• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-plane Circular Nano-inclusion Problem with Electric Field Gradient and Strain Gradient Effects

    2014-04-14 03:29:30ShashaYangandShengpingShen
    Computers Materials&Continua 2014年6期

    Shasha Yang and Shengping Shen

    1 Introduction

    Developments of nanotechnology in recent decades motivate progress in research of nanocomposites.Nano-scale inclusion,as an essential part of nanocomposites,has been investigated through various theories which are proposed to account for size effect[Wang,Pan and Feng(2008)].To name a few,couple stress elasticity[Wang,Pan and Feng(2008);Lubarda(2003)],micropolar theory[Cheng and He(1995)],strain gradient elasticity[Zhang and Sharma(2005)],electric gradient theory[Yang,Zhou and Li(2006);Mindlin(1968)],surface theory[Sharma and Ganti(2004);Yang,Hu and Shen(2012)]and so on.Herein special attention is focused on gradient theories.

    Recently,Gao and Park(2007)provided explicit variational formulation for a simplified strain gradient elasticity theory(SSGET)which contains only one material length scale parameter.Then size-dependent Eshelby tensors of spherical,plane strain,cylindrical,ellipsoidal and anti-plane inclusion based on SSGET were obtained in a series of articles[Gao and Ma(2009);Ma and Gao(2010);Gao and Ma(2010,2012)].Yang,Zhou and Li(2006)analyzed the effect of electric field gradient in anti-plane problem of a circular inclusion in polarized ceramics.These individual gradient theories promote researchers to combine strain gradient and electric field gradient theory into a unified framework.Hu and Shen(2009)proposed a variational principle considering both the electric field gradient and strain gradient,as well as surface effect and electrostatic force for nano-dielectrics.The theoretical framework can describe size effect,electromechanical coupling and surface effect simultaneously.Basing on polarization gradient and strain gradient,Shen and Hu(2010)developed a framework which took flexoelectric effect,surface effect and electrostatic force into account.Flexoelectric effect[Cross(2006);Zubko,Catalan and Tagantsev(2013)],defined as coupling of strain gradient and polarization(direct effect)and coupling of polarization gradient and strain(inverse effect),have been investigated extensively on inclusion[Maranganti,Sharma and Sharma(2006);Sharma,Maranganti and Sharma(2007)],beam[Yan and Jiang(2013);Liang and Shen(2013)],thin-film[Sharma,Landis and Sharma(2010)]and other topics[Liu,Hu and Shen(2012),(2014);Xu,Hu and Shen(2013)].It is emphasized thatpolarization gradientand electric field gradientcan alternatively be chosen to represent flexoelectric effect[Ma(2008)].Moreover,electric field gradient shows lower symmetry,and this character makes process and results of solving problems simpler and more explicit than polarization gradient consideration.Until now,Eshelby-type nano-inclusion problem including both strain gradient and electric field gradient effect has not been studied yet.In this study,we analyze antiplane nano-scale inclusion problem with electric field gradient and strain gradient effects.

    The outline of this paper is as follows.In Sec.2 the general formulation is given for isotropic centrosymmetric dielectrics.Then anti-plane nano-inclusion problem is analyzed in Eshelby’s frame by means of Green’s function method in Sec.3.Sec.4 gives the analytical expression for anti-plane circular inclusion with corresponding numerical results in Sec.5.Finally,a few concluding remarks are provided in Sec.6.

    2 General formulas

    The governing equations and boundary conditions including strain/electric field gradient effect and surface effect[Hu and Shen(2009)]are derived through the variational principle.Refer to[Hu and Shen(2009)],the general expression for electric Gibbs free energy density function involving the gradients of strain and electric field can be written as:

    Within the assumption of centrosymmetric dielectrics,the odd tensors will vanish according to Neumann principle.The expression ofUbcan be simplified as:

    where a and c are the classical second-order dielectric permittivity tensor and fourorder elasticity constant tensors respectively.f is the flexoelectric tensor while e is the converse flexoelectric tensor according to definitions in Shu et al.(2011).b and g represent purely electric field and elastic nonlocal effect respectively.u and E are the displacement and the electric field tensor,while the subscript comma indicates differentiation with respect to the spatial variables.Additionallyεis the strain tensor defined as usual.

    According to Hu and Shen(2009),the constraints relation are defined as:

    whereφis the electrostatic potential.w and V are the strain gradient tensor and the electric field gradient tensor respectively.The symmetry of the tensors are showed as:εij=εji,wijm=wjim,Vij=Vji.

    Under the infinitesimal deformation assumption,the constitutive equations can be expressed as:

    The governing equations are written as:

    Fiandρa(bǔ)re external body force and body electric charge,respectively.By substituting Eqs.(7)-(10)into Eq.(11)and Eq.(12),the general governing equations based on u andφcan be derived as:

    For isotropic dielectric material,the coefficients a,b,c and g are listed as follows:

    The symmetries of c and g are same with coefficients in Ref.[Gao and Ma(2009)],wherec12,c44are the lame constants andl2having the dimension of length squared is the strain gradient coefficient introduced for isotropic elasticity in Ref.[Gao and Park(2007)].Namely,lis characteristic length of materials which may be related to atomic distance,lattice size,microstructure or others.Refer to[Yang,Zhou and Li(2006)],b has the same symmetry as c as required by symmetry of materials.The non-zero components of a are reduced toa11,a22anda33,which also have the relationa11=a22=a33=adue to isotropy.For flexoelectric tensor f and converse flexoelectric tensor e,Shu et al.(2011)and Quang and He(2011)detailedly investigated the symmetry of the flexoelectric tensors(direct and converse)and the number of independent material parameters for a given symmetry class in different ways.The all non-zero components of e and f for cubic crystals can be listed as below[Shu et al.(2011)]:

    Herein,e11,e12,e44andf11,f12,f44are the independent converse flexoelectric and flexoelectric constants respectively.For isotropic materials,the number of independent parameters will reduce from three to two.In other words,there exists a relationship between these non-zero independent components[Shu et al.(2011)]as:f44+2f12=f11,e12+2e44=e11.This will be used in the following derivations.

    3 Anti-plane problem

    3.1Green’s function solution

    For an anti-plane problem,the displacement and electric potential components are represented by:

    By substituting Eqs.(15)-(18)into Eq.(13)and Eq.(14),after some simplification and calculation,the final governing equations for anti-plane problems can be expressed as:

    By using two-dimensional(2-D)Fourier transforms[Gao and Ma(2012)],the Green’s function for the above two equations can be easily obtained as,respectively:

    3.2Solutions of inclusion problem

    Consider an infinite homogeneous isotropic dielectric body containing an arbitrary shape Eshelby-type inclusion[Eshelby(1957);Mura(1987)].The body is absence of both body force and body charge but with eigenstrainε ?(x),eigenstrain gradient w?(x),eigenelectric field E?(x),and eigenelectric field gradient V?(x)prescribed only inside the inclusion.On account of anti-plane problem,the non-vanishing components of eigenfields are as follows:

    Following Eshelby’s formalism for inclusion problem,the constitutive equations can be revised to:

    Substituting Eq.(24)into Eqs.(11)-(12)then leads to:

    Similarly,by using Eq.(15)-(17)and Eq.(23),Eq.(25)and(26)can be simplified as:

    By comparing Eq.(27)and(28)with Eq.(19)and(20),it can be said that,body forceF3is replaced by:

    and body electric charge is equivalent to:

    According to the definition of Green’s function,the solution of Eq.(27)can be expressed in terms ofG1(x?y)andF3(y)as:

    Now the specific case of uniform eigenstrainε?(x),uniform eigenstrain gradient w?(x),uniform eigenelectric field E?(x),and uniform eigenelectric field gradient V?(x)inside the inclusion occupied by the domain ?Iare considered.Taking into account this fact,Eq.(32)can be further derived to:

    Basing on the constraints relation,the strain field can be readily obtained as:

    Similarly,the solution of Eq.(28)is given as follows:

    From Eq.(35)and Eq.(38),we can explicitly see that strain field and electric filed are uncoupled for this specific anti-plane problem.In other words,strain field is only induced by the prescribed eigenstrain and eigenstrain gradient,while electric filed is just linked to eigenelectric field and eigenelectric field gradient.Based on constitutive laws Eq.(24),the expressions of stress fieldσ(x)and electric displacement D(x)can be obtained simply.Unlike the classical results of antiplane problem where only shear stress and in-plane electric displacement exist,all the components of stress and electric displacement show up in this case.They are listed below as:

    Furthermore we notice that the“new”stress components are induced merely by the corresponding electric field gradient components,and the“new”electric displacement components are only caused by the strain gradient.

    4 An anti-plane circular inclusion

    Figure 1:Schematic of a circular inclusion.

    Consider a circular inclusion of radius R with a domain ?Ias show in Fig.1.The analytical expressions of integral of Green’s function are already given in Gao and Ma(2012)as:

    For x inside the inclusion,and

    For x outside the inclusion,we can obtain analogously

    for x inside the inclusion,and

    The second order Eshelby tensor and the third order Eshelby-like tensor are shown as:

    whereb11=b12+2b44.Using recursion formulas of modified Bessel function(seen in Appendix B),we can readily get:

    for x outside the inclusion.By substituting Eq.(50)-(53)into Eq.(46)-(49),the analytical expression of Eshelby and Eshelby-like tensors for elastic and electric field can be easily obtained.When the eigenstrain,eigenstrain gradient,eigenelectric field and eigenelectric field gradient are given,the corresponding strain and electric field can be derived through Eq.(35)and Eq.(38).Furthermore,using Eq.(40)and Eq.(41)leads to the stress and electric displacement quantities which represent high-order electromechanical coupling to some extent.

    5 Numerical results

    To numerically illustrate the results obtained above,we now choose NaCl material,which is a centrosymmetric dielectrics,to give a series of numerical results.The flexoelectric constants of NaCl are estimated by means of empirical lattice dynamics[Maranganti and Sharma(2009)].In nano-inclusion problems,as a typical microstructure,the influences of inclusion size are what we most interested in.Therefore,we choose the characteristic length asl=m=2nm by reference to inclusion size.Fig.2 shows Eshelby tensor incorporating gradient effects for elastic field.

    Figure 2:Eshelby tensor of strain along a radial direction of the inclusion.

    From Figure 2,it is seen thatS1331varies with the position x and the inclusion sizeR,unlike the classical results which is a constant inside the inclusion(the straight line).The differences between the lines to the classical one are due to the strain gradient effects.WhileRis small,the strain gradient effects are very large and should not be ignored.

    However,the values approach gradually to the result of classical elasticity with increase of inclusion radius.It is noted that on account of the decoupling results of anti-plane inclusion problem of dielectrics,our results of elastic Eshelby tensor are in accordance with solutions derived by Gao and Ma(2012)who used the simplified strain gradient elasticity theory(SSGET)sloving Eshelby-type anti-plane strain inclusion problem.Likewise,Fig.3 gives Eshelby tensor with electric field gradient effects for electric field.We can clearly figure out thatM11are no longer uniform,and have similar tendency withS1331for different position and inclusion size.

    Figure 3:Eshelby tensor of electric field along a radial direction of the inclusion.

    Figure 4:The strain field as a function of position and inclusion size.

    Figure 5:The electric field as a function of inclusion size for fixed positions.

    Figure 6:High-order electromechanical coupling coefficient versus piezoelectric coefficient.

    In the present paper we intensively focus on the analytical results.Pure analytical derivations may work for infinite domain inclusion problem while real micro-structures are more complexed.Combining of analytical and numerical methods[Dong and Atluri(2012a);Dong and Atluri(2012b);Bishay,Dong and Atluri(2014)]is a powerful tool for direct numerical simulations of realistic problems of real material structures,which provide valuable insights for our future work.

    6 Conclusions

    In summary,we analyze the elastic and electric field of anti-plane inclusion problem by incorporating both strain and electric field gradient effect for centrosymmetric dielectrics.The Eshelby tensor,Eshelby-like tensor,strain field,electric field,stress and electric displacement are analytically derived by means of Green’s function method.Unlike the classical results,all the physical quantities taken in account to gradient effects show strongly size-dependent features.Our results indicate that strain and electric field are decoupled which is reasonable.And more importantly,the high order electroelastic coupling appears between stress and electric field.The components of stress which do not exist in classical case can be induced by the electric gradient,and the out-plane electric displacement component can be caused by the strain gradient,that is an good interpretation of flexoelectric coupling effects.The numerical results reveal that,firstly,the strain and electric field gradient effects are significantly strong and should not be ignored when the inclusion size is small.Secondly,the results gradually approach to the classical solution as increase of the inclusion radius.Thirdly,the high-order electromechanical coupling effect in centrosymmetric dielectrics(non-piezoelectric materials)can be equivalent to piezoelectric effect in traditional piezoelectric materials when the inclusion size is small.

    Acknowledgement:The supports from NSFC(Grants No. 11025209,11372238,11302161,11321062 and 11302162)are appreciated.

    Bishay,P.L.;Dong,L.;Atluri,S.N.(2014).Multi-physics computational grains(MPCGs)for direct numerical simulation(DNS)of piezoelectric composite/porous materials and structures.Computational Mechanics,DOI:10.1007/s00466-014-1044-y

    Cheng,Z.;He,L.(1995):Micropolar elastic fields due to a spherical inclusion.International Journal of Engineering Science,vol.33,no.3,pp.389-397.

    Cross,L.E.(2006):Flexoelectric effects:Charge separation in insulating solids subjected to elastic strain gradients.Journal of materials science,vol.41,no.1,pp.53-63.

    Dong,L.;Atluri,S.N.(2012a):Development of 3D Trefftz Voronoi Cells with Ellipsoidal Voids&/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials.Computers Materials and Continua,vol.30,no.1,pp.39-81.

    Dong,L.;Atluri,S.N.(2012b):Development of 3D T-Trefftz Voronoi cell finite elements with/without spherical voids&/or elastic/rigid inclusions for micromechanical modeling of heterogeneous materials.Computers Materials and Continua,vol.29,no.2,pp.169

    Eshelby,J.D.(1957):The determination of the elastic field of an ellipsoidal inclusion,and related problems.Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,vol.241,no.1226,pp.376-396.

    Gao,X.;Ma,H.(2009):Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory.Acta Mechanica,vol.207,pp.163-181.

    Gao,X.;Ma,H.(2010):Strain gradient solution for Eshelby’s ellipsoidal inclusion problem.Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,vol.466,no.2120,pp.2425-2426.

    Gao,X.;Ma,H.(2012):Strain gradient solution for the Eshelby-type anti-plane strain inclusion problem.Acta Mechanica,vol.223,no.5,pp.1067-1080.

    Gao,X.;Park,S.(2007):Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem.International Journal of Solids and Structures,vol.44,pp.7486-7499.

    Hu,S.;Shen,S.(2009):Electric Field Gradient Theory with Surface Effect for Nano-Dielectrics.CMC-Computers,Materials&Continua,vol.13,no.1,pp.63-88.

    Liang,X.;Shen,S.(2013):Size-dependent piezoelectricity and elasticity due to the electric field-strain sradientcoupling and strain gradientelasticity.International Journal of Applied Mechanics,vol.5,no.2,pp.1350015.

    Liu,C.;Hu,S.;Shen,S.(2012):Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire.Smart Materials and Structures,vol.21,no.11,pp.115024.

    Liu,C.;Hu,S.;Shen,S.(2014):Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals.ASME Journal of Applied Mechanics,vol.81,no.5,051007.

    Lubarda,V.A.(2003):Circular inclusions in anti-plane strain couple stress elasticity.International Journal of Solids and Structures,vol.40,no.15,pp.3827-3851.

    Ma,H.M.;Gao,X.L.(2010):Eshelby’s tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory.Acta Mechanica,vol.211,pp.115-129.

    Ma,W.(2008):A study of flexoelectric coupling associated internal electric field and stress in thin film ferroelectrics.physica status solidi(b),vol.245,no.4,pp.761-768.

    Maranganti,R.;Sharma,N.;Sharma,P.(2006):Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects:Green’s function solutions and embedded inclusions.Physical Review B,vol.74,no.1,014110.

    Maranganti,R.;Sharma,P.;(2009):Atomistic determination of flexoelectric properties of crystalline dielectrics.Physical Review B,vol.80,no.5,054109.

    Mindlin,R.D.(1968):Polarization gradient in elastic dielectrics.International Journal of Solids and Structures,vol.4,no.6,pp.637-642.

    Mura,T.(1987)Micro-mechanics of Defects in Solids,vol 3.Springer.

    Quang,H.;He,Q.(2011):The number and types of all possible rotational symmetries for flexoelectric tensors.Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,vol.467,no.2132,pp.2369-2386.

    Sharma,N.;Maranganti,R.;Sharma,P.(2007):On the possibility of piezoelectric nanocomposites without using piezoelectric materials.Journal of the Mechanics and Physics of Solids,vol.55,pp.2328-2350.

    Sharma,N.D.;Landis,C.M.;Sharma,P.(2010):Piezoelectric thin-film superlattices without using piezoelectric materials.Journal of Applied Physics,vol.108,no.2,024304.

    Sharma,P.;Ganti,S.(2004):Size-dependent eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies.ASME Journal of Applied Mechanics,vol.71,no.5,pp.663-671.

    Shen,S.;Hu,S.(2010):A theory of flexoelectricity with surface effect for elastic dielectrics.Journal of the Mechanics and Physics of Solids,vol.58,no.5,pp.665-677.

    Shu,L.;Wei,X.;Pang,T.;Yao,X.;Wang,C.(2011):Symmetry of flexoelectric coefficients in crystalline medium.Journal of Applied Physics,vol.110,no.10,104106.

    Wang,X.;Pan,E.;Feng,W.(2008):Anti-plane Green’s functions and cracks for piezoelectric material with couple stress and electric field gradient effects.European Journal of Mechanics-A/Solids,vol.27,no.3,pp.478-486.

    Xu,Y.;Hu,S.;Shen,S.(2013):Electrostatic potential in a bent flexoelectric semiconductive nanowire.CMES:Computer Modeling in Engineering&Sciences,vol.91,no.5,pp.397-408.

    Yan,Z.;Jiang,L.(2013):Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams.Journal of Applied Physics,vol.113,no.19,194102.

    Yang,J.;Zhou,H.;Li,J.(2006):Electric field gradient effects in an anti-plane circular inclusion in polarized ceramics.Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,vol.462,pp.3511-3522.

    Yang,S.;Hu,S.;Shen,S.(2012):Local electroelastic field and effective electroelastic moduli of piezoelectric nanocomposites with interface effect.CMCComputers,Materials and Continua,vol.29,no.3,pp.279-298.

    Zhang,X.;Sharma,P.(2005):Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects.Physical Review B,vol.72,195345.

    Zubko,P.;Catalan,G.;Tagantsev,A.K.(2013):Flexoelectric effect in solids.Annual Review of Materials Research,vol.43,pp.387-421.

    Appendix A

    For a sufficiently smooth functionF(x),the following differential relations hold:

    Appendix B

    Recursion formulas of modified Bessel function are expressed as:

    日本av手机在线免费观看| 搡老岳熟女国产| 老汉色∧v一级毛片| 嫩草影视91久久| 巨乳人妻的诱惑在线观看| 在线观看一区二区三区激情| 宅男免费午夜| 精品免费久久久久久久清纯 | 757午夜福利合集在线观看| 国产精品熟女久久久久浪| 麻豆成人av在线观看| 久久婷婷成人综合色麻豆| 91成人精品电影| 国产精品久久久人人做人人爽| 十八禁网站免费在线| 中文字幕人妻丝袜制服| 国产精品美女特级片免费视频播放器 | 国产单亲对白刺激| 久久青草综合色| 国产精品一区二区精品视频观看| 国产精品.久久久| 精品人妻在线不人妻| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| 啦啦啦视频在线资源免费观看| 亚洲中文日韩欧美视频| 一级毛片精品| 欧美日韩国产mv在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产综合久久久| 91精品国产国语对白视频| av电影中文网址| 色婷婷久久久亚洲欧美| 在线观看免费视频日本深夜| 亚洲专区国产一区二区| 亚洲伊人色综图| 99久久人妻综合| 精品一区二区三区视频在线观看免费 | 久久性视频一级片| 中文字幕av电影在线播放| 精品国产亚洲在线| 久久久久精品人妻al黑| 欧美在线一区亚洲| 国产精品久久电影中文字幕 | 激情视频va一区二区三区| 久久精品aⅴ一区二区三区四区| 久久人妻熟女aⅴ| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区久久| 精品亚洲成国产av| av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 色综合婷婷激情| 不卡一级毛片| 成人免费观看视频高清| 女人精品久久久久毛片| 亚洲自偷自拍图片 自拍| 精品人妻1区二区| 国产成人精品在线电影| 两人在一起打扑克的视频| 久久国产亚洲av麻豆专区| 亚洲国产成人一精品久久久| 老司机影院毛片| 国产麻豆69| 啦啦啦视频在线资源免费观看| 日本黄色视频三级网站网址 | 日韩人妻精品一区2区三区| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 伊人久久大香线蕉亚洲五| 亚洲欧美激情在线| 亚洲第一av免费看| 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 黑人欧美特级aaaaaa片| 午夜激情av网站| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 精品国产亚洲在线| 亚洲精品美女久久久久99蜜臀| 成人黄色视频免费在线看| 两个人看的免费小视频| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 波多野结衣一区麻豆| 精品少妇久久久久久888优播| 老汉色∧v一级毛片| 老司机午夜十八禁免费视频| 国产99久久九九免费精品| 999久久久精品免费观看国产| 久久天堂一区二区三区四区| 美女主播在线视频| 香蕉久久夜色| 久久久精品免费免费高清| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 另类精品久久| 久久久久精品人妻al黑| 两人在一起打扑克的视频| 国产在视频线精品| 国产又爽黄色视频| 又大又爽又粗| 亚洲色图综合在线观看| 丝袜喷水一区| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 国产精品影院久久| 亚洲精品中文字幕一二三四区 | 在线观看人妻少妇| 视频在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 国产成人欧美| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 一区二区三区国产精品乱码| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美一区二区综合| 一级毛片精品| 亚洲少妇的诱惑av| 国产av精品麻豆| 人人妻人人澡人人看| 色综合欧美亚洲国产小说| 9热在线视频观看99| 日韩制服丝袜自拍偷拍| 欧美日韩中文字幕国产精品一区二区三区 | 窝窝影院91人妻| 丝瓜视频免费看黄片| 男女之事视频高清在线观看| 高潮久久久久久久久久久不卡| 丝瓜视频免费看黄片| 51午夜福利影视在线观看| 在线播放国产精品三级| 在线亚洲精品国产二区图片欧美| 亚洲av日韩在线播放| 午夜成年电影在线免费观看| 中文字幕高清在线视频| av片东京热男人的天堂| 欧美日韩成人在线一区二区| 亚洲中文字幕日韩| 亚洲国产成人一精品久久久| 国产亚洲av高清不卡| 高潮久久久久久久久久久不卡| 免费在线观看日本一区| 色综合婷婷激情| 悠悠久久av| 欧美黑人精品巨大| 久久中文字幕人妻熟女| 高清毛片免费观看视频网站 | 午夜福利影视在线免费观看| 美女视频免费永久观看网站| 亚洲少妇的诱惑av| 国产欧美日韩一区二区三| 极品教师在线免费播放| 欧美乱妇无乱码| 国产激情久久老熟女| 国产一区二区 视频在线| 亚洲中文字幕日韩| 国产高清视频在线播放一区| 99久久人妻综合| 久久婷婷成人综合色麻豆| 国产在线视频一区二区| 国产精品.久久久| 久久久国产成人免费| 99精品久久久久人妻精品| 国产激情久久老熟女| 最新在线观看一区二区三区| 成人精品一区二区免费| 亚洲 国产 在线| 精品国产一区二区三区四区第35| 久久天堂一区二区三区四区| 亚洲黑人精品在线| 操美女的视频在线观看| 国产亚洲午夜精品一区二区久久| 一本综合久久免费| 日韩一区二区三区影片| 一本一本久久a久久精品综合妖精| 狠狠婷婷综合久久久久久88av| 一区二区av电影网| 中文字幕高清在线视频| 亚洲精品在线美女| 国产伦理片在线播放av一区| 亚洲av日韩在线播放| 成人手机av| 脱女人内裤的视频| 黄色成人免费大全| 丝瓜视频免费看黄片| 久久久久精品人妻al黑| 国产黄色免费在线视频| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| 欧美日韩av久久| 日韩免费av在线播放| 国产在线视频一区二区| 大型av网站在线播放| 俄罗斯特黄特色一大片| 国产97色在线日韩免费| av一本久久久久| av不卡在线播放| 久久婷婷成人综合色麻豆| 亚洲精品美女久久av网站| 男女之事视频高清在线观看| 国产成人av教育| 精品第一国产精品| 老司机深夜福利视频在线观看| 亚洲av成人一区二区三| 午夜福利影视在线免费观看| videos熟女内射| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| www.熟女人妻精品国产| 黑人操中国人逼视频| 丰满少妇做爰视频| 国产一区二区三区视频了| h视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 青草久久国产| 怎么达到女性高潮| 亚洲中文字幕日韩| 久久中文看片网| 久久精品成人免费网站| 久久九九热精品免费| 亚洲精品久久午夜乱码| 欧美 日韩 精品 国产| 亚洲一区中文字幕在线| 一边摸一边抽搐一进一出视频| 99久久人妻综合| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 欧美大码av| 亚洲av片天天在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 五月开心婷婷网| 老司机影院毛片| 久久久久国内视频| 久久99一区二区三区| 免费观看a级毛片全部| 国产人伦9x9x在线观看| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 国产黄频视频在线观看| 亚洲欧洲日产国产| 国产精品98久久久久久宅男小说| 国产精品香港三级国产av潘金莲| 99国产精品一区二区蜜桃av | 亚洲人成伊人成综合网2020| 淫妇啪啪啪对白视频| 亚洲国产成人一精品久久久| 人妻一区二区av| 18在线观看网站| 成人影院久久| 每晚都被弄得嗷嗷叫到高潮| 欧美激情高清一区二区三区| 一本色道久久久久久精品综合| 757午夜福利合集在线观看| 国产精品免费一区二区三区在线 | 久久久久精品国产欧美久久久| 日韩欧美国产一区二区入口| 国产欧美日韩综合在线一区二区| 精品国产亚洲在线| 一级片免费观看大全| 制服人妻中文乱码| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 1024香蕉在线观看| 午夜福利免费观看在线| 久久午夜亚洲精品久久| 精品国内亚洲2022精品成人 | 精品久久蜜臀av无| 脱女人内裤的视频| 欧美日韩国产mv在线观看视频| 韩国精品一区二区三区| 成人免费观看视频高清| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| 在线观看人妻少妇| 天堂中文最新版在线下载| 成年女人毛片免费观看观看9 | 国产高清videossex| 女同久久另类99精品国产91| 久久天堂一区二区三区四区| 国产黄色免费在线视频| 久久久精品94久久精品| 亚洲五月色婷婷综合| 亚洲成人国产一区在线观看| 老鸭窝网址在线观看| 制服人妻中文乱码| 国产精品影院久久| 丝袜美腿诱惑在线| 国产成人免费无遮挡视频| 人妻 亚洲 视频| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| 男人操女人黄网站| 动漫黄色视频在线观看| 久久九九热精品免费| 9热在线视频观看99| 国产av精品麻豆| 免费一级毛片在线播放高清视频 | 午夜91福利影院| 国产一区二区三区综合在线观看| 久久人人爽av亚洲精品天堂| 国产免费av片在线观看野外av| 777米奇影视久久| 免费在线观看影片大全网站| 免费观看a级毛片全部| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区大全| 亚洲色图av天堂| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 精品久久久久久久毛片微露脸| 日日夜夜操网爽| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 丰满迷人的少妇在线观看| 欧美变态另类bdsm刘玥| 高清av免费在线| 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 国产无遮挡羞羞视频在线观看| 久久精品91无色码中文字幕| 水蜜桃什么品种好| 老鸭窝网址在线观看| 欧美激情久久久久久爽电影 | 欧美成人午夜精品| 免费人妻精品一区二区三区视频| 亚洲精品在线美女| 免费观看a级毛片全部| 热re99久久精品国产66热6| 欧美日韩成人在线一区二区| 精品一区二区三区视频在线观看免费 | 狂野欧美激情性xxxx| 高清黄色对白视频在线免费看| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 久久久久久久国产电影| 一个人免费在线观看的高清视频| 亚洲综合色网址| 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看| av不卡在线播放| 亚洲视频免费观看视频| 亚洲伊人久久精品综合| 手机成人av网站| 亚洲精品一二三| 国产成人av教育| 精品国内亚洲2022精品成人 | 淫妇啪啪啪对白视频| 国产日韩欧美亚洲二区| 电影成人av| 黄色毛片三级朝国网站| 国产在线观看jvid| 汤姆久久久久久久影院中文字幕| 窝窝影院91人妻| 国产淫语在线视频| 成人黄色视频免费在线看| 中文字幕精品免费在线观看视频| 日韩欧美一区二区三区在线观看 | 亚洲精品美女久久久久99蜜臀| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区视频在线观看免费 | 一级毛片精品| 精品少妇黑人巨大在线播放| 精品国产乱子伦一区二区三区| 丁香欧美五月| 99热网站在线观看| 国产又爽黄色视频| 色尼玛亚洲综合影院| 另类亚洲欧美激情| 国产一区二区 视频在线| 人人妻人人爽人人添夜夜欢视频| 日日夜夜操网爽| 国产三级黄色录像| 咕卡用的链子| 精品免费久久久久久久清纯 | 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 人妻一区二区av| 午夜免费鲁丝| 性高湖久久久久久久久免费观看| 中文字幕av电影在线播放| 亚洲中文av在线| 99国产精品99久久久久| 黑丝袜美女国产一区| 成人永久免费在线观看视频 | 亚洲精品在线美女| 亚洲人成电影免费在线| 日韩欧美国产一区二区入口| 日韩中文字幕视频在线看片| 精品人妻在线不人妻| 夫妻午夜视频| 男女床上黄色一级片免费看| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃| 岛国在线观看网站| 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 久久香蕉激情| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 啦啦啦免费观看视频1| 欧美中文综合在线视频| av视频免费观看在线观看| 伦理电影免费视频| 久久久久精品人妻al黑| 久久精品国产综合久久久| 中文字幕人妻丝袜制服| 黄色成人免费大全| 波多野结衣一区麻豆| 大型黄色视频在线免费观看| 桃花免费在线播放| av欧美777| 91大片在线观看| 精品人妻熟女毛片av久久网站| 啦啦啦在线免费观看视频4| 国产欧美日韩一区二区三| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 久久人妻熟女aⅴ| 精品国产一区二区三区久久久樱花| 91av网站免费观看| 国产精品电影一区二区三区 | 757午夜福利合集在线观看| 精品国产乱子伦一区二区三区| 麻豆乱淫一区二区| 国产免费av片在线观看野外av| 久久久久视频综合| 美女视频免费永久观看网站| 电影成人av| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三| 一区二区av电影网| 国产精品一区二区精品视频观看| 亚洲中文av在线| 国产高清videossex| av天堂在线播放| 成年人黄色毛片网站| 国产精品久久久久久精品电影小说| 极品教师在线免费播放| 国产成人免费无遮挡视频| 一个人免费在线观看的高清视频| 欧美人与性动交α欧美软件| 久久久久国内视频| 老熟妇仑乱视频hdxx| 操出白浆在线播放| 色在线成人网| 正在播放国产对白刺激| 国产在线免费精品| 超碰成人久久| 免费人妻精品一区二区三区视频| 三上悠亚av全集在线观看| 桃花免费在线播放| 一区二区日韩欧美中文字幕| 精品国产乱子伦一区二区三区| 视频区欧美日本亚洲| 啦啦啦在线免费观看视频4| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 美女主播在线视频| 国产日韩欧美在线精品| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区| 十八禁人妻一区二区| 男人舔女人的私密视频| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 精品卡一卡二卡四卡免费| 69av精品久久久久久 | 精品久久久久久电影网| 亚洲国产看品久久| 欧美久久黑人一区二区| 精品国产一区二区三区久久久樱花| 精品福利观看| 一区在线观看完整版| 国产男靠女视频免费网站| 熟女少妇亚洲综合色aaa.| 午夜福利,免费看| 亚洲色图综合在线观看| 亚洲国产精品一区二区三区在线| 另类精品久久| 亚洲精品乱久久久久久| 欧美黄色片欧美黄色片| netflix在线观看网站| 啪啪无遮挡十八禁网站| 国产欧美日韩一区二区三区在线| 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 亚洲专区字幕在线| 青草久久国产| 日韩成人在线观看一区二区三区| 久久人妻av系列| 国产男女超爽视频在线观看| 九色亚洲精品在线播放| 99久久国产精品久久久| 丁香欧美五月| av天堂久久9| 精品久久久久久久毛片微露脸| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 久久人妻福利社区极品人妻图片| 又紧又爽又黄一区二区| 国产国语露脸激情在线看| 国产又爽黄色视频| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 蜜桃国产av成人99| 精品欧美一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 夜夜骑夜夜射夜夜干| 亚洲五月婷婷丁香| 极品少妇高潮喷水抽搐| 伦理电影免费视频| 99精国产麻豆久久婷婷| 日韩中文字幕欧美一区二区| 在线av久久热| 日本精品一区二区三区蜜桃| 热99国产精品久久久久久7| 高清毛片免费观看视频网站 | 久久精品亚洲熟妇少妇任你| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| 免费观看人在逋| 日本精品一区二区三区蜜桃| 精品卡一卡二卡四卡免费| 麻豆av在线久日| 亚洲伊人色综图| 成人影院久久| 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费电影在线观看| 99热网站在线观看| 亚洲av美国av| 又黄又粗又硬又大视频| 男人操女人黄网站| avwww免费| 一区二区三区国产精品乱码| 久久精品成人免费网站| 国产野战对白在线观看| 我的亚洲天堂| 亚洲一码二码三码区别大吗| 天天躁夜夜躁狠狠躁躁| 伦理电影免费视频| 精品国产乱码久久久久久男人| 亚洲熟女毛片儿| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 人妻久久中文字幕网| 大香蕉久久网| 黄色成人免费大全| 久9热在线精品视频| 91字幕亚洲| 成人三级做爰电影| 国产三级黄色录像| 在线观看免费视频日本深夜| 久久精品国产99精品国产亚洲性色 | 日韩大码丰满熟妇| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 亚洲av日韩在线播放| 亚洲专区中文字幕在线| 夫妻午夜视频| 久久中文字幕人妻熟女| 老汉色∧v一级毛片| 国产精品久久电影中文字幕 | 久久天躁狠狠躁夜夜2o2o| 日本五十路高清| 精品一区二区三区av网在线观看 | 热re99久久国产66热| 国产成人影院久久av| 精品亚洲成a人片在线观看| 色视频在线一区二区三区| 天天操日日干夜夜撸| 国产深夜福利视频在线观看| 国产日韩一区二区三区精品不卡| 狠狠狠狠99中文字幕| 伊人久久大香线蕉亚洲五| 久久影院123| 高清黄色对白视频在线免费看| 成人国产一区最新在线观看| 制服人妻中文乱码| 亚洲国产精品一区二区三区在线| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全电影3 | 日本av免费视频播放| 亚洲精品久久成人aⅴ小说| 午夜91福利影院| 亚洲天堂av无毛| 久久精品国产亚洲av香蕉五月 | 国产又爽黄色视频| 中文字幕高清在线视频| 国产色视频综合| 在线观看免费视频网站a站| 女人爽到高潮嗷嗷叫在线视频| 久久九九热精品免费| 精品一品国产午夜福利视频| 亚洲国产欧美网| 欧美精品一区二区免费开放| 亚洲精品久久成人aⅴ小说| 搡老熟女国产l中国老女人| 69精品国产乱码久久久| 欧美变态另类bdsm刘玥| 欧美性长视频在线观看|