmoat point P

    Figure 1:Idealized model for composite plate under an electromagnetic excitation

    2.1 Finite Element Modal Analysis

    Using the assumed mode method[Craig(1981)],the transverse displacement of the composite platew(x,y,t)can be expressed as the summation of the normalized modalvectorφn(x,y)multiplied by itscorresponding displacementcomponentVn(t)as

    whereVn(t)is function of time only.For the specified boundary condition,fixed at left and free at right,the orthogonal functionφn(x,y)must satisfy

    Since one end of the composite plate is clamped and the other three sides free,the exact solution for the modal shapes of transverse vibration is not available and the finite element analysis was used to obtain the vibration modesφn(x,y)of the composite plate.The three-dimensional Shell99 element was used in the analysis.Each element has 8 nodes and each node has 6 degrees of freedom.The attached electromagnetic device was modeled as a concentrated mass,element type Mass21,located at the center of the device.After applying the boundary conditions,the natural frequencies and the corresponding modal vectors of the composite plate can be obtained using ANSYS?code.Besides,the modal vector satisfies the normalized orthogonal condition.

    2.2 Parametrically Excited Dynamic Equation

    Since the system considered contains an electromagnetic spring and no external forces,the system dynamic equation can be obtained below,similar to the case for the composite beam[Yeh and Kuo(2004)]

    in whichdn=c/ρis the modal damping coefficient;ωnis the undamped natural frequency of the laminated plate system.The variables are nondimensionalized in the following form.

    whereω1is the fundamental frequency.Then the system dynamic equation becomes

    If the stiffness of spring is a constant,ε(τ)=ε.The natural frequencies of the transverse vibration of composite plate shift slightly due to the spring effect.This could be used to identify the spring stiffnessεin experiment.If the spring has variable stiffness,ε(τ)=εcosˉωτ,then equation(5)becomes

    The above equation is a Mathieu equation,in which the excitation term contains the modal displacementVnand the parametric excitation coefficientfnm

    2.3 Criterion for Parametric Instability

    (a)For Simple Resonance

    The transition curves separate the stable and unstable regions are

    (b)For Combination Resonance of Summed Type

    The transition curves separate the stable and unstable regions are

    (c)For Combination Resonance of Difference Type

    The transition curves separate the stable and unstable regions are

    The instability regions of the system,each separated by two transition curves,were found to be functions of the modal parameters of the composite plate and the position and the excitation amplitude of the electromagnetic device on the composite plates.

    3 Experiment

    In addition to the analysis,parametrically-excited instability experiments were performed to verify the analytical results.The instability experiment for composite plate follows the basic procedure reported in[Chen and Yeh(2001);Yeh and Kuo(2004)]except the composite plate specimens were used in this study.The equipment includes a hot press to make the composite plate specimen,an air compressor to provide uniform pressure and a vacuum pump to extract the air generated during the molding of plate specimen.

    3.1 Composite Plate Specimen

    The thermosetting graphite/epoxy prepreg,0.12 mm thick approximately,was used in making the composite plate.The prepreg was cut into the required size and stacked to form the composite plate in the hot press.Finally,the composite plate was cut and trimmed to the desired specimen size for experiment.

    The material properties of the composite plate were measured on a tensile testing machine according ASTM D3039-76(1983)and ASTM D3518-76(1983).Each layer of the composite plate is assumed to be transversely isotropic[Gibson(2007)].Five material constants,E11,E22,G12,ν12,andν23are needed.ν23,which is difficult to measure in experiment,is assumed to be equal toν12as previously reported[Yeh and Tan(1994)].Each material constant was measured five times and average value was obtained.The longitudinal modulus isE11=147.56±0.45 GPa,the Poisson’s ratioν12=0.283±0.0013,the transverse modulusE22=9.31±0.06 GPa,and the shear modulusG12=5.70±0.04 GPa.

    3.2 Dynamic Instability Experiment

    The equipment used in the dynamic instability experiment of the composite plate includes a dynamic signal analyzer,an AC/DC power supply,an accelerator,an impact hammer and force sensor,a signal conditioner,and an electromagnetic device acting as a spring.The electromagnetic spring is made from a pair of magnets and a pair of coils.The magnets are fixed on the supporting frame;while the coils are wound on a plastic square frame glued on the composite plate specimen.When a DC current flows through the coils,the coils become an electromagnet.The force between the electromagnet and the magnet fixed on the support makes the device to act like a spring[Chen and Yeh(2001)].When an AC current flows through the coils,the coils become an electromagnetic spring of variable stiffness,which was used as a non-contacting parametric exciter in experiment.Since the excitation force acted on the composite plate transversely,the effects caused by the geometric imperfection,the eccentricity of the planar excitation force could be avoided in experiment.

    Before the instability experiment,the characteristics of the electromagnetic spring were identified using a DC power supply and an impact hammer.A DC current was applied through the coils to form an electromagnetic spring and the natural frequencies of the plate specimen were found using an impact hammer.The transverse fundamental frequency of the composite plate was calculated using ANSYS?A relation between the transverse fundamental frequency and the DC current was established first.Secondly,the relation between the transverse fundamentalfrequency and the stiffness of the electromagnetic spring was obtained.Finally,the relation between the stiffness of the electromagnetic springεand the currentIthrough the coils was identified below

    Figure 2 shows the relation between the stiffness of the electromagnetic spring and the DC current through the coils for composite plate([0?]8,20×20.2 cm)

    Figure 2:Electromagnetic spring stiffness versus DC coil current for composite plate([0?]8,20×20.2 cm)

    Figure 3 shows experimental setup for composite plate under electromagnetic excitation.Figure 4 shows the schematic for measuring dynamic instability of composite plate under electromagnetic excitation.An AC power supply was used to make the electromagnetic device a sinusoidal exciter on the composite plate.The frequency of AC current was applied and increased slightly step-by-step from the lower limit to the higher limit in the specified frequency range.At each excitation frequency,the amplitude of the AC current was increased from zero to a saturated value to observe the dynamic response of the composite plate.The position of excitation,where the electromagnetic device located,was chosen away from the fixed end to obtain the vibration signals more easily.The instability of the composite plate was observed when its vibrating amplitude increased abruptly.Once the instability occurred,the current was cut off immediately.The excitation frequency and the current amplitude were recorded.This procedure was repeated to obtain the instability region for each composite plate.The fiber orientation,the aspect ratio and the layer numbers of composite plate,were varied to study their effects on the instability behavior of the composite plates.

    Figure 3:Experimental setup for composite plate under electromagnetic excitation.

    4 Results and Discussion

    The natural frequencies and the modal shapes of composite plate were found first using the finite element code ANSYS?;from this the instability regions of the composite plate were obtained as described in the previous analysis section.The parameters,including the fiber orientation,the aspect ratio and the layer numbers of composite plate,are considered in this study.

    Figure 4:Schematic for measuring dynamic instability of composite plate under electromagnetic excitation.

    4.1 Finite Element Analysis

    In ANSYS,Shell99 elements were used for the composite plate.Mass21 element was used for the electromagnetic device.For Shell99,nine constants(E11,E22,E33,ν12,ν23,ν13,G12,G23,G13)are needed to input,in which E11,E22,ν12and G12were obtained from experiment.Other constants were found according to the specially orthotropic assumption as follows.

    There were total of 196 elements for a composite plate with electromagnetic device in modal analysis.Figure 5 shows the fundamental and the second vibration modes of composite plate([0?]8,a=20 cm,b=20.2 cm).The fundamental mode is a bending type and the second mode a torsional one.The natural frequencies of composite plate with the mass of electromagnetic device are lower than those without mass.The frequencies become higher or lower as the fiber orientation increases,depending on the mode shape.The natural frequencies increase as the layer number of composite plate increases,since the thicker composite plates have higher stiffness.

    4.2 Parametric Instability Regions of Composite Plate

    The parametric instability regions of composite plates were obtained from their modal parameters at the position of electromagnetic device,from which the parametric excitation coefficientfnm,the instability bandwidth parameterGnnand the transition curves separate the stable and unstable regions were found.In this study,the simple resonances,2ω1,2ω2,2ω3,and the combination resonances atω1+ω2,ω1+ω3,andω2+ω3are discussed.

    Various composite plate specimens were analyzed for their instability behavior.For example,Figure 6 shows the dynamic instability regions at simple and combination resonant frequencies of the composite plate with[±(30o)2]s,lengtha=20 cm,widthb=20 cm.ˉωis the ratio between the parametric excitation frequency and the fundamental natural frequencyω1.ˉω2andˉω3denote the second and the third resonance frequencies after nondimensionalization byω1.From equations(6)and(5),the amplitudeεin Figure 6 represents the spring stiffness.Since the instability bandwidth parameter Gnmwas found negative,no combination resonance of difference type was obtained in this problem.Figure 7 shows the instability region at 2ˉω1in Figure 6 for the composite plate with[±(30o)2]s.The amplitudeεwas calculated from equation(10)for different current value;then the instability region was obtained from equation(5).A maximum instability region occurs at twice the fundamental frequency 2ˉω1.The reason is that the instability bandwidth parameterGnm,related with the mass of the plate and the modal parameters at the position of the electromagnetic device only,has higher value for the fundamental bending mode.The little shift between the analytical and experimental results was probably due to the assumed perfectly fixed boundary condition used in the analysis.In general,the experimental results agree well with the analytical ones for the simple resonances at twice the fundamental frequency.

    Figure 5:Vibration modes of composite plate([0?]8,a=20 cm,b=20.2 cm)

    Figure 6:Dynamic instability regions of composite plate with[±(30o)2]s._____analytical results;......experimental results.

    Figure 7:instability region at 2ˉω1 for the composite plate with[±(30o)2]s._____analytical results;......experimental results.

    4.2.1Effect of Fiber Orientation

    Five fiber angles(θ=0?,30?,45?,60?,90?),were varied to assess their effects on the instability behavior of composite plates([±θ2]s,a=20 cm,b=20.1 cm).The fundamental frequencies,from[0?]8to[90?]8are 33.84 Hz,24.37 Hz,17.74 Hz,11.71 Hz,8.60 Hz,respectively.The analytical and experimental excitation frequencies for different fiber orientation of composite plates are shown in Table 1.Figure 8 shows the excitation frequency at the tip of each instability region versus fiber orientation of composite plates.The excitation frequencies include the simple and the combination resonances.The experimental results agree well with the analytical ones at twice the fundamental frequency.

    Table 1:Analytical and experimental excitation frequency for different fiber orientation of composite plates

    Figure 8:Excitation frequency versus fiber orientation of composite plates.

    The excitation frequency varies with the fiber orientation of the composite plate,depending on the mode shape.The excitation frequency decreases with the fiber orientation of the composite plate at twice the fundamental frequency 2ω1as expected since this bending mode has the highest rigidity atθ=0?.The excitation frequency reaches a maximum atθ=45?for the simple resonance 2ω2due to the torsional nature of the second mode.The excitation frequency reaches a maximum atθ=30?for the third simple resonance 2ω3due to the complex nature of the third mode shape.

    4.2.2Effect of Aspect Ratio

    The aspect ratio was varied to evaluate their effects on the instability behavior of composite plates([0?]8,a=20 cm,b=20.2 cm).The aspect ratios(a/b)used were 1.0,0.9,0.8,0.7,0.6 and 0.5,in which the experiment was unable to perform due to limited space on the fixture fora/b=0.6 and 0.5.The analytical and experimental excitation frequencies for different aspect ratio of composite plates are shown in Table 2.Figure 9 shows the excitation frequency at the tip of each instability region versus aspect ratio of composite plates.The excitation frequencies of both the simple and the combination resonances decrease for larger aspect ratios,i.e.,for the longer plates,which possess lower natural frequencies at a fixed width.

    Table 2:Analytical and experimental excitation frequency for different aspect ratio of composite plates.

    4.2.3Effect of Number of Layers

    The number of layers of the composite plate was varied as 4,8,12 and 16 to investigate their effects on the instability behavior of composite plates([0?]8,a=20 cm,b=20 cm).It was observed that a maximum instability region occurred at twice the fundamental frequency 2ˉω1.The analytical and experimental excitation frequencies for different number of layers of composite plates are shown in Table 3.

    Figure 9:Excitation frequency versus aspect ratio of composite plates.

    Figure 10:Excitation frequency versus number of layers of composite plates.

    Figure 10 shows the excitation frequency at the tip of each instability region versus number of layers of composite plates.The excitation frequencies of both the simple and the combination resonances increase for thicker composite plates.The thicker plates have larger rigidity,and thus higher natural frequencies for the simple and the combination resonances.

    Table 3:Analytical and experimental excitation frequency for different number of layers of composite plates.

    5 Conclusions

    In this paper,the dynamic instability ofrectangulargraphite/epoxy composite plates under parametric excitation was investigated analytically and experimentally.The parameters,including the fiber orientation,the aspect ratio and the layer numbers,were considered to evaluate their effects on the dynamic instability behavior of the composite plates.The following conclusions can be drawn.

    1.The instability regions agreed well with the analytical ones for the simple resonances at twice the fundamental frequency.The non-contacting electromagnetic exciter used in experiment acted on the composite plate transversely,the effects caused by the geometric imperfection,the eccentricity of the planar excitation forces could be avoided effectively.

    2.The effect of the fiber orientation on the instability region depends on the mode shapes of the composite plates.The excitation frequency decreases with the fiber orientation of the composite plate with[±θ2]sfor the bending mode instability and reaches a maximum atθ=45?for the torsional mode instability.

    3.The excitation frequency at the tip of each instability region decreases for higher aspect ratios.

    4.The excitation frequency at the tip of each instability region increases for thicker composite plates.

    Acknowledgement:The authors would like to thank the National Science Council,Taiwan,the Republic of China through grant NSC 99-2221-E-007-042-MY3,for supporting this work.

    ANSYSTheory Reference.001369.Twelfth.SAS IP,Inc.

    ASTM D3039-76(1983):Standard Test Method for Tensile Properties of Fiber-Resin Composites.AnnualBook ofASTM Standards,Section 3,vol.15.03,pp.162-165.

    ASTM D3518-76(1983):Standard Practice for Inplane Shear Stress-strain Response of Unidirectional Reinforced Plastics.Annual Book of ASTM Standards,Section 3,vol.15.03,pp.202-207.

    Bassiouni,A.S.;Gad-Elrab,R.M.;Elmahdy,T.H.(1999):Dynamic analysis for laminated composite beams.Composite Structures,vol.44,pp.81-87.

    Bazant,Z.P.(2000):Structural stability.International Journal of Solids and Structures,vol.37,pp.55-67.

    Bolotin,V.V.(1965):The Dynamic Stability ofElastic Systems,New York,Holden-Day Inc.

    Chen,C.C.;Yeh,M.K.(1999):Parametric instability of a column with axially oscillating mass.Journal of Sound and Vibration,vol.224,pp.643-664

    Chen,C.C.;Yeh,M.K.(2001):Parametric instability of a beam under electromagnetic excitation.Journal of Sound and Vibration,vol.240,pp.747-764

    Chen,L.W.;Yang,J.Y.(1990):Dynamic stability of laminated composite plates by the finite element method.Computers&Structures,vol.36,pp.845-851.

    Craig Jr.,R.R.(1981):Structural Dynamics,New York,Wiley.

    Deolasi,P.J.;Datta,P.K.(1995):Parametric instability characteristics of rectangular plates subjected to localized edge loading(compression or tension).Computers&Structures,vol.54,pp.73-82.

    Deolasi,P.J.;Datta,P.K.(1997):Simple and combination resonances of rectangular plates subjected to non-uniform edge loading with damping.Engineering Structures,vol.19,pp.1011-1017.

    Evan-Iwanowski,R.M.(1965):On the parametric response of structures.Applied Mechanics Review,vol.18,pp.699-702.

    Fox,C.H.J.(1990):Parametrically excited instability in a lightly damped multidegree-of-freedom system with gyroscopic coupling.Journal of Sound and Vibration,vol.136,pp.275-287

    Ganapathi,M.;Balamurugan,V.(1998):Dynamic instability analysis of a laminated composite circular cylindrical Shell.Computers&Structures,vol.69,pp.181-189.

    Gibson,R.F.(2007):Principles of Composite Material Mechanics,Boca Raton,FL,CRC Press

    Hsu,C.S.(1963):On the parametric excitation of a dynamic system having multiple degrees of freedom.Transactions of the ASME:Journal of Applied Mechanics,vol.30,pp.367-372.

    Moorthy,J.;Reddy,J.N.(1990):Parametric instability of laminated composite plates with transverse shear deformation.International Journal of Solids and Structures,vol.26,pp.801-811.

    Nayfeh,A.H.;Mook,D.T.(1977):Parametric excitations of linear systems having many degrees of freedom.Journal of Acoustical Society of America,vol.62,pp.375-381.

    Nayfeh,A.H.;Mook,D.T.(1979):Nonlinear Oscillations,New York Wiley Inc.Srinivasan,R.S.;Chellapandi,P.(1986):Dynamic stability of rectangular laminated composite plates.Computers&Structures,vol.24,pp.233-238.

    Yeh,M.K.;Chen,C.C.(1998):Dynamic instability of a general column under periodic load in the direction of tangency coefficient at any axial position.Journal of Sound and Vibration,vol.217,pp.665-689.

    Yeh,M.K.;Kuo,Y.T.(2004):Dynamic instability of composite beams under parametric excitation.Composites Science and Technology,vol.64,pp.1885-1893.

    Yeh,M.K.;Tan,C.M.(1994):Buckling of elliptically delaminated composite plates.Journal of Composite Materials,vol.28,no.1,pp.36-52.

    12—13女人毛片做爰片一| 色5月婷婷丁香| 国产精品一区二区三区四区免费观看 | 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 亚洲人成电影免费在线| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 中亚洲国语对白在线视频| 在线十欧美十亚洲十日本专区| 男插女下体视频免费在线播放| 少妇丰满av| 一个人看视频在线观看www免费| 久久午夜亚洲精品久久| 亚洲自拍偷在线| 日日夜夜操网爽| 禁无遮挡网站| 香蕉av资源在线| 久久久久国产精品人妻aⅴ院| 亚洲一区高清亚洲精品| 噜噜噜噜噜久久久久久91| 国产极品精品免费视频能看的| 精品日产1卡2卡| 制服丝袜大香蕉在线| 最好的美女福利视频网| 人人妻人人看人人澡| 麻豆成人午夜福利视频| 国产精品亚洲一级av第二区| x7x7x7水蜜桃| 国产一区二区激情短视频| 一级黄色大片毛片| 精品午夜福利视频在线观看一区| 在线观看美女被高潮喷水网站 | 内射极品少妇av片p| 午夜激情欧美在线| 99在线人妻在线中文字幕| 免费在线观看影片大全网站| 亚洲第一电影网av| 岛国在线免费视频观看| 男人舔女人下体高潮全视频| 成人高潮视频无遮挡免费网站| 欧美极品一区二区三区四区| 欧美日韩乱码在线| 欧美日本亚洲视频在线播放| 亚洲中文日韩欧美视频| 麻豆成人午夜福利视频| 他把我摸到了高潮在线观看| 白带黄色成豆腐渣| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 99热这里只有精品一区| 国产亚洲欧美在线一区二区| 夜夜看夜夜爽夜夜摸| av在线老鸭窝| 别揉我奶头~嗯~啊~动态视频| 91麻豆精品激情在线观看国产| 亚洲成av人片在线播放无| 日韩 亚洲 欧美在线| 国产一区二区激情短视频| 日韩免费av在线播放| 国产亚洲精品综合一区在线观看| 欧美成人性av电影在线观看| 日韩人妻高清精品专区| 亚洲三级黄色毛片| 男人的好看免费观看在线视频| 精品人妻1区二区| aaaaa片日本免费| 国产伦人伦偷精品视频| 亚洲 国产 在线| 日韩欧美国产在线观看| 一个人免费在线观看的高清视频| 一个人看的www免费观看视频| 欧美高清性xxxxhd video| 欧美成人一区二区免费高清观看| eeuss影院久久| 国产毛片a区久久久久| 99热这里只有精品一区| 桃红色精品国产亚洲av| 久久99热这里只有精品18| 三级男女做爰猛烈吃奶摸视频| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 小说图片视频综合网站| 国产色爽女视频免费观看| 99精品久久久久人妻精品| 十八禁网站免费在线| 日本成人三级电影网站| 99久久成人亚洲精品观看| 久久天躁狠狠躁夜夜2o2o| 亚洲精品色激情综合| 免费av不卡在线播放| 婷婷丁香在线五月| or卡值多少钱| 亚洲国产精品999在线| 国产精品一区二区三区四区免费观看 | 国产伦一二天堂av在线观看| 中文字幕免费在线视频6| 岛国在线免费视频观看| 婷婷六月久久综合丁香| av福利片在线观看| 免费观看精品视频网站| 成年女人毛片免费观看观看9| 国产欧美日韩精品亚洲av| 亚洲成人免费电影在线观看| 日本a在线网址| 我的老师免费观看完整版| 久久国产精品人妻蜜桃| 性插视频无遮挡在线免费观看| 自拍偷自拍亚洲精品老妇| 精品不卡国产一区二区三区| 国产大屁股一区二区在线视频| 成年人黄色毛片网站| 日本与韩国留学比较| 国产精品99久久久久久久久| 日本黄色片子视频| 亚洲av电影在线进入| 国产乱人视频| 欧美日本视频| 亚洲第一欧美日韩一区二区三区| 免费观看人在逋| 亚洲成人精品中文字幕电影| 黄色丝袜av网址大全| 久久性视频一级片| 国内毛片毛片毛片毛片毛片| 精品国产三级普通话版| 国产精品一区二区性色av| 国产免费男女视频| 精品人妻一区二区三区麻豆 | 在线天堂最新版资源| 午夜免费男女啪啪视频观看 | 真实男女啪啪啪动态图| 老司机午夜十八禁免费视频| 亚洲狠狠婷婷综合久久图片| 变态另类丝袜制服| 婷婷六月久久综合丁香| 神马国产精品三级电影在线观看| 一个人看视频在线观看www免费| 亚洲午夜理论影院| 国产精品永久免费网站| 欧美中文日本在线观看视频| 精品欧美国产一区二区三| 男女之事视频高清在线观看| 亚洲精品成人久久久久久| 不卡一级毛片| 国产亚洲精品av在线| 欧美国产日韩亚洲一区| 99热这里只有是精品在线观看 | 久久天躁狠狠躁夜夜2o2o| 国产精品一及| 18禁黄网站禁片免费观看直播| 国产白丝娇喘喷水9色精品| 欧美乱色亚洲激情| 中文在线观看免费www的网站| 亚洲人成网站在线播| 非洲黑人性xxxx精品又粗又长| 亚洲最大成人手机在线| 国产高清有码在线观看视频| 天堂√8在线中文| 亚洲成人精品中文字幕电影| 精品福利观看| 啦啦啦观看免费观看视频高清| 亚洲久久久久久中文字幕| 免费在线观看亚洲国产| 亚洲人与动物交配视频| 欧美激情在线99| 乱人视频在线观看| 亚洲美女视频黄频| 全区人妻精品视频| 韩国av一区二区三区四区| 国产亚洲精品综合一区在线观看| 又爽又黄a免费视频| 特大巨黑吊av在线直播| 嫁个100分男人电影在线观看| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩无卡精品| 亚洲一区二区三区色噜噜| 激情在线观看视频在线高清| 真人做人爱边吃奶动态| 亚洲天堂国产精品一区在线| 欧美中文日本在线观看视频| 亚洲欧美日韩高清专用| 亚洲五月天丁香| 特级一级黄色大片| 怎么达到女性高潮| 99热这里只有是精品50| 又黄又爽又刺激的免费视频.| 欧美高清性xxxxhd video| 欧美乱妇无乱码| 国产精品久久视频播放| 久久6这里有精品| АⅤ资源中文在线天堂| 国产乱人视频| 欧美三级亚洲精品| 99热精品在线国产| 国产精华一区二区三区| 欧美激情在线99| 亚洲狠狠婷婷综合久久图片| 亚洲av日韩精品久久久久久密| 国产一区二区亚洲精品在线观看| 国产主播在线观看一区二区| 美女免费视频网站| 久久精品人妻少妇| 九九在线视频观看精品| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦韩国在线观看视频| 免费在线观看日本一区| 校园春色视频在线观看| 色av中文字幕| 国产亚洲欧美98| av女优亚洲男人天堂| 18美女黄网站色大片免费观看| 国模一区二区三区四区视频| 久久久久久国产a免费观看| 丰满的人妻完整版| 无遮挡黄片免费观看| 在线十欧美十亚洲十日本专区| 亚洲,欧美,日韩| 看片在线看免费视频| 日日摸夜夜添夜夜添小说| 天堂影院成人在线观看| 日韩欧美国产在线观看| 亚洲精品456在线播放app | 精品久久久久久久久久免费视频| 精品99又大又爽又粗少妇毛片 | 黄色日韩在线| 美女cb高潮喷水在线观看| 99国产精品一区二区蜜桃av| 一个人免费在线观看电影| 亚洲七黄色美女视频| 性色av乱码一区二区三区2| 成人特级av手机在线观看| 国产欧美日韩一区二区三| 国产精品av视频在线免费观看| 国产不卡一卡二| 深夜a级毛片| 日本精品一区二区三区蜜桃| 香蕉av资源在线| 色噜噜av男人的天堂激情| 日本与韩国留学比较| 97人妻精品一区二区三区麻豆| 嫩草影视91久久| 1000部很黄的大片| 精品不卡国产一区二区三区| 欧美精品啪啪一区二区三区| 18+在线观看网站| 中文字幕av在线有码专区| av黄色大香蕉| 精品人妻一区二区三区麻豆 | 国内精品美女久久久久久| ponron亚洲| 国产探花极品一区二区| 成年免费大片在线观看| 99久久无色码亚洲精品果冻| 一个人免费在线观看电影| 综合色av麻豆| 欧美一区二区精品小视频在线| .国产精品久久| 757午夜福利合集在线观看| 亚洲一区二区三区不卡视频| 淫妇啪啪啪对白视频| 亚洲欧美精品综合久久99| 老司机午夜福利在线观看视频| 99久国产av精品| 又爽又黄无遮挡网站| 51国产日韩欧美| 欧美乱妇无乱码| 亚洲人成电影免费在线| 精品无人区乱码1区二区| 可以在线观看的亚洲视频| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 日本熟妇午夜| 亚洲第一欧美日韩一区二区三区| 国产淫片久久久久久久久 | 91字幕亚洲| 国产老妇女一区| 欧美最新免费一区二区三区 | 中文字幕免费在线视频6| 别揉我奶头 嗯啊视频| 国内久久婷婷六月综合欲色啪| 精品一区二区三区av网在线观看| 日日摸夜夜添夜夜添小说| 欧美+日韩+精品| av专区在线播放| 欧美绝顶高潮抽搐喷水| 12—13女人毛片做爰片一| 国产午夜精品久久久久久一区二区三区 | 国产精品亚洲一级av第二区| 12—13女人毛片做爰片一| 久久国产乱子免费精品| 一a级毛片在线观看| 搡女人真爽免费视频火全软件 | 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6 | 国产成年人精品一区二区| 国产三级黄色录像| 亚洲无线在线观看| 国产一区二区亚洲精品在线观看| 国产一区二区三区在线臀色熟女| 嫩草影院新地址| 成人午夜高清在线视频| 桃红色精品国产亚洲av| 午夜福利在线观看吧| 麻豆成人午夜福利视频| 麻豆国产97在线/欧美| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区久久| 床上黄色一级片| 丰满人妻一区二区三区视频av| 国产黄a三级三级三级人| 国产精品三级大全| 深夜精品福利| 亚洲自拍偷在线| 亚洲国产欧美人成| 亚洲内射少妇av| 国产伦人伦偷精品视频| 亚洲乱码一区二区免费版| 久久亚洲精品不卡| 亚州av有码| 丰满人妻一区二区三区视频av| 男插女下体视频免费在线播放| 夜夜夜夜夜久久久久| 亚洲在线自拍视频| 在线播放无遮挡| 又紧又爽又黄一区二区| 成人毛片a级毛片在线播放| av天堂在线播放| 色噜噜av男人的天堂激情| 麻豆久久精品国产亚洲av| 搡老岳熟女国产| 宅男免费午夜| 噜噜噜噜噜久久久久久91| 国模一区二区三区四区视频| 欧美xxxx性猛交bbbb| 国产v大片淫在线免费观看| 久久久久精品国产欧美久久久| 亚洲人成网站高清观看| 成年女人毛片免费观看观看9| 啦啦啦观看免费观看视频高清| 在线十欧美十亚洲十日本专区| av在线蜜桃| avwww免费| 精品午夜福利在线看| 免费大片18禁| 禁无遮挡网站| 亚洲第一欧美日韩一区二区三区| 亚洲天堂国产精品一区在线| 国产熟女xx| 精品不卡国产一区二区三区| av在线观看视频网站免费| 亚洲自偷自拍三级| 观看美女的网站| 久久性视频一级片| 很黄的视频免费| 国产成人av教育| 校园春色视频在线观看| 少妇的逼水好多| 国内精品美女久久久久久| 好看av亚洲va欧美ⅴa在| 欧美日韩综合久久久久久 | 久久精品国产亚洲av涩爱 | 欧美zozozo另类| 欧美xxxx性猛交bbbb| 高清在线国产一区| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 男女那种视频在线观看| 在线观看舔阴道视频| 在线a可以看的网站| 精品人妻偷拍中文字幕| www日本黄色视频网| 日本与韩国留学比较| 久久这里只有精品中国| 男女做爰动态图高潮gif福利片| 久久精品综合一区二区三区| 毛片一级片免费看久久久久 | 中文字幕熟女人妻在线| 亚洲欧美日韩卡通动漫| 最后的刺客免费高清国语| 一进一出抽搐动态| 日韩欧美在线二视频| 免费人成在线观看视频色| 黄色丝袜av网址大全| 可以在线观看毛片的网站| 丰满人妻熟妇乱又伦精品不卡| 免费黄网站久久成人精品 | 亚洲三级黄色毛片| 成年版毛片免费区| 丁香欧美五月| 俄罗斯特黄特色一大片| 欧美xxxx黑人xx丫x性爽| 色综合欧美亚洲国产小说| 国产成+人综合+亚洲专区| 99久久久亚洲精品蜜臀av| 亚洲精品日韩av片在线观看| 亚洲美女视频黄频| 我要搜黄色片| 性插视频无遮挡在线免费观看| 精品99又大又爽又粗少妇毛片 | 国产在线精品亚洲第一网站| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 国内久久婷婷六月综合欲色啪| 欧美三级亚洲精品| 九九热线精品视视频播放| 蜜桃亚洲精品一区二区三区| 日本成人三级电影网站| 99在线人妻在线中文字幕| 久久99热6这里只有精品| 国产精品乱码一区二三区的特点| 亚洲美女视频黄频| 精品一区二区三区视频在线| 中文字幕av在线有码专区| 99久久精品热视频| xxxwww97欧美| 国产午夜福利久久久久久| 欧美性猛交╳xxx乱大交人| 久久草成人影院| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 两人在一起打扑克的视频| 黄色配什么色好看| 国产欧美日韩一区二区三| 亚洲国产色片| 国产伦在线观看视频一区| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 黄色一级大片看看| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 夜夜爽天天搞| 国产精品人妻久久久久久| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 自拍偷自拍亚洲精品老妇| 日本一二三区视频观看| 18+在线观看网站| 国产精品av视频在线免费观看| 简卡轻食公司| 搞女人的毛片| 五月玫瑰六月丁香| 国产69精品久久久久777片| av福利片在线观看| 亚洲av日韩精品久久久久久密| 国产精品久久久久久久久免 | 麻豆久久精品国产亚洲av| 亚洲av熟女| 欧美一级a爱片免费观看看| 亚洲精品在线观看二区| 午夜福利在线观看吧| 色5月婷婷丁香| 丰满的人妻完整版| 能在线免费观看的黄片| 欧美一级a爱片免费观看看| 国产男靠女视频免费网站| 欧美zozozo另类| 怎么达到女性高潮| 精华霜和精华液先用哪个| 可以在线观看的亚洲视频| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 成人特级黄色片久久久久久久| 久久久久久久午夜电影| 久久精品国产亚洲av天美| 大型黄色视频在线免费观看| 日日干狠狠操夜夜爽| 日日夜夜操网爽| 中文字幕人成人乱码亚洲影| 国产午夜精品久久久久久一区二区三区 | 午夜福利在线在线| 国模一区二区三区四区视频| 十八禁国产超污无遮挡网站| 又粗又爽又猛毛片免费看| 夜夜爽天天搞| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 午夜免费激情av| 久久久久久久久久成人| 精品午夜福利在线看| 久久久国产成人精品二区| 伦理电影大哥的女人| 亚洲美女视频黄频| 国产美女午夜福利| 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 我的女老师完整版在线观看| 国产欧美日韩一区二区精品| 国产毛片a区久久久久| 香蕉av资源在线| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 日韩欧美免费精品| 日本一本二区三区精品| 少妇被粗大猛烈的视频| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 波多野结衣高清无吗| 日韩高清综合在线| 韩国av一区二区三区四区| 精品午夜福利在线看| 老司机福利观看| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 中文字幕高清在线视频| 黄色女人牲交| 成年女人毛片免费观看观看9| 999久久久精品免费观看国产| 一个人观看的视频www高清免费观看| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 国产乱人视频| 禁无遮挡网站| 看十八女毛片水多多多| 亚洲性夜色夜夜综合| 高潮久久久久久久久久久不卡| 欧美bdsm另类| 桃色一区二区三区在线观看| 亚洲精品在线美女| 久久6这里有精品| 久久久久久久久中文| 欧美精品国产亚洲| www.熟女人妻精品国产| 国产午夜精品久久久久久一区二区三区 | 亚洲18禁久久av| 中文字幕免费在线视频6| 久久欧美精品欧美久久欧美| 久9热在线精品视频| 国产精品亚洲美女久久久| 波多野结衣高清作品| 精品久久久久久成人av| 97碰自拍视频| 免费观看的影片在线观看| 国产精品国产高清国产av| a级毛片a级免费在线| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 99热6这里只有精品| 亚洲成人免费电影在线观看| 岛国在线免费视频观看| 国产在线男女| 黄片小视频在线播放| 少妇人妻精品综合一区二区 | 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 淫妇啪啪啪对白视频| 一区福利在线观看| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 一本久久中文字幕| 又黄又爽又免费观看的视频| 久久久久久大精品| 成人美女网站在线观看视频| 91麻豆精品激情在线观看国产| 中出人妻视频一区二区| 国产三级中文精品| 精品一区二区三区视频在线| 日韩中文字幕欧美一区二区| 国产精品久久久久久人妻精品电影| 赤兔流量卡办理| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 欧美在线黄色| 欧美丝袜亚洲另类 | 国产探花极品一区二区| 听说在线观看完整版免费高清| 国产精品电影一区二区三区| 亚州av有码| 国产大屁股一区二区在线视频| 国产主播在线观看一区二区| 国产成人欧美在线观看| 此物有八面人人有两片| 欧美色视频一区免费| 精品一区二区三区人妻视频| 亚洲精品久久国产高清桃花| 757午夜福利合集在线观看| 国产精品自产拍在线观看55亚洲| a级一级毛片免费在线观看| 久久人人爽人人爽人人片va | 国产成+人综合+亚洲专区| 国产一区二区三区在线臀色熟女| 国产精品电影一区二区三区| 99热只有精品国产| 日本一本二区三区精品| 宅男免费午夜| 亚洲天堂国产精品一区在线| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 男人舔女人下体高潮全视频| 蜜桃亚洲精品一区二区三区| 午夜福利18| 91麻豆av在线| 3wmmmm亚洲av在线观看| 国产成人欧美在线观看| 99国产极品粉嫩在线观看| x7x7x7水蜜桃| 亚洲精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 一进一出抽搐动态| 男人舔奶头视频| aaaaa片日本免费|