• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Johnson-Cook Constitutive Model for Lead-free Solder Using Genetic Algorithm and Finite Element Simulations

    2014-04-14 03:29:24LiuandHsu
    Computers Materials&Continua 2014年6期

    D.S.Liu and C.L.Hsu

    1 Introduction

    As portable electronic products play an increasingly important role in daily life,their reliability when subjected to accidental drops/impacts is recognized as an important concern.Previous studies have shown that in the event of an accidental drop or impact,the solder joints in the board level packages[Tummala,Rymaszewski and Klopfenstein(1997)]of such products can experience strain rates as high as 102s?1[Yeh and Lai(2007)].Therefore,developing a thorough understanding of the mechanical behavior of lead-free solders at high strain rates is essential in ensuring the reliability of mobile electronic devices.

    The mechanical response of lead and lead-free solders at low strain rates of 10?6~10?1s?1have been extensively examined[Plumbridge and Gagg(2000);Kim,Huh and Suganuma(2002);Kanchanomai,Miyashita and Mutoh(2002);Amagai,Watanabe,Omiya,Kishimoto and Shibuya(2002);Pang and Xiong(2005)].Moreover,a small number of researchers have also investigated the dynamic properties of solder material at higher strain rates.For example,Lee and Dai(2001)and Wang and Yi(2002)investigated the dynamic behavior of 63Sn-37Pb solder using the split-Hopkinson pressure and torsion bar(SHPB and SHTB)system.Siviour,Walley,Proud and Field(2005)used a SHPB system to investigate the stress-strain behavior of lead and lead-free solders as a function of both the strain rate(102~104s?1)and the deformation temperature.However,in all these studies,the solder specimens had the form of uniform cylinders,whereas in practical electronic applications,the electrical connections are generally realized using solder ball joints.Moreover,the specimens were not reflowed prior to the impact tests,and thus their microstructures were different from those of conventional reflowed solder joints.Finally,the finding of these studies that solder joints tend toward brittle failure at high strain rates was not verified by experimental observations.

    Accordingly,in the present study,a micro-impact tester is used to obtain the forcetime curves of reflowed 96.5Sn-3Ag-0.5Cu solder ball joints in impact tests performed at speeds of 0.3~1.0 m/s.A Finite Element(FE)model is constructed of a single solder ball joint mounted on a substrate.Numerical simulations are then performed to investigate the dynamic behavior of the ball joint under impact testing given the use of the Johnson-Cook(J-C)constitutive model.The optimal values of the constants in the J-C model are determined using a Genetic Algorithm based on the experimental results obtained from a shear loading test performed at an impact velocity of 0.5 m/s(see Fig.1).The validity of the proposed approach is demonstrated by comparing the simulation results for the load-time response of single solder ball joints at impact velocities of 0.3~1.0 m/s with the equivalent experimental results.

    2 Experimental Procedure

    Figure 2 presents a photograph of the experimental setup.The test specimen comprised an array of 96.5Sn-3Ag-0.5Cu solder ball joints deposited on a bismaleimide triazine(BT)laminate substrate coated with a thin layer of electrolytic nickel/gold(Ni/Au).The solder joints were fabricated using a mask with a 380μm opening and were reflowed in accordance with the profile shown in Fig.3.The impact tests were performed using an Instron micro-impact system with impact speeds of 0.3,0.5,0.7 and 1.0 m/s,respectively.Prior to each test,a vision alignment system was used to check for a parallel alignment of the striking head with the specimen.In addition,a shear height of 50μm was obtained by carefully adjusting the position of the X-Y-Z stage supporting the specimen fixture in the vertical direction.The load applied to the solder joint in each test was sensed continuously over the course of the impact using a 45 N load cell with a linearity of 0.4%FS(Full Scale).The corresponding displacement of the solder jointwas measured using a linear variable differential transformer(LVDT)with a measurement resolution of 0.1μm.

    Figure 1:Flowchart showing hybrid experimental/numerical method used to obtain optimal constants of Johnson-Cook constitutive model for 96.5Sn-3Ag-0.5Cu solder alloy.

    Time-series images of the fracture process were acquired using a commercial highspeed digital camera(Vision Research,Model Phantom V310)with a maximum frame rate capability of500,000 frames persecond(fps).To obtain high-magnification images of the specimen during the impact event,the camera was fitted with a combined QIOPTIC Optem Zoom 125C optical lens system.Moreover,the solder/substrate interface was illuminated by a remote super bright LED light source(U-Technology,Model UFLS-50-12W)coupled through a flexible light guide with an output diameter of 12 mm.Consecutive images of the impact event were acquired at a frame rate of 78,212 fps(equivalent to a 12-μs inter-image interval)and an image resolution of 256 x 128 pixels over a period of 0.2 msec.

    Figure 2:Photograph showing high-speed camera system and micro-impact test setup.

    Figure 3:Reflow profile applied in solder joint fabrication process.

    3 Ball Shear Simulation Model

    3.1Strain-Rate Dependent Elastic-Plastic Model

    Previous studies have shown that lead-free solder alloy exhibits a strain-rate dependent response under impact loading[Pang,Xiong and Low(2004);Lall,Shantaram,Suhling and Locker(2012)].In the present study,the rate-dependent elasticplastic behavior of the 96.5Sn-3Ag-0.5Cu solder ball joints was described using the Johnson-Cook constitutive model,which has the form[Johnson and Cook(1983)]:

    In addition,A,B,n,Candmare the constants of the empirical model.ConstantAis the yield stress(as determined from quasi-static compressive strain-stress data),whileBandnincorporate the effects of strain hardening.ConstantCis a multiplicative constant used to scale the instantaneous strain rate in accordance with the reference strain rate.Finally,mdescribes the effect of thermal softening.In the present study,the effects of the experimental temperature on the material properties of the 96.5Sn-3Ag-0.5Cu solder were assumed to be sufficiently small to be neglected.Thus,the final term in the constitutive relationship was simply ignored.

    3.2Finite Element Model

    In constructing the Finite Element(FE)model of the shear loading test,the size of the spherical solder ball was determined by means of experimental measurements.Specifically,the diameter of a solder ball in the periphery of the ball array was measured initially from above using an optical microscope and then from the side using the microscope attached to a Vickers micro-hardness testing machine.The diameter was found to be 463μm in both cases.For confirmation purposes,half of the solder ball was ground away and the diameter was measured once again in the central cross-section position using the optical microscope.The geometry information was then used to construct the ball joint/substrate model shown in Fig.4.

    Figure 4:Configuration of test specimen.

    Figure 5:(a)2-D ball shear model,and(b)3-D half-symmetry finite element model.

    Figures 5(a)and 5(b)show the two-dimensional and three-dimensional models of the impact test configuration.The three-dimensional model comprised 52,563 linear hexahedral solid elements with a total of 171,489 degrees of freedom.(Note that the degrees of freedom of the nodes on the lower surface of the substrate were fixed.)A surface-to-surface contact mode was applied between the solder mask and the solder joint.Furthermore,the shear tool was assumed to have a perfectly rigid wall.The simulations were performed using the commercial LS-DYNA solver(v.971).In simulating the impact test,a displacement was exerted on the tool along the X-direction.Note that the time-varying displacement of the tool was controlled in accordance with the experimental LVDT displacement data.To ensure the stability of the numerical solutions,the time step should not exceed the critical time integration interval,which in general is proportional to the minimum element size in the FE model[Hallquist(2007)].Thus,in performing the present simulations,the time step was specified as 0.9.Finally,the elastic-plastic properties of the solder ball joint were modeled using the Johnson-Cook(J-C)constitutive equation.The remaining components in the model were assumed to be fabricated of simple linear elastic materials with the properties shown in Tab.1.(Note that in the table,Eis the Young’s modulus,ρis the mass density,andνis the Poisson’s ratio.)

    Table 1:Material properties of components in FE model

    3.3Determination of constitutive parameters in J-C model

    In the present study,the optimal values of the constants in the J-C constitutive model(i.e.,A,B,n,andC)were determined using a Genetic Algorithm(GA).In the iterative GA solution procedure,the fitness(i.e.,quality)of the solutions was determined by comparing the load-time curve produced by the FE solver given an impact speed of 0.5 m/s with the experimental load-time curve.Specifically,the objective function(OF)was defined as follows[Liu,Tsai and Lyu(2009)]:

    whereiis the index of the discretized point,Nis the total number of discretized points,FTestis the force data obtained from the experimental micro-impact test,andFFEMis the force data obtained from the FE simulations.Note thatFTestandFFEMrepresent the reaction forces acting on the shear tool during the impact process and were obtained by discretizing the load-time curves obtained in the micro-impact test and FE simulations,respectively,using a uniform time interval.

    The detailed steps in the GA optimization procedure can be summarized as follows:

    Step 1.Create initial population comprising 20 candidate solutions for A,B,n and C with values randomly assigned in the ranges of 90–1539 MPa,177–1120 MPa,0.12–0.42 and 0.006–0.060,respectively.

    Step 2.Encode the values assigned to each design parameter(i.e.,each constant)in the form of L-bit binary numbers in accordance with

    whereDmaxandDminare the upper and lower bounds of the corresponding parameter range,respectively,andδis a coefficient used to increase the precision.Concatenate the four binary sequences relating to the J-C constants in order to create a single binary string(chromosome)for each of the 20 candidate solutions.

    Step 3.For each chromosome,simulate the load-time curve over an interval of 0~0.11 msec given an assumed impact speed of 0.5 m/s.

    Step 4.Calculate the fitness of each candidate solution using Eq.(2).

    Step 5.Select individual candidates randomly with a probability of 0.08 and perform two-point crossover(reproduction)with a probability of 0.80.

    Step 6.Perform random mutation with a probability of 0.001[Chen and Chen(1997)].

    Step 7.For the new population of candidate solutions,repeat Steps 1~6 iteratively until the pre-assigned number of generations have been performed(i.e.,100 in the present study),or the optimal solution remains unchanged from one generation until the next.

    Table 2 summarizes the schemes and parameter values used in the present GA.The optimal solution was found to converge after approximately 7 generations.Thus,for computational efficiency,the GA procedure was terminated after 10 generations(see Fig.6).

    4 Results and Discussion

    Table 3 compares the optimalvaluesofthe J-C parameters determined in the present study using the GA(upper row)with the experimentally-determined values presented in the literature.It is noted that the discrepancy between the present results and those presented in the literature is due mainly to differences in the solder microstructure in each case.

    Figure 7 compares the simulation images of the impact event given an impact speed of 0.5 m/s with the experimental observations.It is seen that a good qualitative agreement exists between the two sets of results.Figure 8 compares the FE simulation results for the load-time response of the solder ball joint with the experimental results given an impact speed of 0.5 m/s.Again,a good agreement is observed between the two sets of results.Thus,the validity of the optimal parameter values obtained using the GA approach is confirmed.Figures 9~11 compare the simulated load-time response of the solder ball with the experimental results given impacts speeds of 0.3 m/s,0.7 m/s and 1.0 m/s,respectively.In every case,a good agree-ment exists between the simulated and experimental load-time curves.Thus,the global optimality of the J-C constants(computed on the basis of a loading speed of 0.5 m/s)is confirmed.For comparison purposes,Figs.8~11 also show the simulation results obtained using the FE model given the J-C parameters determined in[Qin,An and Chen(2010)]using an SHPB approach.A poor match is observed with the load-time curves obtained in the present study.

    Table 2:Parameters and schemes used in GA optimization procedure

    Figure 6:Convergence of solution fitness over iterative GA solution procedure.

    Table 3:Johnson-Cook model parameters for 96.5Sn-3Ag-0.5Cu solder alloy

    Figure 7:Solder joint deformation and fracture process:(a)simulation results,and(b)experimental observations.

    Figure 8:Comparison of experimental and simulation results for load-time response given impact speed of 0.5 m/s.

    Figure 9:Comparison of experimental and simulation results for load-time response given impact speed of 0.3 m/s.

    Figure 10:Comparison of experimental and simulation results for load-time response given impact speed of 0.7 m/s.

    Figure 11:Comparison of experimental and simulation results for load-time response given impact speed of 1.0 m/s.

    5 Conclusions

    This study has proposed a hybrid experimental/numerical method for determining the optimal values of the Johnson-Cook constitutive model for lead-free 96.5Sn-3Ag-0.5Cu solder alloy.Specifically,the optimal parameter values have been determined using a Genetic Algorithm based on FEsimulations ofa shear-load impact test performed at a speed of 0.5 m/s and the experimental load-time curve obtained at the same speed.It has been shown that the simulated load-times curves obtained using the optimalJ-C parametersare in good agreementwith the experimentalloadtime curves not only at the considered impact speed of 0.5 m/s,but also at a lower speed of 0.3 m/s and higher speeds of 0.7 m/s and 1.0 m/s,respectively.Thus,the robustness of the proposed hybrid approach is confirmed.

    Acknowledgement:The currentauthors gratefully acknowledge the financialsupportprovided to thisstudy by the NationalScience Council,Taiwan,R.O.C.,under Grant No.NSC 101-2221-E-194-014-MY3 and NSC 101-2923-E-194-002-MY3.

    Amagai,M.;Watanabe,M.;Omiya,M.;Kishimoto,K.;Shibuya,T.(2002):Mechanical characterization of Sn–Ag-based lead-free solders.Microelectronics Reliability,vol.42,no.6,pp.951–966.

    Chen,T.Y.;Chen,C.J.(1997):Improvements of simple genetic algorithm in structural design.International Journal for Numerical Methods in Engineering,Vol.40,pp.1323–1334.

    Hallquist,J.O.(2007):LS-DYNA keyword user’s manual(version 971).Livermore Software Technology Corp,Livermore,USA.

    Johnson,G.R.;Cook,W.H.(1983):A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures.Proceedings of the 7th International Symposium on Ballistics,pp.541–547.

    Kim,K.S.;Huh,S.H.;Suganuma,K.(2002):Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys.Materials Science&Engineering A,vol.333,pp.106–114.

    Kanchanomai,C.;Miyashita Y.;Mutoh Y.(2002):Low-cycle fatigue behavior of Sn-Ag,Sn-Ag-Cu,and Sn-Ag-Cu-Bi lead-free solders.Journal of Electronic Materials,vol.31,no.5,pp.456–465.

    Lee,S.W.R.;Dai,L.H.(2001):Characterization of strain rate-dependent behavior of 63Sn-37Pb solder using split hopkinson torsional bars(SHTB).Proceedings of the 13th Symposium on Mechanics of SMT&Photonic Structures,pp.1–6.

    Lall,P.;Shantaram,S.;Suhling,J.;Locker,D.(2012):Effect of high strain-rate on mechanical properties of SAC105 and SAC305 leadfree alloys.Proceedings of the 62nd Electronic Components&Technology Conference,pp.1313–1326.

    Liu,D.S.;Tsai,C.Y.;Lyu,S.R.(2009):Determination oftemperature-dependent elasto-plastic properties of thin-film by MD nanoindentation simulations and an inverse GA/FEM computational scheme.CMC:Computers Materials&Continua,vol.11,no.2,pp.147–164.

    Niu,X.;Yuan,G.;Li,Z.;Shu,X.(2008):Study on dynamic failure model of lead-free solders using SHPB techniques.International Journal of Modern Physics B,vol.22,no.9-11,pp.1117–1122.

    Plumbridge,W.J.;Gagg,C.R.(2000):The mechanical properties of leadcontaining and lead-free solders–meeting the environmental challenge.Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials Design and Applications,vol.214,pp.153–161.

    Pang,J.H.L.;Xiong,B.S.;Low,T.H.(2004):Comprehensive Mechanics Characterization of Lead-free 95.5Sn-3.8Ag-0.7Cu Solder.Micromaterials and Nanomaterials,vol.3,pp.86–93.

    Pang,J.H.L.;Xiong,B.S.(2005):Mechanical properties for 95.5Sn-3.8Ag-0.7Cu lead-free solder alloy.IEEE Transactions on Components and Packaging Technologies,vol.28,no.4,pp.830–840.

    Qin,F.;An,T.;Chen,N.(2010):Strain rate effects and rate-dependent constitutive models of lead-based and lead-free solders.Journal of Applied Mechanics,vol.77,pp.011008–1–11.

    Siviour,C.R.;Walley,S.M.;Proud,W.G.;Field,J.E.(2005):Mechanical properties of SnPb and lead-free solders at high rates of strain.Journal of Physics D:Applied Physics,vol.38,no.22,pp.4131–4139.

    Tummala,R.R.;Rymaszewski,E.J.;Klopfenstein,A.G.(1997):Microelectronics Packaging Handbook.Chapman&Hall.

    Wang,B.;Yi,S.(2002):Dynamic plastic behavior of 63 wt%Sn 37 wt%Pb eutectic solder under high strain rates.Journal of Materials Science Letters,vol.21,no.9,pp.697–698.

    Yeh,C.L.;Lai,Y.S.(2007):Insights into correlation between board-level drop reliability and package-level ball impact test characteristics.IEEE Transactions on Electronics Packaging Manufacturing,vol.30,no.1,pp.84–91.

    国产精品偷伦视频观看了| 一本久久精品| 一区在线观看完整版| 啦啦啦 在线观看视频| 国产精品亚洲一级av第二区| 久久青草综合色| 高清av免费在线| 日本一区二区免费在线视频| 久久精品91无色码中文字幕| 五月开心婷婷网| 巨乳人妻的诱惑在线观看| 国产亚洲一区二区精品| 亚洲专区字幕在线| 美女扒开内裤让男人捅视频| 欧美亚洲 丝袜 人妻 在线| 国产一区二区三区在线臀色熟女 | 母亲3免费完整高清在线观看| 女人久久www免费人成看片| 99re在线观看精品视频| 亚洲欧美精品综合一区二区三区| 黄色毛片三级朝国网站| 男女高潮啪啪啪动态图| e午夜精品久久久久久久| 久久久久国内视频| 肉色欧美久久久久久久蜜桃| 成年人免费黄色播放视频| 亚洲精品国产精品久久久不卡| tube8黄色片| 一边摸一边做爽爽视频免费| 啦啦啦在线免费观看视频4| 91老司机精品| 精品少妇久久久久久888优播| 大片免费播放器 马上看| 啦啦啦视频在线资源免费观看| 色尼玛亚洲综合影院| 别揉我奶头~嗯~啊~动态视频| 叶爱在线成人免费视频播放| 国产真人三级小视频在线观看| 精品少妇久久久久久888优播| 欧美日韩视频精品一区| 久久中文字幕一级| 久久久欧美国产精品| 亚洲色图av天堂| 一级毛片电影观看| 国产成人影院久久av| 国产主播在线观看一区二区| 咕卡用的链子| 老司机福利观看| 肉色欧美久久久久久久蜜桃| 午夜福利乱码中文字幕| 久久久精品区二区三区| 黄片播放在线免费| 国产亚洲欧美精品永久| 中文字幕色久视频| 视频区图区小说| 99久久国产精品久久久| 一区二区三区精品91| 国产av精品麻豆| 午夜福利在线免费观看网站| 欧美精品人与动牲交sv欧美| 久久免费观看电影| 国产精品.久久久| 99re6热这里在线精品视频| 免费黄频网站在线观看国产| 欧美+亚洲+日韩+国产| 国产亚洲一区二区精品| 在线十欧美十亚洲十日本专区| 一本大道久久a久久精品| 99精品在免费线老司机午夜| 午夜成年电影在线免费观看| 亚洲精品乱久久久久久| 国产一区二区在线观看av| 欧美精品人与动牲交sv欧美| 91麻豆精品激情在线观看国产 | 亚洲精品在线美女| 成人18禁高潮啪啪吃奶动态图| 国产精品秋霞免费鲁丝片| 国产福利在线免费观看视频| 久久人妻福利社区极品人妻图片| 90打野战视频偷拍视频| 精品国产乱码久久久久久男人| 天堂中文最新版在线下载| 中文字幕人妻丝袜制服| av网站免费在线观看视频| 丝袜美腿诱惑在线| 18禁美女被吸乳视频| 国产伦人伦偷精品视频| 99精国产麻豆久久婷婷| 久久久久久久精品吃奶| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久小说| 国产一区二区在线观看av| 精品国产一区二区三区久久久樱花| 纵有疾风起免费观看全集完整版| 亚洲一码二码三码区别大吗| 中文字幕另类日韩欧美亚洲嫩草| 国产在线免费精品| 80岁老熟妇乱子伦牲交| 精品国产超薄肉色丝袜足j| 黄色 视频免费看| 精品亚洲乱码少妇综合久久| 午夜福利乱码中文字幕| 欧美变态另类bdsm刘玥| 黄片小视频在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看影片大全网站| 久久国产精品影院| 亚洲欧美精品综合一区二区三区| 国产精品98久久久久久宅男小说| 91精品国产国语对白视频| 国产精品欧美亚洲77777| 一进一出抽搐动态| 亚洲一区二区三区欧美精品| 免费女性裸体啪啪无遮挡网站| 18禁国产床啪视频网站| 亚洲美女黄片视频| 丰满饥渴人妻一区二区三| 王馨瑶露胸无遮挡在线观看| 2018国产大陆天天弄谢| 国产av又大| 男女之事视频高清在线观看| 日本a在线网址| 国产精品自产拍在线观看55亚洲 | 99国产极品粉嫩在线观看| 老熟妇仑乱视频hdxx| 好男人电影高清在线观看| 亚洲少妇的诱惑av| 精品亚洲成国产av| 老熟女久久久| 国产野战对白在线观看| 韩国精品一区二区三区| 一个人免费看片子| 亚洲男人天堂网一区| 国产一区二区激情短视频| 午夜福利在线免费观看网站| 狠狠婷婷综合久久久久久88av| 国产一区二区激情短视频| 日韩欧美三级三区| h视频一区二区三区| 日韩欧美国产一区二区入口| 每晚都被弄得嗷嗷叫到高潮| 麻豆成人av在线观看| 欧美激情久久久久久爽电影 | 精品久久蜜臀av无| 国产成人一区二区三区免费视频网站| 久久精品亚洲av国产电影网| 又大又爽又粗| 一区二区三区精品91| 欧美日韩福利视频一区二区| 国产成人欧美在线观看 | 黄频高清免费视频| 日韩视频一区二区在线观看| 99国产精品一区二区蜜桃av | www.999成人在线观看| 91精品三级在线观看| 精品少妇黑人巨大在线播放| 老汉色av国产亚洲站长工具| 亚洲熟妇熟女久久| 久久久久精品人妻al黑| 十八禁网站免费在线| 十八禁网站免费在线| 捣出白浆h1v1| 亚洲精品美女久久av网站| 捣出白浆h1v1| 久久中文字幕一级| 男女免费视频国产| 午夜福利在线观看吧| 制服诱惑二区| 精品熟女少妇八av免费久了| 无人区码免费观看不卡 | 国产精品亚洲一级av第二区| 日韩免费av在线播放| 国产又爽黄色视频| www.999成人在线观看| 午夜福利在线免费观看网站| 国产精品 国内视频| 中文欧美无线码| 桃花免费在线播放| av又黄又爽大尺度在线免费看| 日韩欧美免费精品| 亚洲全国av大片| 老熟女久久久| 色在线成人网| 三上悠亚av全集在线观看| 精品一区二区三区视频在线观看免费 | 久久精品91无色码中文字幕| 最黄视频免费看| 热99re8久久精品国产| 91麻豆av在线| 黄色怎么调成土黄色| 亚洲欧美一区二区三区久久| 免费日韩欧美在线观看| 悠悠久久av| 免费黄频网站在线观看国产| av视频免费观看在线观看| 亚洲久久久国产精品| 捣出白浆h1v1| 黑丝袜美女国产一区| 高清黄色对白视频在线免费看| 纵有疾风起免费观看全集完整版| 久久精品91无色码中文字幕| 久久性视频一级片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一卡2卡3卡4卡5卡精品中文| 三级毛片av免费| 色婷婷av一区二区三区视频| 精品午夜福利视频在线观看一区 | 怎么达到女性高潮| 99久久99久久久精品蜜桃| 又紧又爽又黄一区二区| 纯流量卡能插随身wifi吗| 国产又色又爽无遮挡免费看| 蜜桃在线观看..| 男女免费视频国产| 麻豆国产av国片精品| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 王馨瑶露胸无遮挡在线观看| 国产精品99久久99久久久不卡| 国产成人欧美| 男女无遮挡免费网站观看| 99精品欧美一区二区三区四区| 亚洲av电影在线进入| 大型av网站在线播放| 欧美日韩福利视频一区二区| 亚洲avbb在线观看| 亚洲欧美一区二区三区久久| 又黄又粗又硬又大视频| 日韩欧美国产一区二区入口| av天堂在线播放| 成年动漫av网址| 精品人妻熟女毛片av久久网站| 国产精品二区激情视频| 国产精品一区二区在线观看99| av有码第一页| 午夜福利在线免费观看网站| 久久中文字幕人妻熟女| 51午夜福利影视在线观看| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 一级毛片精品| 妹子高潮喷水视频| 考比视频在线观看| 人妻一区二区av| 肉色欧美久久久久久久蜜桃| 国产成人av教育| 久久午夜综合久久蜜桃| 99国产精品一区二区三区| 在线亚洲精品国产二区图片欧美| 高清视频免费观看一区二区| 狠狠婷婷综合久久久久久88av| 如日韩欧美国产精品一区二区三区| av又黄又爽大尺度在线免费看| 中文字幕高清在线视频| 女同久久另类99精品国产91| 人妻 亚洲 视频| 男女下面插进去视频免费观看| 久久久国产成人免费| 日韩中文字幕视频在线看片| 我的亚洲天堂| 日韩免费高清中文字幕av| 亚洲精品一卡2卡三卡4卡5卡| 欧美亚洲日本最大视频资源| 日韩制服丝袜自拍偷拍| 99re在线观看精品视频| 亚洲av美国av| 最近最新免费中文字幕在线| 国产男女内射视频| 国产亚洲精品一区二区www | 午夜免费鲁丝| 国产精品久久久久久精品电影小说| 丁香六月天网| 久久久国产精品麻豆| 久久精品成人免费网站| 首页视频小说图片口味搜索| 欧美国产精品va在线观看不卡| 欧美性长视频在线观看| 欧美 日韩 精品 国产| 日韩精品免费视频一区二区三区| av有码第一页| 中亚洲国语对白在线视频| 18禁裸乳无遮挡动漫免费视频| 热re99久久国产66热| 动漫黄色视频在线观看| 国产男靠女视频免费网站| 美女高潮到喷水免费观看| 大型av网站在线播放| 午夜久久久在线观看| www日本在线高清视频| 午夜免费成人在线视频| 午夜福利在线免费观看网站| 国产国语露脸激情在线看| 精品少妇久久久久久888优播| 日本黄色视频三级网站网址 | 亚洲成人免费av在线播放| 狠狠婷婷综合久久久久久88av| 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| 黑人操中国人逼视频| 亚洲熟女毛片儿| av欧美777| 亚洲熟妇熟女久久| 高清黄色对白视频在线免费看| 黄片大片在线免费观看| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 在线亚洲精品国产二区图片欧美| 18禁国产床啪视频网站| 亚洲国产欧美一区二区综合| 成年女人毛片免费观看观看9 | 啪啪无遮挡十八禁网站| 国产成人啪精品午夜网站| 欧美国产精品va在线观看不卡| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 午夜福利在线观看吧| 国产亚洲欧美精品永久| 一本久久精品| 乱人伦中国视频| 99国产精品免费福利视频| 夜夜爽天天搞| 可以免费在线观看a视频的电影网站| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 人妻 亚洲 视频| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 亚洲 欧美一区二区三区| 亚洲成人免费电影在线观看| 男女无遮挡免费网站观看| 一夜夜www| 一本—道久久a久久精品蜜桃钙片| 美女福利国产在线| 亚洲精品中文字幕在线视频| 欧美激情 高清一区二区三区| 亚洲精华国产精华精| 欧美一级毛片孕妇| 亚洲欧美一区二区三区久久| 亚洲全国av大片| 91精品三级在线观看| 亚洲人成电影观看| 中文字幕最新亚洲高清| 在线 av 中文字幕| 国产精品麻豆人妻色哟哟久久| 露出奶头的视频| 国产成人一区二区三区免费视频网站| 国产99久久九九免费精品| 麻豆乱淫一区二区| 在线永久观看黄色视频| 狠狠狠狠99中文字幕| 最新在线观看一区二区三区| 精品国产国语对白av| 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 999精品在线视频| 久久人妻福利社区极品人妻图片| 国产精品 欧美亚洲| 亚洲午夜精品一区,二区,三区| 精品人妻1区二区| 久久中文字幕人妻熟女| 性少妇av在线| 久久精品国产综合久久久| 国产精品影院久久| 99国产综合亚洲精品| 在线av久久热| 99九九在线精品视频| 在线观看人妻少妇| 免费观看人在逋| 最新在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| 又大又爽又粗| 欧美久久黑人一区二区| 亚洲 国产 在线| 一个人免费在线观看的高清视频| 亚洲国产av影院在线观看| 天天躁日日躁夜夜躁夜夜| 搡老岳熟女国产| 视频在线观看一区二区三区| 久久久精品94久久精品| 每晚都被弄得嗷嗷叫到高潮| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 精品国产亚洲在线| av有码第一页| 亚洲国产欧美在线一区| 又黄又粗又硬又大视频| 美女午夜性视频免费| 久久免费观看电影| 国产在线精品亚洲第一网站| 国产精品久久久久久精品古装| 亚洲人成77777在线视频| 国产区一区二久久| 热99国产精品久久久久久7| avwww免费| 亚洲精品自拍成人| 免费在线观看日本一区| av天堂在线播放| 亚洲精品中文字幕一二三四区 | 岛国在线观看网站| 免费少妇av软件| 欧美精品一区二区大全| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 叶爱在线成人免费视频播放| 午夜成年电影在线免费观看| 亚洲五月色婷婷综合| av有码第一页| 欧美另类亚洲清纯唯美| 超碰97精品在线观看| 国产免费现黄频在线看| 午夜久久久在线观看| 超碰97精品在线观看| 午夜福利在线免费观看网站| 一级片'在线观看视频| 国产亚洲一区二区精品| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 国产精品免费视频内射| 亚洲精品一二三| 操美女的视频在线观看| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 亚洲免费av在线视频| 成年版毛片免费区| 99精品欧美一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 欧美av亚洲av综合av国产av| 日本a在线网址| 亚洲欧美日韩高清在线视频 | 一区在线观看完整版| 精品少妇内射三级| 久久久精品免费免费高清| 三级毛片av免费| 午夜福利视频精品| 99九九在线精品视频| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看的高清视频| 十分钟在线观看高清视频www| 精品少妇一区二区三区视频日本电影| 国产亚洲欧美在线一区二区| 91大片在线观看| 好男人电影高清在线观看| 男女边摸边吃奶| 一区二区三区国产精品乱码| 久久国产精品男人的天堂亚洲| 一区在线观看完整版| 黄色视频在线播放观看不卡| 国产精品九九99| 老司机福利观看| 久久久久久久国产电影| 国产精品久久久久久人妻精品电影 | 大香蕉久久成人网| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区视频了| 人人妻人人澡人人爽人人夜夜| 法律面前人人平等表现在哪些方面| 中文亚洲av片在线观看爽 | 精品国产一区二区三区四区第35| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 久久青草综合色| 精品人妻1区二区| 国产精品偷伦视频观看了| 国产99久久九九免费精品| 丁香欧美五月| 日本vs欧美在线观看视频| 女性被躁到高潮视频| 成在线人永久免费视频| 成人18禁在线播放| 少妇粗大呻吟视频| 精品福利永久在线观看| 热99国产精品久久久久久7| 大陆偷拍与自拍| 亚洲成人手机| 欧美日本中文国产一区发布| 在线播放国产精品三级| 亚洲精品久久成人aⅴ小说| 十分钟在线观看高清视频www| 999久久久国产精品视频| 一区在线观看完整版| 五月天丁香电影| 人妻一区二区av| 亚洲成a人片在线一区二区| 999精品在线视频| 国产成人精品久久二区二区91| xxxhd国产人妻xxx| 精品一区二区三卡| 日本一区二区免费在线视频| 侵犯人妻中文字幕一二三四区| 黄色视频,在线免费观看| 人人澡人人妻人| 色在线成人网| 欧美精品一区二区免费开放| 99久久99久久久精品蜜桃| 十八禁网站网址无遮挡| 欧美大码av| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 午夜激情av网站| 国产成人精品无人区| 99国产精品99久久久久| 男女床上黄色一级片免费看| 91麻豆av在线| 亚洲 国产 在线| 中文字幕人妻熟女乱码| 美国免费a级毛片| 五月开心婷婷网| www.熟女人妻精品国产| 丁香六月天网| 国产av又大| 激情在线观看视频在线高清 | 韩国精品一区二区三区| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| 国产精品九九99| 两个人看的免费小视频| 国产成人系列免费观看| 日韩有码中文字幕| 麻豆乱淫一区二区| 狠狠狠狠99中文字幕| 精品少妇内射三级| 免费在线观看完整版高清| 欧美日韩亚洲国产一区二区在线观看 | 色视频在线一区二区三区| 久久国产精品男人的天堂亚洲| 欧美日韩福利视频一区二区| 久久国产精品影院| 少妇裸体淫交视频免费看高清 | 免费女性裸体啪啪无遮挡网站| 国产男女内射视频| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| 电影成人av| 啦啦啦中文免费视频观看日本| 丝袜喷水一区| 一进一出抽搐动态| 无限看片的www在线观看| av欧美777| 亚洲国产中文字幕在线视频| 日韩精品免费视频一区二区三区| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 无人区码免费观看不卡 | a在线观看视频网站| 色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲 | 欧美中文综合在线视频| 精品亚洲成国产av| 精品一区二区三区四区五区乱码| 热re99久久精品国产66热6| 一级片免费观看大全| www日本在线高清视频| 久久国产精品大桥未久av| 脱女人内裤的视频| 国产午夜精品久久久久久| 午夜免费鲁丝| 美女高潮喷水抽搐中文字幕| 在线播放国产精品三级| av视频免费观看在线观看| 亚洲avbb在线观看| 丁香欧美五月| 欧美一级毛片孕妇| 久久国产精品男人的天堂亚洲| e午夜精品久久久久久久| 自线自在国产av| 一区二区av电影网| 日韩免费av在线播放| 麻豆国产av国片精品| 在线亚洲精品国产二区图片欧美| 99久久国产精品久久久| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 三上悠亚av全集在线观看| 中文欧美无线码| 老司机亚洲免费影院| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| 午夜福利免费观看在线| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 国产在线精品亚洲第一网站| 1024香蕉在线观看| 久久人妻av系列| 亚洲精品一二三| 国产精品 欧美亚洲| 亚洲国产看品久久| 色综合欧美亚洲国产小说| 国产精品麻豆人妻色哟哟久久| 无人区码免费观看不卡 | 啪啪无遮挡十八禁网站| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久人妻精品电影 | 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 伊人久久大香线蕉亚洲五| 99香蕉大伊视频| 久久久久久人人人人人| 99久久国产精品久久久| 女人高潮潮喷娇喘18禁视频| 桃花免费在线播放| 欧美精品高潮呻吟av久久| 久久精品国产99精品国产亚洲性色 | 无人区码免费观看不卡 | 精品国内亚洲2022精品成人 | 久久久水蜜桃国产精品网|