• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Approach to Identify the Thermal Conductivities of a Thin Anisotropic Medium by the Boundary Element Method

    2014-04-16 08:53:33ShiahLeeandHuang
    Computers Materials&Continua 2014年1期
    關(guān)鍵詞:中多社戲王爾德

    Y.C.Shiah,Y.M.Lee and T.C.Huang

    1 Introduction

    Since the 1970s’,anisotropic materials have been extensively applied in engineering for various purposes.With the rapid evolvement of nanotechnologies,new materials have been developed using carbon nanotubes(CNTs),whose thickness is approximately 50,000 times thinner than a human hair.Due to their extraordinary thermal conductivity and mechanical properties,CNTs find applications as additives to various applications.Very recently,the study of buckypaper,a thin sheet originally fabricated to handle CNTs,has attracted significant research[e.g.Wang et al(2004);Biercuk et al(2002);Schadler et al(1998);Ajayan et al(2000);Lozano et al(2001);Rosen and Jin(2002)]owing to its promise in various applications,such as armors,next-generation electronics and displays,etc.However,the experimental study of its properties has been only limited to the in-plane characteristics due to the difficulty of measuring data in the transverse direction.For any other thin anisotropic medium,this difficulty always exists,especially for the properties associated with cross-terms.The simplest way to avoid this would be to assume transversely isotropy,where the cross-terms disappear;however,this simplification would introduce errors to a certain degree.

    In this paper,an inverse analysis based on the BEM is proposed to serve as an auxiliary means for measuring the thermal conductivities of an ultra-thin anisotropic medium.Basically,the idea is to sandwich the unknown anisotropic medium as the core(Fig.1)between isotropic materials with known conductivities.

    Figure 1:An integrated composite subjected to a heat flux.

    For the ease of analysis,the top and bottom sandwiching materials are chosen to be the same.With proper boundary conditions specified,the generally anisotropic conductivities of the core layer are inversely determined by the temperature data measured in the neighborhood of the sandwiched medium.For the present inverse analysis,the boundary element method is employed.In contrast with the domain solution techniques such as the finite element method(FEM)and the finite difference method,the BEM is renowned for its distinctive feature that only the boundary needs to be modeled.This feature is especially ideal for the inverse analysis since only boundary data can be measured from experiments.Early inverse analysis may be traced back to treat problems of thermal conduction by Shumakov(1957).Since then,the inverse study on the thermal conduction problems has been extensively applied to various identifications of initial conditions,boundary conditions,geo-metric parameters,and heat sources,etc.Among these works,Sparrow et al(1964)studied the inverse problem of transient heat conduction by applying the technique of Laplace Transform and the Integral method.After that,lots of works have been published for the inverse analysis of thermal problems.To name a few as examples,Alifanov(1974)introduced a concept of iteration by gradients for inversely analyzing the heat conduction problem.Based on the perturbation principle,the CGM has been widely applied to various inverse problems[Huang and Wu(1995a,1995b);Huang and Yan(1995)].As aforementioned,owing to its distinctive notion of boundary discretization,it is beneficial to apply the BEM to inverse problems[e.g.Martin and Dulikavich(1998);Hematiyan et al(2012)].For this,the inverse analysis based on the BEM has been rapidly growing in recent decades,especially for problems of thermal conduction.For example,Pasquetti and Petit(1994)made use of the time-dependence with space to inversely investigate the transient temperature field at corners using the BEM.Mellings and Aliabadi(1993)employed the Dual boundary element for studying inverse potential problems in crack identification.Wei and Li(2009)used the approach of generalized cross validation to perform an inverse analysis of heat conduction in multilayer domain.Using the BEM and the singular value decomposition,Lagier et al(2004)presented a numerical solution to the linear multidimensional unsteady inverse heat conduction problem.There are too many to mention all as a complete review for the works on the BEM’s applications in various inverse analyses pertinent to thermal conduction.For more references as examples,one may refer to references[Pasquetti and Petit(1994);Zed et al(2000);Singh and Tanaka(2001);Hon and Wei(2004);Sladek et al(2006);Dong et al(2007);Onyango et al(2009);Movahedian et al(2013)].

    As the prelude for the inverse analysis of 3D anisotropic elasticity[Shiah et al(2012)],the present work is to identify the thermal conductivities of an ultra-thin layer of 2D generally anisotropic medium by the inverse analysis of CGM based on the BEM.For facilitating experimental setups to measure temperature data,the ultra-thin layer is sandwiched in isotropic materials(e.g.epoxy resin on both sides)as an integrated multi-domain.As has been reported in the BEM literature,nearsingularities will appear in the integral equation for treating the ultra-thin layer.Very recently,the leading author has applied the scheme of integration by parts to regularize the boundary integrals for 3D anisotropic heat conduction[Shiah et al(2013)].The present work employs the scheme of integration by parts(IBP)[Shiah and Shi(2006)]for modeling the thin layer and employs the direct domain mapping technique[Shiah and Tan(1997)]to treat its anisotropy.For the inverse analysis,the CGM is applied,where the temperature field on the boundary near the core is provided as the target function to be satisfied.For verification,numerical examples are provided at the end.

    2 BEM treatment of the heat conduction

    For elucidating how the BEM is applied to the inverse analysis,a brief review of the fundamentals is provided fist.As shown in Fig.1,consider an integrated composite consisting of three layers-two face layers of the same isotropic material on its top and bottom plus one thin anisotropic layer sandwiched between as the core.For the generally anisotropic layer in 2D,the governing Euler’s equation is written as

    where,T stands for the temperature change,and Kij are the thermal conductivities coefficients defined in the x1-x2 coordinate system.From thermodynamic considerations and Onsagar’s reciprocity relation,the coefficients Kij must satisfy

    The analysis can be significantly simplified in the case of orthotropy,where the cross-derivative terms are absent.As a result,a commonly adopted approach to numerically treat the fully anisotropic problem is,first,to determine the principal axes(ζ1,ζ2)by rotating the original Cartesian axes such that the cross-derivative terms will disappear.Another attractive approach to treat the anisotropic problem is to employ a coordinate transformation such that T in the transformed domain is governed by the standard Laplace’s equation.This was studied analytically by but with limited success.The difficulties in this analytical approach are due to the complexities that stem from the distorted boundary in the mapped plane.In their efforts to formulate an exact transformation of the volume integral associated with the thermal effects into surface integrals for plane anisotropic thermoelasticity in BEM,Shiah and Tan(1997)also developed a similar transformation and applied it to numerically treat the two-dimensional anisotropic problem in the BEM field theory.The main advantage of such BEM treatment lies in the fact that the anisotropic field problem can be easily solved using any readily available BEM codes for‘isotropic’potential theory with relatively minor program modifications.The linear transformation/inverse transformation takes the following form,

    where[F(Kij)]is the transformation(and[F-1(Kij)]the inverse transformation)matrix,given by

    wherePandQare the source and field points on the boundary,respectively,C(P)are coefficients dependent of the geometry at the source point,and T*(P,Q)andQ*(P,Q)represent the fundamental solutions for the temperature and its normal gradient,given by

    In Eq.(6),ris the distance between the source pointPand the field pointQon the element under integration.To numerically solve the boundary integral equation(BIE)of Eq.(5),the boundary surface is discretised into a number of segments or elements,sayMelements,with a total ofNnodes.Following the usual interpolation process for n-order elements,one may have nodal values of coordinates,temperature,and temperature gradients expressed in terms of the local coordinateξ∈[-1,1]as

    whereN care the shape functions whose quadratic forms are expressed as

    In convenience of later derivations,the quadratic shape function can be expressed as

    whereαc,βc,γcare constant coefficients.Substitution of Eqs.(6),(7)into Eq.(1)results in the discretised BIE form,

    where the superscriptarepresents thea-th global node of the boundary mesh,bdenotes theb-th element,andcisc-th node of the element.Also in Eq.(10),J(ξ)is the Jacobian transformation of the path from the global coordinates to the local coordinateξ.Sequentially,the collocation process via Eq.(10)forms a set ofNlinear algebraic equations for the unknown temperature and temperature gradients at the boundary nodes,which can be solved by,for example,the Gaussian elimination scheme.For treating the multi-domain as shown in Fig.1,the conventional sub-regioning technique in the BEM can be applied;however,proper interfacial conditions must be specified.

    With the presence of an anisotropic medium sandwiched in the composite,the interfaces consider the isotropic/anisotropic conditions,including the continuity and the equilibrium between adjacent interfaces.The former states that the temperature of contiguous surfaces must be identical between the isotropic material(1)and the anisotropic material(2),i.e.

    Since the temperature field does not depend on the coordinate transformation,Eq.(11)must hold true even though the distorted interface of the anisotropic medium may misalign with that of the isotropic one.However,due to the misalignment of the unit outward normal on the interface of the anisotropic material,the equilibrium condition needs to be reformulated accordingly.For this purpose,consider first the heat fluxes out of the interfaces between adjacent materials 1(isotropic)and 2(anisotropic)in the physical plane.The thermal equilibrium between the interfaces states that the sum of the normal heat fluxes across their interfaces shall vanish,i.e.

    Asa resultofapplying Eq.(11)and Eq.(13)to the sub-regioning scheme in the BEM for providing additional equations,all boundary known values can be determined by solving the BIE for the both materials.However,there is still another issue needed to be dealt with for the sandwiched material,namely the near-singularity.It is seen that for an ultra-thin layer,the source pointPshall approach the integration element.Thus,it is evident that regular numerical integration schemes will fail to evaluate the nearly singular integrals accurately.To resolve the problem,these integrals need to be regularized by the processes to be described next.

    3 Regularization of integrals

    As reported in the BEM literature,numerical difficulties will arise for evaluation of the integrals when the source point approaches the element under integration.In principal,this happens to the case when the distance from the source point P to its projection point on the element is one-order less than the characteristic size of the element.Obviously,such a process needs to be taken for treating the anisotropic core layer due to its ultra-small thickness in the transverse direction.Although this issue may be directly resolved by subdividing the element into several small intervals with each interval length of the same order as the distance,this scheme is not generally feasible since overloading computation will be incurred due to excessive subdivisions for ultra thin structures.Thus,an appealing way of dealing with this problem is to regularize the nearly singular integrals such that the usual numerical schemes,like Gauss quadrature scheme for example,may yield accurate results.

    The presentanalysisconsidersthe mostgeneralcase when quadratic elements(c=3)are employed;however,it should be bear in mind that the formulations used can be easily extended for general high-ordered elements.From Eq.(10),the first integral reveals weak singularity.For quadratic elements,the weakly singular integral is expressed as

    In the above equation,the JacobianJ(ξ)is given by

    where the invariantsB0,C0,andD0are defined by the followings:

    and the invariantsA0~A4are given by

    By rewriting the 4-degree polynomial in the logarithmic function in terms of its quadruple rootsRi,one may obtains

    In fact,the rootsRican be numerically determined by any root-finding schemes without difficulties.As a result of applying the scheme of integration by parts proposed by Shiah and Shi(2006),the weakly singular integral is given by

    where the function ?(ξ)is defined as

    Obviously,the integrand on the right hand side of Eq.(20)is completely free of singularity due to the fact that whenξapproaches to one of the rootsRi,the integrand will converge rapidly.Thus,the regularized form of the integral can be integrated using any conventional numerical schemes without any difficulty.However,special care must be taken for treating the degenerated case of straight elements whenA4vanishes.

    For geometrically linear elements,it can be readily shown that the Jacobian is expressed as

    By following the previous treatment,the integral is rewritten as

    whereRiare defined by

    Apparently,Eq.(24)may be analytically integrated to give

    whereN′c(ξ)represents the first order differentiation of the shape function;?1(ξ)~?3(ξ)are defined by

    Next,the similar processes can also be taken for treating the strongly singular integral in Eq.(10).Making use of the standard quadratic interpolation,one may immediately obtain

    where the invariantsC0~C2are defined by

    As a result of performing analytical integration,one obtains

    and theδkiis the kronecker delta defined as usual.Likewise,the special treatment of the degenerate case is needed,where bothA3andA4will vanish.In that case,the integral becomes

    For the special case when repeated double roots occur(i.e.R2=R1=R),Eq.(32)becomes

    whereH c(R)is defined by

    4 Inverse analysis of the Kij of the core layer

    The goal of the present analysis is to identify the generally anisotropic conductivities of the ultra-thin core layer by use of the temperature data measured on a few boundary points as indicated in Fig.1.For easy preparation of the composite sample,epoxy is an ideal candidate to serve as the sandwiching material,whose average conductivity value is aboutK0=0.541 W/m-0K By assumption,the epoxy is adopted to be the face material and the unknown anisotropic core layer has the following conductivity coefficients,

    For illustration of how the inverse analysis is carried out,the boundary conditions consider the top and bottom surfaces subjected to 1000Cand 00C,respectively,while the opposite vertical sides are thermally insulated.Of no doubt,the heat conduction in the multiply adjoined composite can be analyzed using the BEM as described previously.The inverse analysis will take the conductivities of the core layer as unknowns and uses a few temperature data taken from the boundary points on the insulated surface as shown in Fig.1.Before performing the inverse analysis,the problem is analyzed forwardly with its dimensions and the BEM mesh described in Fig.2.

    Figure 2:BEM modeling of the composite.

    For verification,this forward problem is also investigated using ANSYS,a commercial FEM-based software package,to provide a comparison platform.It should be noted that on purpose,the thickness of the core layer is designed to have a thickness that the ANSYS may handle in a reasonable period of time.For much smaller thicknesses that require much refined meshes,overwhelming FEM mesh discretization may lead to quite heavy computational burdens.In fact,the CPU-time of the present BEM analysis took only 3.12×10-2(seconds)by an Intel-I7 PC,while the complete run of the ANSYS took 13.46(seconds)by the same machine.One may consider this not to be a significant issue for simply a forward analysis;however,for the inverse analysis requiring more than sounds of iterations,this will be an obvious advantage to employ the BEM for saving the computation costs.Figure 3 and Figure 4 show the normalized temperature distribution on the interfaces and the insulated surfaces,respectively,where the normalization factor?T=1000Cis used.From the comparisons shown in the both plots,the excellent agreements between the both results can be observed.

    Figure 3:Temperature distribution on interfaces.

    Next,consider the inverse problem when the conductivities of the anisotropic core layer are taken to be unknowns.For this problem,the temperature field can be only measured on the boundary.As can be seen from Fig.3 and Fig.4,one may take either interface points or a few boundary points on the insulated surfaces near the core for characterizing the temperature response.For experimentally recording temperature on the interfaces,thermal couples need to be fixed onto the interfaces during the curing process of the epoxy resin.Apparently,it is much easier to take data from the insulated surfaces due to the accessibility of measured positions and repeatability of measurements.For the process of the inverse analysis,let the target function be

    Figure 4:Temperature distribution on insulated surface.

    In the above equation,the partial differentiations are taken using the central difference scheme,namely

    魯迅在兒童文學(xué)翻譯作品的選材上沒有選擇格林、安徒生、王爾德等,而是選擇了愛羅先珂、望.靄覃等。這固然與魯迅喜歡獨(dú)辟蹊徑有關(guān),但是,這種選材無(wú)疑發(fā)自內(nèi)心。魯迅在兒童文學(xué)翻譯上關(guān)注個(gè)性與博愛、童心、童趣其次非常重視兒童話語(yǔ)權(quán)。(秦弓,2004)[6]他的翻譯作品中多以白話文為主,所以他主張直譯。魯迅的翻譯也啟迪了其兒童文學(xué)創(chuàng)作,如《社戲》、《鴨的喜劇》、《兔和貓》等。

    where?fis a small difference step,chosen to be 10-4for the present analysis.For the initial iteration(t=0),the first searching ofS(0)is along the negative direction at its initial guess point,i.e.

    (Step 4):Calculate the following ratio of gradients,

    (Step 5):Determine the next searching direction by

    As a matter of fact,the required iteration number strongly depends on the selection of initial guessed values.For investigating how the initial settings affect the iteration number,numerical experiments were performed for various tries of the initial values by

    Figure 5:Flowchart of the inverse analysis by the CGM.

    For the experiments,the test was to find the best m and n that gave the least iterations.For the present analyses,11 nodes on the right surface near the core layer were selected as the sample points for collecting temperature data.Figures 6-12 display the required iteration numbers and percentages of errors varied with n for various m.From these plots,it can be observed that form<1,there is a trend of declining numbers of iterations for greatern.Also,from Fig.4,an obvious conclusion may be drawn that the optimum condition occurs atn=0/m=4.Another interesting issue worthy of investigations is the choice of sample points for collecting temperature data.For this,the inverse analyses using the optimum condition ofn=0/m=4 were also carried out for selecting 11 sample points particularly on the left surface and for another case when 22 points were selected on both left/right surfaces as the sample points.The results showed that the selection of 22 points on both sides required the least iteration number.The comparison of the required numbers of iterations is shown in Fig.13.However,considering that fact that no significant reduction of the iteration numbers(10%at most)was present and more measured data would be required,the authors suggest to employ the one-side approach,in-volving less measurements of temperature data.By using the optimum condition of n=0/m=4 and adopting the one-side approach,all calculated conductivities are tabulated in Tab.1,where the percentages of errors are also listed.From the comparison,it can be clearly seen that the inverse BEM analyses are very accurate in identifying the thermal conductivities of the anisotropic core layer.

    Figure 6:Variations of the iteration numbers&error percentages for m=1.

    Figure 7:Variations of the iteration numbers&error percentages for m=2.

    Figure 8:Variations of the iteration numbers&error percentages for m=3.

    Figure 9:Variations of the iteration numbers&error percentages for m=4.

    Figure 10:Variations of the iteration numbers&error percentages for m=1/2.

    Figure 11:Variations of the iteration numbers&error percentages for m=1/3.

    Figure 12:Variations of the iteration numbers&error percentages for m=1/4.

    Figure 13:Required iteration numbers for distinct selections of sample points.

    Table 1:Comparison between the calculated thermal conductivities and the exact values.

    5 Conclusive remarks

    With the rapid march of new technologies,new anisotropic materials have been developed.It is quite often that they are subtle engineered to thin layers to meet various purposes of design.So,for implementing the thin materials in practice,it is crucial to characterize their various properties either by experiments or with numerically modeling.For resolving the difficulty of measuring transverse properties,this paper presents a novel approach to identify the thermal conductivities of a thin generally anisotropic layer by the BEM inverse analysis.For the ease of experimental measurements,the thin layer is sandwiched between two isotropic face materials,whose thermal conductivities are known.By providing the measured temperature on the insulated surface,the anisotropic thermal conductivities of the core layer are calculated using the inverse BEM analysis combined with the CGM approach.The calculated results showed that the temperature measurements on simply one side of the composite would be sufficient to yield accurate results,yet with trivial sacrifice of 10%more iterations involved at most.Owing to less data to take,this one-side approach is ideal for the identification purpose in practice.From the numerical experiments,this approach of inverse BEM analysis has shown great computational efficiency and accuracy.Particularly,this approach is ideal for identifying the mechanical properties of the anisotropic thin layer since experimental measurements in the transverse direction are unlikely for the small thickness.With the shown promise of implementation,this approach can be applied to identify the elastic and thermoelastic properties,such as the stiffness and thermal expansion coefficients,of generally anisotropic thin media.

    Acknowledgement:The authors gratefully acknowledge the financial support for this work from the National Science Council of Taiwan(NSC 102-2221-E-006-290-MY3).

    Ajayan,P.M.;Schadler,L.S.;Giannaris,C.;Rubio,A.(2000):Single-walled carbonnanotube–polymer composites:strength and weakness.Adv Mater,vol.12,issue 10,pp.750-753.

    Alifanov,O.M.(1974):Solution of an inverse problem of heat conduction by iteration methods.J.of Eng.Phys.,vol.26,issue 4,pp.471-476.

    Biercuk,M.J.;Llaguno,M.C.;Radosavljevic,M.;Hyun,J.K.;Johnson,A.T.;Fischer,J.E.(2002):Carbon nanotube composites for thermal management.Appl Phys Lett;vol.80,issue 15,pp.2767-2769.

    Dong,C.F.;Sun,F.Y.;Meng,B.Q.(2007):A method of fundamental solutions for inverse heat conduction problems in an anisotropic medium.Engineering Analysis with Boundary Elements,vol.31,issue 1,pp.75-82.

    Hematiyan,M.R.;Khosravifard,A.;Shiah,Y.C.;Tan,C.L.(2012):Identification of material parameters of two-dimensional anisotropic bodies using an inverse multi-loading boundary element technique.CMES-Computer Modeling in Engineering&Sciences,vol.87,no.1,pp.55-76.

    Hon,Y.C.;Wei,T.(2004):A fundamental solution method for inverse heat conduction problem.Engineering Analysis with Boundary Elements,vol.28,issue 5,pp.489-495.

    Huang,C.H.;Wu,J.Y.(1995a):An inverse problem of determining two boundary heat fluxes in unsteady heat conduction of thick-walled circular cylinder.Inverse Problems in Engineering,vol.1,issue 2,pp.133-151.

    Huang,C.H.;Wu,J.Y.(1995b):Function estimation in predicting temperaturedependent thermal conductivity without internal measurements.J.of Thermophysics and Heat Transfer,vol.9,issue 4,pp.667-673.

    Huang,C.H.;Yan,J.Y.(1995):An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity.Int.J.Heat Mass Transfer,vol.38,issue 18,pp.3433-3441.

    Lagier,G.L.;Lemonnier,H.;Coutris,N.(2004):A numerical solution of the linear multidimensional unsteady inverse heat conduction problem with the boundary element method and the singular value decomposition.International Journal of Thermal Sciences,vol.43,issue 2,pp.145-155.

    Lozano,K.;Rios,J.;Barrera,E.V.(2001):A study on nanofiber-reinforced thermoplastic composites(II):investigation of the mixing rheology and conduction properties.J Appl Polym Sci.,vol.80,issue 8,pp.1162-1172.

    Martin,T.J.;Dulikavich,G.S.(1998):Inverse determination of steady heat convection coefficient distributions.ASME J.of Heat Transfer,vol.120,pp.328-334.

    Mellings,S.C.;Aliabadi.M.H.(1993):Dual boundary element formulation for inverse potential problems in crack identification.Engineering Analysis with Boundary Elements,vol.12,issue 4,pp.275-281.

    Movahedian,B.;Boroomand,B.;Soghrati,S.(2013):A Trefftz method in space and time using exponential basis functions:Application to direct and inverse heat conduction problems.Engineering Analysis with Boundary Elements,vol.37,issue 5,pp.868-883.

    Onyango,T.T.M.;Ingham,D.B.;Lesnic,D.(2009):Reconstruction of boundary condition laws in heat conduction using the boundary element method.Computer&Mathematics with Applications,vol.57,issue 1,pp.153-168.

    Pasquetti,R.;Petit,D.(1994):Inverse-heat-conduction problems with boundary elements:analysis of a corner effect.Engineering Analysis with Boundary Elements,vol.13,issue 4,pp.321-331.

    Rosen,B.C.;Jin,L.(2002):Single-walled carbon nanotube–polymer composites:electrical,optical and structural investigation.Synth Metals,vol.127,issue 1-3,pp.59-62.

    Schadler,L.S.;Giannaris,S.C.;Ajayan,P.M.(1998):Load transfer in carbon nanotube epoxy composites.Appl Phys Lett;vol.73,issue 26,pp.3842-3844.

    Shiah,Y.C.;Tan,C.L.(1997):BEM Treatment of Two-dimensional anisotropic field problems by direct domain mapping.Engineering Analysis with BoundaryElements,vol.20,pp.347-351.

    Shiah,Y.C.;Yang,R.B.;Hwang,P.W.(2004):Heat conduction in dissimilar anisotropic media with bonding defects/interface cracks,Journal of Mechanics,vol.21,no.1,pp.15-23.

    Shiah,Y.C.;Shi,Y.X.(2006):Heat conduction across thermal barrier coatings of anisotropic substrates.International Communications in Heat and Mass Transfer,vol.33,pp.827-835.

    Shiah,Y.C.;Tan,C.L.;Wang,C.Y.(2012):An improved numerical evaluation scheme of the fundamental solution and its derivatives for 3D anisotropic elasticity based on Fourier series.CMES-Computer Modeling in Engineering&Sciences,vol.87,issue 1,pp.1-22.

    Shiah,Y.C.;Lee,Y.M.;Wang,C.C.(2013):BEM Analysis of 3D heat conduction in 3D thin anisotropic media.CMC:Computers,Materials&Continua,vol.33,issue 3,pp.231-257.

    Shumakov,N.V.(1957):A method for the experimental study of the process of heating a solid body.SOVIET Physics-Technical Physics(Translated by Institute of Physics),vol.2,pp.771.

    Singh,K.M.;Tanaka,M.(2001):Dual reciprocity boundary element analysis of inverse heat conduction problems.Computer Methods in Applied Mechanics and Engineering,vol.190,issues 40-41,pp.5283-5295.

    Sladek,J.;Sladek,V.;Hon,Y.C.(2006):Inverse hear conduction problems by meshless local Petrov-Galerkin method.Engineering Analysis with Boundary Elements,vol.30,issue 8,pp.650-661.

    Sparrow,E.M.;Haji-Sheikh,A.;Lundgren,T.S.(1964):The inverse problem in transient heat conduction.J.Appl.Mech.,vol.86,pp.369-375.

    Wang,Z.;Liang,Z.;Wang,B.;Zhang,C.;Kramer,L.(2004):Processing and property investigation of single-walled carbon nanotube(SWNT)buckypaper/epoxy resin matrix nanocomposites:Composites:Part A,vol.35 pp.1225–1232.

    Wei,T.;Li,Y.S.(2009):An inverse boundary problem for one-dimensional heat equation with a multilayer domain.Engineering Analysis with Boundary Elements,vol.33,issue 2,pp.225-232.

    Zed,A.;Elliott,L.;Ingham,D.B.;Lesnic,D.(2000):Boundary element twodimensional solution of an inverse Stokes problem.Engineering Analysis with Boundary Elements,vol.24,issue 1,pp.75-88.

    猜你喜歡
    中多社戲王爾德
    基于模式識(shí)別的圖像中多目標(biāo)自動(dòng)分割和分類研究
    史蒂文森的唯美主義:從王爾德的三種美學(xué)談起
    AR全景圖像光照增強(qiáng)處理中多特征融合算法研究
    電子制作(2019年19期)2019-11-23 08:41:52
    為自己
    華聲文萃(2018年3期)2018-08-04 19:03:18
    為自己
    通信認(rèn)知教學(xué)中多粒度可重用模型建模研究
    電子制作(2016年19期)2016-08-24 07:50:04
    定準(zhǔn)語(yǔ)文課堂的出發(fā)點(diǎn)——丁衛(wèi)軍《社戲》教學(xué)實(shí)錄評(píng)析
    風(fēng)景這邊獨(dú)好——丁衛(wèi)軍《社戲》教學(xué)課例深度研讀
    《社戲》:一篇布滿矛盾的作品——《社戲》課堂實(shí)錄
    網(wǎng)絡(luò)中多敏感屬性數(shù)據(jù)發(fā)布隱私保護(hù)研究
    中出人妻视频一区二区| 亚洲黑人精品在线| 久久中文看片网| 亚洲熟女毛片儿| 欧美乱色亚洲激情| 久久这里只有精品19| 丝袜人妻中文字幕| 中文字幕人妻丝袜一区二区| 丰满的人妻完整版| 日本与韩国留学比较| 夜夜看夜夜爽夜夜摸| 国产伦一二天堂av在线观看| 午夜精品一区二区三区免费看| 精品午夜福利视频在线观看一区| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片免费观看| 精品免费久久久久久久清纯| 精品久久久久久久毛片微露脸| 亚洲熟妇中文字幕五十中出| 一二三四社区在线视频社区8| 少妇裸体淫交视频免费看高清| 欧美黑人巨大hd| 非洲黑人性xxxx精品又粗又长| 欧美zozozo另类| 变态另类丝袜制服| 久久精品人妻少妇| 亚洲中文字幕日韩| 欧美激情久久久久久爽电影| 免费看光身美女| 国产成人精品久久二区二区免费| 真实男女啪啪啪动态图| 午夜激情福利司机影院| 久久久色成人| 久久久久九九精品影院| 久久久久久久午夜电影| 欧美av亚洲av综合av国产av| 男人舔奶头视频| 人妻丰满熟妇av一区二区三区| 欧美乱码精品一区二区三区| 一级黄色大片毛片| 久久国产乱子伦精品免费另类| 国产成人系列免费观看| 亚洲av成人av| 日本a在线网址| 老鸭窝网址在线观看| 亚洲国产色片| 成人18禁在线播放| 久久久久免费精品人妻一区二区| 在线观看66精品国产| 亚洲 欧美 日韩 在线 免费| 亚洲av成人不卡在线观看播放网| 在线永久观看黄色视频| 国产精品av久久久久免费| 免费在线观看成人毛片| 中文字幕久久专区| 国产乱人伦免费视频| 欧美av亚洲av综合av国产av| 久久久久久久午夜电影| 久久性视频一级片| 欧美成人免费av一区二区三区| 丝袜人妻中文字幕| 久久久久国产一级毛片高清牌| 搞女人的毛片| 日韩欧美 国产精品| 一级a爱片免费观看的视频| АⅤ资源中文在线天堂| 成年女人永久免费观看视频| av女优亚洲男人天堂 | 国产成人精品无人区| 国产精品一及| 国产1区2区3区精品| 精品免费久久久久久久清纯| 12—13女人毛片做爰片一| 日本免费一区二区三区高清不卡| 久久久久久九九精品二区国产| 欧美三级亚洲精品| 国产毛片a区久久久久| 一本综合久久免费| 欧美精品啪啪一区二区三区| 欧美绝顶高潮抽搐喷水| 欧美乱色亚洲激情| 精品国内亚洲2022精品成人| 亚洲在线自拍视频| 91九色精品人成在线观看| 国产av一区在线观看免费| 最近最新中文字幕大全电影3| 超碰成人久久| 国产精品影院久久| 19禁男女啪啪无遮挡网站| cao死你这个sao货| 在线观看免费午夜福利视频| 精品久久蜜臀av无| 99国产精品99久久久久| 日韩中文字幕欧美一区二区| 一a级毛片在线观看| 久久久水蜜桃国产精品网| 中国美女看黄片| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 在线观看午夜福利视频| 成人亚洲精品av一区二区| 欧美日本视频| 国产精品综合久久久久久久免费| 国产不卡一卡二| 夜夜爽天天搞| 色av中文字幕| 成人永久免费在线观看视频| 91字幕亚洲| 国产一区二区在线观看日韩 | 欧美三级亚洲精品| 国产主播在线观看一区二区| 51午夜福利影视在线观看| 麻豆国产av国片精品| 日本三级黄在线观看| 久久国产精品影院| 最新中文字幕久久久久 | 中国美女看黄片| 嫁个100分男人电影在线观看| 国产成人影院久久av| 99riav亚洲国产免费| 国产精华一区二区三区| 亚洲熟妇熟女久久| 成人特级av手机在线观看| 黄色女人牲交| 国产三级在线视频| 91av网一区二区| 国产免费av片在线观看野外av| 天堂动漫精品| 一个人免费在线观看的高清视频| 男女之事视频高清在线观看| 母亲3免费完整高清在线观看| 亚洲精品久久国产高清桃花| 十八禁人妻一区二区| 最近在线观看免费完整版| 久99久视频精品免费| aaaaa片日本免费| 国产精品久久电影中文字幕| www.熟女人妻精品国产| 黄色日韩在线| 久久亚洲精品不卡| 亚洲黑人精品在线| 亚洲国产中文字幕在线视频| 黄色日韩在线| 国产成人福利小说| 欧美日韩福利视频一区二区| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 日韩欧美一区二区三区在线观看| 亚洲国产欧美一区二区综合| 国产久久久一区二区三区| 岛国在线观看网站| 最好的美女福利视频网| 精华霜和精华液先用哪个| 欧美国产日韩亚洲一区| 日韩国内少妇激情av| 波多野结衣巨乳人妻| 国产精品1区2区在线观看.| 黄色女人牲交| 十八禁人妻一区二区| 国产高清videossex| 亚洲国产中文字幕在线视频| 日韩欧美在线二视频| 亚洲 欧美一区二区三区| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 嫩草影院入口| 精品久久久久久久久久久久久| 99国产精品一区二区三区| 国产三级在线视频| 欧美日韩中文字幕国产精品一区二区三区| 十八禁网站免费在线| 免费电影在线观看免费观看| 精品国产美女av久久久久小说| 九九久久精品国产亚洲av麻豆 | 男女下面进入的视频免费午夜| 男女做爰动态图高潮gif福利片| 免费高清视频大片| 一级毛片高清免费大全| 欧美绝顶高潮抽搐喷水| 夜夜看夜夜爽夜夜摸| 色在线成人网| 久久久水蜜桃国产精品网| 日日干狠狠操夜夜爽| 嫁个100分男人电影在线观看| 久久伊人香网站| 国产精品99久久99久久久不卡| 久久精品aⅴ一区二区三区四区| 18禁美女被吸乳视频| 日本一本二区三区精品| 国产高潮美女av| 国产精品一区二区三区四区久久| 精品一区二区三区视频在线 | 欧美极品一区二区三区四区| 男女视频在线观看网站免费| 亚洲人与动物交配视频| 国内毛片毛片毛片毛片毛片| 国产精品乱码一区二三区的特点| 亚洲专区国产一区二区| 国产精品亚洲一级av第二区| 久久久久久国产a免费观看| 无人区码免费观看不卡| 久久久久久久久中文| 成年女人看的毛片在线观看| 亚洲中文字幕一区二区三区有码在线看 | 男女下面进入的视频免费午夜| 韩国av一区二区三区四区| 观看免费一级毛片| 亚洲一区高清亚洲精品| 午夜福利成人在线免费观看| 淫妇啪啪啪对白视频| 激情在线观看视频在线高清| 婷婷精品国产亚洲av在线| 国产精品久久久久久精品电影| 国产精品一区二区三区四区久久| 性色av乱码一区二区三区2| or卡值多少钱| 国产精品爽爽va在线观看网站| 亚洲精品粉嫩美女一区| 中国美女看黄片| 99国产精品一区二区蜜桃av| 在线观看日韩欧美| 高清在线国产一区| 国产精品野战在线观看| 又黄又爽又免费观看的视频| 国产三级在线视频| 日韩 欧美 亚洲 中文字幕| 男人舔女人下体高潮全视频| 一a级毛片在线观看| www日本黄色视频网| 91av网一区二区| 精品国产美女av久久久久小说| 他把我摸到了高潮在线观看| 国产精品av久久久久免费| a在线观看视频网站| 久久精品国产99精品国产亚洲性色| 精品国产乱子伦一区二区三区| 美女被艹到高潮喷水动态| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 巨乳人妻的诱惑在线观看| 90打野战视频偷拍视频| 黄片大片在线免费观看| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 亚洲色图av天堂| 国产av在哪里看| 色吧在线观看| 免费在线观看影片大全网站| 小蜜桃在线观看免费完整版高清| 熟妇人妻久久中文字幕3abv| 国产伦一二天堂av在线观看| 夜夜看夜夜爽夜夜摸| 亚洲美女黄片视频| www.999成人在线观看| 亚洲国产欧美一区二区综合| 97超级碰碰碰精品色视频在线观看| 淫妇啪啪啪对白视频| 国产乱人伦免费视频| 色在线成人网| 欧美性猛交黑人性爽| 性色avwww在线观看| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 熟女少妇亚洲综合色aaa.| 国产激情久久老熟女| 久久精品91蜜桃| 国产精品,欧美在线| 国内精品久久久久久久电影| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 欧美一区二区国产精品久久精品| 亚洲avbb在线观看| 国产精品一区二区免费欧美| 亚洲欧美精品综合一区二区三区| 五月伊人婷婷丁香| 18禁国产床啪视频网站| av在线天堂中文字幕| 夜夜爽天天搞| 特大巨黑吊av在线直播| 波多野结衣巨乳人妻| 国产亚洲av高清不卡| 久久久久国产精品人妻aⅴ院| 日本免费一区二区三区高清不卡| 亚洲,欧美精品.| 欧美激情在线99| 非洲黑人性xxxx精品又粗又长| 国产97色在线日韩免费| 久久久精品大字幕| 黄色日韩在线| 18禁黄网站禁片免费观看直播| 综合色av麻豆| 国产淫片久久久久久久久 | 美女扒开内裤让男人捅视频| 免费在线观看视频国产中文字幕亚洲| 老汉色∧v一级毛片| 在线永久观看黄色视频| 俄罗斯特黄特色一大片| 黄色片一级片一级黄色片| 欧美成人免费av一区二区三区| 亚洲国产日韩欧美精品在线观看 | 欧美成狂野欧美在线观看| 精品午夜福利视频在线观看一区| 一级毛片精品| 亚洲成人免费电影在线观看| 亚洲片人在线观看| 成人午夜高清在线视频| 日本黄色片子视频| 天堂av国产一区二区熟女人妻| 老司机在亚洲福利影院| 国产一区在线观看成人免费| 91av网站免费观看| 亚洲欧美日韩卡通动漫| 精品一区二区三区四区五区乱码| 亚洲人成网站高清观看| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 亚洲天堂国产精品一区在线| 国产三级中文精品| 51午夜福利影视在线观看| 国产 一区 欧美 日韩| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 欧美激情在线99| 久久久国产成人精品二区| 亚洲最大成人中文| 99在线人妻在线中文字幕| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 免费一级毛片在线播放高清视频| 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 午夜a级毛片| 亚洲人成伊人成综合网2020| 每晚都被弄得嗷嗷叫到高潮| 国产高清有码在线观看视频| 久久伊人香网站| avwww免费| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区mp4| 亚洲黑人精品在线| 亚洲午夜理论影院| 长腿黑丝高跟| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 91久久精品国产一区二区成人 | 亚洲av熟女| 久久国产精品人妻蜜桃| 国产亚洲av高清不卡| 此物有八面人人有两片| 国产欧美日韩一区二区三| 国产精品 国内视频| 久久久国产成人免费| 国产av一区在线观看免费| 欧美日韩综合久久久久久 | 可以在线观看的亚洲视频| 国产 一区 欧美 日韩| 日本成人三级电影网站| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 国内少妇人妻偷人精品xxx网站 | 真人一进一出gif抽搐免费| 白带黄色成豆腐渣| 国产av不卡久久| 最新美女视频免费是黄的| 国产不卡一卡二| 成人av在线播放网站| 精品福利观看| 国产精品精品国产色婷婷| 黄色丝袜av网址大全| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 岛国在线免费视频观看| 女人被狂操c到高潮| 一级毛片女人18水好多| 在线观看66精品国产| 国产精品影院久久| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 人人妻人人看人人澡| 女人高潮潮喷娇喘18禁视频| а√天堂www在线а√下载| 人妻久久中文字幕网| 欧美不卡视频在线免费观看| 国产一区在线观看成人免费| 天天添夜夜摸| 女人被狂操c到高潮| 在线十欧美十亚洲十日本专区| 久久婷婷人人爽人人干人人爱| 老鸭窝网址在线观看| 九色国产91popny在线| 伊人久久大香线蕉亚洲五| 中文字幕熟女人妻在线| 18禁裸乳无遮挡免费网站照片| 成人鲁丝片一二三区免费| 免费在线观看日本一区| 成年女人看的毛片在线观看| 美女黄网站色视频| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 69av精品久久久久久| 久久久久性生活片| 国产激情欧美一区二区| 国产精品久久久久久久电影 | 国产真实乱freesex| 男女那种视频在线观看| 三级国产精品欧美在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 女人被狂操c到高潮| h日本视频在线播放| 久久精品aⅴ一区二区三区四区| 午夜福利在线观看吧| 天堂网av新在线| 最好的美女福利视频网| а√天堂www在线а√下载| 国产人伦9x9x在线观看| 免费高清视频大片| 国产日本99.免费观看| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看 | 久久久久久久午夜电影| 怎么达到女性高潮| 99久久精品热视频| 国产视频内射| 午夜a级毛片| www国产在线视频色| 亚洲精品在线观看二区| 免费在线观看亚洲国产| 欧美又色又爽又黄视频| 成年人黄色毛片网站| 国语自产精品视频在线第100页| 色精品久久人妻99蜜桃| 曰老女人黄片| 两个人视频免费观看高清| 国产成+人综合+亚洲专区| 久久中文字幕人妻熟女| 欧美高清成人免费视频www| 国产午夜精品久久久久久| 国内精品久久久久精免费| 欧美午夜高清在线| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 长腿黑丝高跟| 亚洲欧美激情综合另类| 国产精品1区2区在线观看.| 国产成人福利小说| 欧美日韩亚洲国产一区二区在线观看| 精品不卡国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 制服丝袜大香蕉在线| 亚洲av成人精品一区久久| 精品电影一区二区在线| 免费人成视频x8x8入口观看| av福利片在线观看| 我要搜黄色片| 国产亚洲精品一区二区www| 琪琪午夜伦伦电影理论片6080| 国产在线精品亚洲第一网站| 香蕉av资源在线| 久久伊人香网站| 欧美av亚洲av综合av国产av| 久久草成人影院| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 国产野战对白在线观看| 在线免费观看不下载黄p国产 | 免费在线观看日本一区| 天堂动漫精品| 天堂网av新在线| 亚洲精品美女久久久久99蜜臀| 最新美女视频免费是黄的| 国产精品免费一区二区三区在线| 中文在线观看免费www的网站| 国产伦精品一区二区三区视频9 | 听说在线观看完整版免费高清| 午夜成年电影在线免费观看| 亚洲欧美日韩无卡精品| 在线看三级毛片| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 亚洲专区字幕在线| 日韩欧美一区二区三区在线观看| 国产高清videossex| 国产精品久久久久久精品电影| 国产真实乱freesex| 国产亚洲精品av在线| 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看 | 一区二区三区国产精品乱码| 天堂√8在线中文| 久久热在线av| 日韩欧美一区二区三区在线观看| 国产高清videossex| 黄片小视频在线播放| 99热这里只有精品一区 | 国产成人精品无人区| 老司机深夜福利视频在线观看| 观看美女的网站| 欧美绝顶高潮抽搐喷水| 亚洲精品中文字幕一二三四区| 少妇熟女aⅴ在线视频| 日本 欧美在线| 国产精品久久久久久久电影 | 欧美黄色淫秽网站| 2021天堂中文幕一二区在线观| 亚洲人与动物交配视频| 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 国产乱人视频| 中文字幕精品亚洲无线码一区| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 亚洲人成网站在线播放欧美日韩| 中国美女看黄片| 国产亚洲av高清不卡| 禁无遮挡网站| 午夜福利在线观看免费完整高清在 | 非洲黑人性xxxx精品又粗又长| av中文乱码字幕在线| 成人鲁丝片一二三区免费| 18禁黄网站禁片免费观看直播| 人妻久久中文字幕网| 久久精品aⅴ一区二区三区四区| 高清在线国产一区| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 十八禁网站免费在线| 麻豆一二三区av精品| 制服丝袜大香蕉在线| 在线十欧美十亚洲十日本专区| 啪啪无遮挡十八禁网站| 一二三四在线观看免费中文在| 高清毛片免费观看视频网站| 国产极品精品免费视频能看的| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线在线| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 精品久久久久久久久久免费视频| 久久精品影院6| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 老司机在亚洲福利影院| 黄片大片在线免费观看| 手机成人av网站| 十八禁人妻一区二区| 亚洲 国产 在线| 久久精品国产99精品国产亚洲性色| 日本在线视频免费播放| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 国产69精品久久久久777片 | 国产单亲对白刺激| 2021天堂中文幕一二区在线观| 日本三级黄在线观看| 国产午夜精品久久久久久| 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 夜夜看夜夜爽夜夜摸| 成人av在线播放网站| 国产三级在线视频| 丰满人妻熟妇乱又伦精品不卡| 麻豆国产97在线/欧美| 日本熟妇午夜| 免费看十八禁软件| 欧美三级亚洲精品| 操出白浆在线播放| 少妇人妻一区二区三区视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧洲综合997久久,| 欧美高清成人免费视频www| 我要搜黄色片| 久久国产精品影院| 麻豆成人午夜福利视频| 神马国产精品三级电影在线观看| 欧美成人免费av一区二区三区| 男女床上黄色一级片免费看| 成人永久免费在线观看视频| 性色avwww在线观看| av天堂中文字幕网| 99热6这里只有精品| 五月玫瑰六月丁香| h日本视频在线播放| 成人鲁丝片一二三区免费| 久久天堂一区二区三区四区| 麻豆一二三区av精品| 国产成人精品无人区| 小说图片视频综合网站| 亚洲人成电影免费在线| 亚洲自拍偷在线| 成熟少妇高潮喷水视频| 亚洲美女视频黄频| 国产综合懂色| 噜噜噜噜噜久久久久久91| 亚洲一区二区三区不卡视频| 搡老妇女老女人老熟妇| 小说图片视频综合网站|