• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Gravitational Field and Temperature Dependent Properties on Two-Temperature Thermoelastic Medium with Voids under G-N Theory

    2014-04-14 03:29:26MohamedOthmanMagdaZidanandMohamedHilal
    Computers Materials&Continua 2014年6期

    Mohamed I.A.Othman,Magda E.M.Zidan and Mohamed I.M.Hilal

    1 Introduction

    The generalized thermoelasticity theories have been developed with the aim of removing the paradox of infinite speed of heat propagation inherent in the classical coupled dynamical thermoelasticity theory investigated by Biot(1956).In the generalized theories,the governing equations involve thermal relaxation times and they are of hyperbolic type.The extended thermoelasticity theory by Lord and Shulman(1967)which introduces one relaxation time in the thermoelastic process and the temperature-rate-dependent theory of thermoelasticity by Green and Lindsay(1972)which takes into account two relaxation times are two well established generalized theories of thermoelasticity.Recently,Green and Naghdi(1991,1992 and 1993)developed a generalized theory of thermoelasticity which involves thermal displacement gradient as one of the constitutive variables in contrast to the classical coupled thermoelasticity which includes temperature gradient as one of the constitutive variables.An important feature of this theory is that it does not accommodate dissipation of thermal energy.On this theory the characterization of the material response for a thermal phenomenon is based on three types of the constitutive response functions.The nature of those three types of constitutive response functions is such that when the respective theories are linearized,type I is the same as the classical heat conduction equation(based on Fourier’s law),whereas type II,the internal rate of production of entropy is taken to be identically zero,implying no dissipation of thermal energy.This model is known as the theory of thermoelasticity without energy dissipation.Type III involves the previous two models as special cases,and admits dissipation of energy in general,in this model,introducing the temperature gradient and thermal displacement gradient as the constitutive variables.Chandrasekharaiah(1996a,1996b)solved some problems in thermoelasticity without energy dissipation.Sharma and Chauhan(1999)investigated a problem concerning thermoelastic interactions without energy dissipation due to body forces and heat sources.Othman and Song(2007)have investigated a reflection phenomenon of the plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation.Othman et al.(2013a)studied the temperature dependence and the rotation on generalized thermoelasticity with voids under(G-N)theory.

    Theory of elastic materials with voids is one of the most important generalizations of the classical theory of elasticity.This theory is concerned with elastic materials consisting of a distribution of small porous(voids)in which the void volume is included among the kinematic variables.Practically,this theory is useful for investigating various types of the geological and the biological materials for which elastic theory is inadequate.A nonlinear theory of elastic material with voids was developed by Nunziato and Cowin(1979).Cowin and Nunziato(1983)developed a theory of linear elastic materials with voids.Puri and Cowin(1985)studied the behavior of the plane waves in a linear elastic material with voids.The domain of influence theorem in the linear theory of elastic materials with voids was discussed by Dhaliwal and Wang(1994).Dhaliwal and Wang(1995)developed a heat flux dependent theory of thermoelasticity with voids.Ciarletta and Scarpetta(1995)discussed some results on thermoelasticity for dielectric materials with voids.Marin in(1997a,1997b)studied uniqueness and domain of influence results in thermoelastic bodies with voids.

    The effect of gravity on the wave propagation in an elastic solid medium was first considered by Bromwich in(1898),treating the force of gravity as a type of body force.Sezawa in(1927)studied the dispersion of elastic waves propagated on curved surfaces.In(1965)Love extended the work of Bromwich which investigated the influence of gravity on superficial waves and showed that the Rayleigh wave velocity is affected by the gravity field.Recently Othman et al.(2013b,2013c and 2014)and Othman and Lotfy(2013)have studied many problems using the effect of the gravitational field on thermoelasticity.

    Material properties,such as the modulus of elasticity and the thermal conductivity,may be affected by temperature dependent.The temperature dependence of the material properties is neglected when the temperature variation from the initial temperature is low,while the temperature dependence of the material properties is considered when the temperature changes very high.The reactor vessels,turbine engines,space vehicles and refractory industries are affected by high temperature changes.If the temperature dependence of material properties is neglected,this is due to significant errors as discussed by Noda in(1986).Othman and Song in(2008)studied the reflection of the magneto-thermoelastic waves with two relaxation times under the effect of temperature dependent elastic moduli.In(2011)Othman discussed the state-space approach to the generalized thermoelastic problem with the temperature dependent properties and internal heat sources.

    The two temperature theory of thermoelasticity proposes that the heat conduction in deformable media depends upon two distinct temperatures,the conducting temperatureθand the thermodynamic temperatureTaccording to Chen and Gurtin in(1968)also Chen and Gurtin(1969)and.While under certain conditions,these two temperatures can be equal,in time independent problems,however,in particular those involving wave propagationθandTare generally distinct according to Warren and Chen in(1973).Youssef in(2006)studied the theory of the two-temperature generalized thermoelasticity.The propagation of harmonic plane waves in the media described by the two-temperature theory of thermoelasticity is investigated by Puri and Jordan in(2006).

    The present article is proposed to determine the components of displacement,the stresses,the temperature distribution and the volume fraction field in a homogenous,linear,isotropic,thermoelastic solid with voids in the case of absence and presence of the gravity,the temperature dependent and the two temperature effects.The model was illustrated in the context of(G-N)theory of types II and III.The normalmode analysis isused to obtain the exactexpressions forphysicalquantities.The distributions of considered variables are represented graphically.

    2 Formulation of the problem and basic equations

    Consider a linear homogeneous isotropic thermoelastic medium with voids and a half-space(y≥0)the rectangular Cartesian coordinate system(x,y,z)having originated on the surfacez=0.For two dimensional problem we assume the dynamic displacement vector as u=(u,v,0).All quantities considered will be a function of the time variablet,and of the coordinatesxandy,the governing equations in the displacement and thermal fields in the absence of body forces and heat sources under the two-temperature generalized thermoelasticity theory as Youssef in(2006).Following Green and Naghdi in(1993),Cowin and Nunziato(1983)the field equations and constitutive relations for a rotating linear homogenous,isotropic generalized thermoelastic solid with voids without body forces,heat sources and extrinsic equilibrated body force under the two-temperature generalized thermoelasticity theory in the context of(G-N)theory of type III,then the basic governing equations of a linear thermoelastic medium with voids under influence of gravitational field and two-temperature will be

    The strain-displacement relations

    The thermodynamic temperature,Tis related to the conductive temperature,θas

    Whereλ,μare the lame’s constants,α,b,ξ1,ω0,m,ψare the material constants due to presence of voids,β=(3λ+2μ)αtsuch thatαtis the coefficient of thermal expansion,ρis the density,Ceis the specific heat,Kis the thermal conductivity,acceleration due to the gravity,dis the two temperature parameter,WhenK?→0 then(4)reduces to the heat conduction equation in(G-N)theory(of type II).

    To investigate the effect of the temperature dependent properties on thermoelastic medium with voids,therefore we assume that

    Whereλ0,μ0,β0,α0,ω10,ξ10,ψ0,m0,k0,b0are constants,f(T)is a given nondimensional function of temperature.In the case of a temperature independent modulusofelasticity,f(T)=1,such thatf(T)=(1?α?T0),whereα?iscalled the empirical material constant,in the case of the reference temperature independent of modulus of elasticity and thermal conductivityα?=0.The governing equation can be put into a more convenient form by using the following non-dimensional variables

    In terms of non-dimensional quantities defined in equation(9)the governing equations(1)-(4)reduce to(dropping the prime for convenience)

    Whereε1,ε2,andε3are the coupling constants.Assuming the scalar potential functionψ1(x,y,t)and the vector potential functionψ2(x,y,t)in dimensionless form

    Using equation(15)in equations(10)-(13)to obtain

    The components of stress tensor are

    3 Normal mode analysis

    The solution of the considered physical quantities can be decomposed in terms of the normal mode as the following form

    Using(25)then(16)-(19)take the form

    Eliminatingψ?2,φ?andT?between(26)-(29),we obtain the differential equation

    In a similar manner we arrive at

    Equation(31)can be factored as

    Wherek2n(n=1,2,3,4)are the roots of the characteristic equation of the equation(31).

    The general solution of the equation(32),which are bound aty→∞,is given by

    SinceRn(n=1,2,3,4)are some coefficients.

    To obtain the components of the displacement vector,from(33)and(34)in(14)

    From(38),(39),(35)and(37)into(20)-(23)to obtain the components of the stresses

    4 Boundary conditions

    Consider the boundary conditions to determine the coefficientsRn(n=1,2,3,4),and suppress the positive exponentials to avoid the unbounded solutions at infinity.The coefficientsR1,R2,R3,R4can be defined from the boundary conditions on the surface aty=0.

    (1)The mechanical boundary conditions

    (2)The thermal boundary condition:

    The half-space subjected to thermal shock

    Wherep1is the magnitude of the applied force in the half-space andp2is the applied constant temperature to the boundary.

    Substituting the expressions of the considered variables in the above boundary conditions,to obtain the following equations satisfied by the parameters.

    Invoking boundary conditions(44)and(45)at the surfacey=0 of the plate,then obtain a system of four equations,(46)-(49).After applying the inverse of matrix method,one can get the values of the four constantsRn(n=1,2,3,4).

    Hence obtain the expressions for the displacement components and the other physical quantities of the plate surface.

    5 Numerical results and discussion

    In orderto illustrate the obtained theoreticalresultsin the preceding section,following Dhaliwal and Singh in(1980)the magnesium material was chosen for purposes of numerical evaluations.The constants of the problem were taken as

    The voids parameters are

    The comparisons were carried out for

    The above numerical values was used for the distribution of the real parts for the displacement componentsuandv,the temperature distributionθ,the stress componentsσxx,σxyand the change in the volume fraction fieldφwith the distanceyfor(G-N)theory of types II and III,for these cases

    (i)In the presence and the absence of the gravity effect in Figs.1-6.

    [g=0,9.8with α?=0.00051and d=0.00015],

    (ii)With and without the temperature dependent properties in Figs.7-12.

    [α?=0,0.00051,g=9.8with and d=0.00015],

    (iii)With and without the two temperature effect in Figs.13-18.

    [d=0.00015,0g=9.8with and α?=0.00051].

    In the graph the solid and dashed lines represent the solutions in the context of the(G-N)theory of type II and the lines with dot represent the derived solutions using(G-N)theory of type III.

    Figure 1:The displacement component u distribution against y with and without gravity.

    Figure 2:The displacement component v distribution against y with and without gravity.

    Figure 3:The distribution of the conductive temperature θ against y with and without gravity.

    Figure 4:The distribution of the stress tensor component σxx against y with and without gravity.

    Figure 5:The distribution of the stress tensor component σxy against y with and without gravity.

    Figure 6:The distribution of the volume fraction field φ against y with and without gravity.

    Figure 7:The displacement component u distribution against y with and without temperature dependent.

    Figure 8:The displacement component v distribution against y with and without temperature dependent.

    Figure 9:The distribution of the conductive temperature θ against y with and without temperature dependent.

    Figure 10:The distribution of the stress tensor σxx against y with and without temperature dependent.

    Figure 11:The distribution of the stress tensor σxy against y with and without temperature dependent.

    Figure 12:The distribution ofthe volume fraction fieldφ against y with and without temperature dependent.

    Fig.1 shows the distribution of the displacementcomponentuin the case ofg=9.8 and g=0,in the context of both types II and III of(G-N)theory;it noticed that the distribution ofuincreased with the increase of the gravity fory>0,the distribution ofuis directly proportional to the gravity.Fig.2 depicts the distribution of the displacement componentvin the case of g=9.8 and g=0,in the context of both types II and III of(G-N)theory;it noticed that the distribution ofvincreased in 0≤y≤1.3,then decreased in 1.3≤y≤7 with the increase of the gravity value for both types II and III of(G-N)theory.Fig.3 clarifies the distribution of the temperatureθin the case of g=0.9,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofθdecreased with the increase of the value of the gravity in 0≤y≤7 for both types II and III of(G-N)theory.

    Fig.4 depicts the distribution of the stress componentsσxxin the case of g=9.8,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofσxxdecreased in 0≤y≤0.2 then increased in 0.2≤y≤7 with the increase of the value of the gravity for both types II and III of(G-N)theory.Fig.5 shows the distribution of the stress componentsσxyin the case of g=9.8,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofσxyincreased in 0≤y≤7 with the increase of the value of the gravity for both types II and III of(G-N)theory.

    Fig.6 expresses the distribution of change in the volume fraction fieldφin the context of both types II and III of(G-N)theory in the case of g=9.8,0,it noticed the distribution ofφincreased in 0≤y≤7 for type III of(G-N)theory,while for type II of(G-N)theory the distribution ofφdecreased in 0≤y≤0.05 then increased in 0.05≤y≤7.It explained that all the curves converges to zero,and the gravity has an effective role in the distribution of all physical quantities in this physical problem for both types II and III of(G-N)theory.

    Fig.7 depicts the distribution of the displacement componentuin the case ofα?=0.00051 andα?=0 in the context of both types II and III of(G-N)theory;it noticed that the distribution ofuincreased in 0≤y≤1 then decreased in 1≤y≤7 with the increase ofα?for both types II and III of(G-N)theory.Fig.8 shows the distribution of the displacement componentvin the case ofα?=0.00051 andα?=0 in the context of both types II and III of(G-N)theory;it noticed that the distribution ofvdecreased in 0≤y≤0.9 then increased in 0.9≤y≤7 with the increase ofα?for both types II and III of(G-N)theory.

    Fig.9 clarifies the distribution of the temperatureθin the case ofα?=0.00051,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofθincreased with the increase of the value ofα?in 0≤y≤7 for both types II and III of(G-N)theory.

    Fig.10 depicts the distribution of the stress componentsσxxin the case ofα?=0.00051,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofσxxdecreased in 0≤y≤7 with the increase of the value ofα?for both types II and III of(G-N)theory.Fig.11 shows the distribution of the stress componentsσxyin the case ofα?=0.00051,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofσxydecreased in 0≤y≤2.3 then increased in 2.3≤y≤7 with the increase of the value ofα?for both types II and III of(G-N)theory.

    Fig.12 expresses the distribution of change in the volume fraction fieldφin the context of both types II and III of(G-N)theory in the case ofα?=0.00051,0,it noticed the distribution ofφdecreased in 0≤y≤7 with the increase of the value ofα?for both types II and III of(G-N)theory.It explained that all the curves converges to zero,and the temperature dependent properties have an effective role in the distribution of all physical quantities in this problem for both types II and III of(G-N)theory.

    Fig.13 depicts the distribution of the displacement componentuin the case of d=0.00015 and d=0 in the context of both types II and III of(G-N)theory;it noticed that the distribution ofuincreased in 0≤y≤7 for(G-N)theory of both types II and III with the increase of the two-temperature parameter d.

    Fig.14 shows the distribution of the displacement componentvin the case of d=0.00015 and d=0 in the context of both types II and III of(G-N)theory;it noticed that the distribution ofvincreased in 0≤y≤7 for(G-N)theory of both types II and III with the increase of the two-temperature parameter d.

    Fig.15 clarifies the distribution of the temperatureθin the case of d=0.00015,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofθdecreased with the increase of the value of d in 0≤y≤7 for type II of(G-N)theory,while the distribution ofθincreased with the increase of the value of d in 0≤y≤7 for(G-N)theory of type III.

    Fig. 16 depicts the distribution of the stress componentsσxxin the case of d=0.00015,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofσxxdecreased in 0≤y≤7 with the increase of the value of d for type III of(G-N)theory,but the distribution ofσxxincreased in 0≤y≤7 with the increase of the value of d for(G-N)theory of type II.

    Fig. 17 shows the distribution of the stress componentsσxyin the case of d=0.00015,0 in the context of both types II and III of(G-N)theory;it noticed the distribution ofσxyfor(G-N)theory of both types II and III decreased in 0≤y≤7 with the increase of the value of d.

    Fig.18 expresses the distribution of change in the volume fraction fieldφin the context of both types II and III of(G-N)theory in the case of d=0.00015,0 it noticed the distribution ofφincreased in 0≤y≤7 with the increase of the value of d for type II of(G-N)theory,while the distribution ofφf(shuō)or type III of(G-N)theory increased in 0≤y≤0.05 then decreased in 0.05≤y≤7 with the increase of the value of d.It explained that all the curves converges to zero,and the twotemperature effect has an effective role in the distribution of all physical quantities in this problem for both types II and III of(G-N)theory.

    Figure 13:The displacement component u distribution against y with and without two temperature.

    Figure 14:The displacement component v distribution against y with and without two temperature.

    Figure 15:The distribution of the conductive temperature θ against y with and without two temperature.

    Figure 16:The distribution of the stress tensor component σxx against y with and without two temperature.

    Figure 17:The distribution of the stress tensor component σxy against y with and without two temperature.

    Figure 18:The distribution ofthe volume fraction fieldφ against y with and without two temperature.

    6 Conclusion

    In this article,we have studied the effect of the gravitational field and temperature dependent properties due to two-temperature for thermoelastic medium with voids.The analysis of the components of displacement,the stresses,the temperature distributions and the change in the volume fraction field due to the gravity,the temperature dependent properties,and the two-temperature effect for thermoelastic medium with voids is an interesting problem of thermo-mechanical.The gravitational influence,the temperature dependent properties and the two-temperature effect are significant in the current model since the amplitudes of these quantities are varying(increasing or decreasing)under the effect of the used fields.The nor-mal mode analysis technique has been used which is applicable to a wide range of problems in thermoelasticity.The value of all physical quantities converges to zero with an increase in the distanceyand all functions are continuous.Finally it deduced that the deformation of a body depends on the nature of the applied forces and thermal effects as well as the type of boundary conditions.

    Biot,M.A.(1956):Thermoelasticity and irreversible thermodynamics.Journal of Applied Physics,vol.7,pp.240-253.

    Bromwich,T.J.(1898):On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe.The Proceedings of the London Mathematical Society,vol.30,pp.98-120.

    Chandrasekharaiah,D.S.(1996a):Thermoelastic plane waves without energy dissipation.Mechanics Research Communications,vol.23,pp.549-555.

    Chandrasekharaiah,D.S.(1996b):One-dimensionalwave propagation in the linear theory of thermoelasticity with energy dissipation.Journal of Thermal Stresses,vol.19,pp.695-710.

    Chen,P.J.;Gurtin,M.E.(1968):On a theory of heat conduction involving twotemperatures.Journal of Applied Mathematics and Physics,vol.19,pp.614-627.

    Chen,P.J.;Gurtin,M.E.;Williams,W.O.(1969):On the thermodynamics of non simple elastic materials with two-temperatures.Journal of Applied Mathematics and Physics,vol.20,pp.107-112.

    Ciarletta,M.;Scarpetta,E.(1995):Some results on thermoelasticity for dielectric materials with voids.Journal of Applied Mathematics and Mechanics,vol.75,pp.707-714.

    Cowin,S.C.;Nunziato,J.W.(1983):Linear theory of elastic materials with voids.Journal of Elasticity,vol.13,pp.125-147.

    Dhaliwal,R.S.;Singh,A.(1980):Dynamic coupled thermoelasticity.Hindustan Publishing Corporation,New Delhi.

    Dhaliwal,R.S.;Wang,J.(1994):Domain of influence theorem in the theory of elastic materials with voids.International Journal of Engineering Science,vol.32,pp.1823-1828.

    Dhaliwal,R.S.;Wang,J.(1995):A heat-flux dependent theory of thermoelasticity with voids.Acta Mechanica,vol.110,pp.33-39.

    Green,A.E.;Lindsay,K.A.(1972):Thermoelasticity.Journal of Elasticity,vol.2,pp.1-7.

    Green,A.E.;Naghdi,P.M.(1991):A re-examination of the basic postulates of thermo-mechanics.Proc Royal Society London Avol.432,pp.171-194.

    Green,A.E.;Naghdi,P.M.(1992):On undamped heat wave in elastic solids.Journal of Thermal Stresses,vol.15,pp.253-264.

    Green,A.E.;Naghdi,P.M.(1993):Thermoelasticity without energy dissipation.Journal of Elasticity,vol.31,pp.189-209.

    Lord,H.W.;Shulman,Y.A.(1967):Generalized dynamical theory of thermoelasticity.Journal of the Mechanics and Physics of Solids,vol.15,pp.299-309.

    Love,A.E.H.(1965):Some problems of geodynamics.Cambridge University Press,London.

    Marin,M.(1997a):A uniqueness result for body with voids in linear thermoelasticity.Rendiconti di Matematica,vol.17,pp.103-113.

    Marin,M.(1997b):On the domain of influence in thermoelasticity of bodies with voids.Archiv der Mathematik,vol.33,pp.301-308.

    Noda,N.(1986):Thermal stresses in materials with temperature-dependent properties.in Hetnarski R.B.(Ed.).Thermal stresses I,North-Holland,Amsterdam.

    Nunziato,J.W.;Cowin,S.C.(1979):A non-linear theory of elastic materials with voids.Archive for Rational Mechanics and Analysis,vol.72,pp.175-201.

    Othman,M.I.A.;Song,Y.(2007):Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation.International Journal of Solids and Structures,vol.44,pp.5651-5664.

    Othman,M.I.A.;Song,Y.(2008):Reflection of magneto-thermoelastic waves with two relaxation timesand temperature dependentelastic moduli.AppliedMathematical Modelling,vol.32,pp.83-500.

    Othman,M.I.A.(2011):State-space approach to the generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat sources.Journal of Applied Mechanics and Technical Physics,vol.52,pp.644-656.

    Othman,M.I.A.;Zidan,M.E.M.;Hilal,M.I.M.(2013a):Effect of rotation on thermoelastic material with voids and temperature dependent properties of type III.Journal of Thermoelasticity,vol.1,pp.111.

    Othman,M.I.A.;Atwa,S.Y.;Jahangir,A.;Khan,A.(2013b):Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation.Multidiscipline Modeling in Materials and Structures,vol.9,pp.145-176.

    Othman,M.I.A.;Lotfy,Kh.(2013):The effect of magnetic field and rotation on 2-D problem of a fiber-reinforced thermoelastic using three models with influence of gravity.Mechanics of Materials,vol.60,pp.120-143.

    Othman,M.I.A.;Zidan,M.E.M.;Hilal,M.I.M.(2013c):The influence of gravitational field and rotation on thermoelastic solid with voids under Green-Naghdi theory.Journal of Physics,vol.2,pp.22-34.

    Othman,M.I.A.;Abo-Dahab,S.M.;Lotfy,Kh.(2014):Gravitational effect and initial stress on generalized magneto-thermo-microstretch elastic solid for different theories.

    Applied Mathematics and Computation,vol.230,pp.597-615.

    Puri,P.;Cowin,S.C.(1985):Plane waves in linear elastic materials with voids.Journal of Elasticity,vol.15,pp.167-183.

    Puri,P.;Jordan,P.M.(2006):On the propagation of harmonic plane waves under the two-temperature theory.International Journal of Engineering Science,vol.44,pp.1113-1126.

    Sezawa,K.(1927):Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces.Bulletin of the Earthquake Research Institute University of Tokyo,vol.3,pp.1-18.

    Sharma,J.N.;Chouhan,R.N.(1999):On the problems of body forces and heat sources in thermoelasticity without energy dissipation.Indian Journal of Pure and Applied Mathematics,vol.30,pp.595-610.

    Warren,W.E.;Chen,P.J.(1973):Wave propagation in the two-temperature theory of thermoelasticity.Acta Mechanica,vol.16,pp.21-33.

    Youssef,H.M.(2006):Theory of two-temperature generalized thermoelasticity.IMA,Journal ofApplied Mathematics,vol.71,pp.383-390.

    Appendix

    国产成人av激情在线播放| 欧美日韩黄片免| 人人妻人人添人人爽欧美一区卜| √禁漫天堂资源中文www| 久久久久视频综合| 性少妇av在线| 国产成人av教育| 十八禁人妻一区二区| 1024视频免费在线观看| 69av精品久久久久久 | 狂野欧美激情性xxxx| 精品久久蜜臀av无| 欧美黄色淫秽网站| e午夜精品久久久久久久| svipshipincom国产片| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜精品一区,二区,三区| 一级a爱视频在线免费观看| 天天影视国产精品| 在线看a的网站| 操美女的视频在线观看| 美女福利国产在线| 午夜精品国产一区二区电影| 亚洲熟妇熟女久久| 亚洲人成电影免费在线| 亚洲少妇的诱惑av| 大陆偷拍与自拍| 国产成人影院久久av| 91麻豆av在线| 手机成人av网站| 在线观看人妻少妇| 欧美激情高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人一区二区三| 国产成人精品久久二区二区免费| 精品国内亚洲2022精品成人 | 天堂俺去俺来也www色官网| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 日韩中文字幕视频在线看片| 国产老妇伦熟女老妇高清| 大型黄色视频在线免费观看| 久久精品国产亚洲av香蕉五月 | 一级片'在线观看视频| 亚洲成人手机| videos熟女内射| 国产成人精品在线电影| 日韩大片免费观看网站| 免费在线观看视频国产中文字幕亚洲| 国产成人系列免费观看| 亚洲国产精品一区二区三区在线| 精品午夜福利视频在线观看一区 | 国产一区二区激情短视频| 制服诱惑二区| 日日夜夜操网爽| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 欧美乱妇无乱码| 国产高清videossex| 九色亚洲精品在线播放| 久久久欧美国产精品| 国产精品久久久久久人妻精品电影 | 精品国内亚洲2022精品成人 | 国产精品麻豆人妻色哟哟久久| 国产男女超爽视频在线观看| 久久久久久亚洲精品国产蜜桃av| a级毛片黄视频| 欧美精品高潮呻吟av久久| 精品久久久久久久毛片微露脸| 午夜精品久久久久久毛片777| 两个人看的免费小视频| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 丝袜人妻中文字幕| 成人18禁在线播放| 久久久精品区二区三区| 老汉色av国产亚洲站长工具| 女警被强在线播放| 一区二区三区乱码不卡18| 亚洲av成人不卡在线观看播放网| 午夜福利在线免费观看网站| 久久精品国产99精品国产亚洲性色 | 男人舔女人的私密视频| 国产欧美亚洲国产| 性少妇av在线| 国产精品国产高清国产av | 精品福利永久在线观看| 国产aⅴ精品一区二区三区波| 午夜两性在线视频| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 一个人免费看片子| 一级,二级,三级黄色视频| 午夜成年电影在线免费观看| 一级a爱视频在线免费观看| kizo精华| 国产精品美女特级片免费视频播放器 | 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 午夜福利视频精品| 丝袜喷水一区| 国产精品 国内视频| 一级毛片电影观看| 国产精品亚洲一级av第二区| 精品视频人人做人人爽| 国产三级黄色录像| 女人精品久久久久毛片| 亚洲专区字幕在线| 久久亚洲精品不卡| 黄色视频,在线免费观看| 波多野结衣一区麻豆| 精品久久蜜臀av无| netflix在线观看网站| 伊人久久大香线蕉亚洲五| 岛国毛片在线播放| 夜夜夜夜夜久久久久| 亚洲av片天天在线观看| 精品亚洲乱码少妇综合久久| 欧美精品一区二区大全| 黑人猛操日本美女一级片| 精品福利观看| 国产不卡av网站在线观看| 日韩大码丰满熟妇| 一级毛片精品| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 成人18禁在线播放| 亚洲精品中文字幕在线视频| 极品教师在线免费播放| 国产男女内射视频| 丰满饥渴人妻一区二区三| 人人妻人人爽人人添夜夜欢视频| av片东京热男人的天堂| 久久久久网色| 午夜福利,免费看| 午夜精品久久久久久毛片777| 99国产精品99久久久久| 日韩成人在线观看一区二区三区| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 久久亚洲真实| 黄色毛片三级朝国网站| 成年动漫av网址| 中文欧美无线码| 黄色毛片三级朝国网站| 国产高清激情床上av| 久久性视频一级片| 精品高清国产在线一区| 少妇被粗大的猛进出69影院| 国产成人一区二区三区免费视频网站| av免费在线观看网站| 亚洲精品美女久久久久99蜜臀| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 久久久精品94久久精品| 欧美+亚洲+日韩+国产| 国产有黄有色有爽视频| 欧美精品av麻豆av| 在线观看人妻少妇| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院| 99久久精品国产亚洲精品| 欧美性长视频在线观看| 亚洲熟妇熟女久久| 欧美中文综合在线视频| 久久久久久久国产电影| a级毛片在线看网站| 国产在线精品亚洲第一网站| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 国产精品影院久久| 国产黄色免费在线视频| 夜夜骑夜夜射夜夜干| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 免费看a级黄色片| 久9热在线精品视频| 9色porny在线观看| √禁漫天堂资源中文www| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av香蕉五月 | 欧美激情久久久久久爽电影 | 午夜福利,免费看| 18禁黄网站禁片午夜丰满| 中文字幕av电影在线播放| 国产日韩欧美在线精品| 夜夜爽天天搞| 在线av久久热| 激情视频va一区二区三区| 国产欧美日韩一区二区三| 久9热在线精品视频| 国产一区二区 视频在线| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 最黄视频免费看| 最新美女视频免费是黄的| 中文亚洲av片在线观看爽 | 在线观看免费视频网站a站| 亚洲欧美日韩另类电影网站| 亚洲第一av免费看| 女人高潮潮喷娇喘18禁视频| 一进一出好大好爽视频| 天堂中文最新版在线下载| 欧美在线一区亚洲| 欧美日韩一级在线毛片| 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 亚洲成国产人片在线观看| 五月天丁香电影| 日韩欧美一区二区三区在线观看 | 午夜福利免费观看在线| 日本一区二区免费在线视频| 色播在线永久视频| 国产精品影院久久| 大型黄色视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产一区二区三区四区第35| 亚洲熟女毛片儿| 99九九在线精品视频| 一本久久精品| 欧美 亚洲 国产 日韩一| 亚洲一区中文字幕在线| 啦啦啦中文免费视频观看日本| 啦啦啦中文免费视频观看日本| 老司机亚洲免费影院| 男人舔女人的私密视频| 另类亚洲欧美激情| 91成年电影在线观看| 亚洲欧美一区二区三区黑人| 久久免费观看电影| 亚洲av国产av综合av卡| 日韩大片免费观看网站| 日本av手机在线免费观看| 久久人人97超碰香蕉20202| 午夜福利一区二区在线看| 国产在线视频一区二区| 久久久久久久精品吃奶| av福利片在线| 极品教师在线免费播放| 亚洲性夜色夜夜综合| 久久精品亚洲av国产电影网| 法律面前人人平等表现在哪些方面| 曰老女人黄片| av视频免费观看在线观看| 捣出白浆h1v1| 免费看十八禁软件| www.精华液| 欧美大码av| 中文亚洲av片在线观看爽 | 欧美精品av麻豆av| 国产精品电影一区二区三区 | 国产精品电影一区二区三区 | 大片免费播放器 马上看| 精品福利观看| 国产无遮挡羞羞视频在线观看| 老汉色av国产亚洲站长工具| 亚洲av第一区精品v没综合| 国产精品二区激情视频| 国产成人精品久久二区二区91| 啪啪无遮挡十八禁网站| 成年人黄色毛片网站| 日本五十路高清| 老熟女久久久| www.999成人在线观看| 亚洲欧美一区二区三区久久| 在线观看舔阴道视频| 国产亚洲精品一区二区www | 亚洲人成电影免费在线| 久久久国产精品麻豆| 黄色视频,在线免费观看| tocl精华| 在线av久久热| 777久久人妻少妇嫩草av网站| 久久毛片免费看一区二区三区| 性高湖久久久久久久久免费观看| 欧美在线一区亚洲| 免费看十八禁软件| 老司机午夜十八禁免费视频| 国产单亲对白刺激| 久久久久国产一级毛片高清牌| 亚洲中文日韩欧美视频| 一本大道久久a久久精品| 黄色怎么调成土黄色| 欧美日韩国产mv在线观看视频| 国产精品亚洲一级av第二区| 午夜福利,免费看| 无人区码免费观看不卡 | 老司机靠b影院| 999精品在线视频| 精品亚洲乱码少妇综合久久| tube8黄色片| 天堂动漫精品| 国产精品av久久久久免费| 欧美精品一区二区大全| 日本wwww免费看| 欧美成人免费av一区二区三区 | 午夜福利一区二区在线看| 亚洲视频免费观看视频| 免费观看人在逋| 国产精品自产拍在线观看55亚洲 | 99re在线观看精品视频| 国产在线观看jvid| 国产三级黄色录像| 国产一区二区三区在线臀色熟女 | 91麻豆av在线| av超薄肉色丝袜交足视频| 国产免费福利视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美中文综合在线视频| 亚洲欧美日韩另类电影网站| 国产日韩欧美在线精品| 日韩欧美一区视频在线观看| 少妇裸体淫交视频免费看高清 | 日韩 欧美 亚洲 中文字幕| 岛国毛片在线播放| 在线av久久热| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 国产成人影院久久av| 欧美黄色淫秽网站| 亚洲熟女毛片儿| 高清视频免费观看一区二区| 免费观看a级毛片全部| 色综合婷婷激情| 天天躁夜夜躁狠狠躁躁| 99精品欧美一区二区三区四区| 丝袜美腿诱惑在线| 午夜福利在线观看吧| 精品午夜福利视频在线观看一区 | 亚洲国产av影院在线观看| 国产高清国产精品国产三级| 成年人午夜在线观看视频| 国产深夜福利视频在线观看| 啦啦啦 在线观看视频| 99riav亚洲国产免费| 成年女人毛片免费观看观看9 | 精品亚洲乱码少妇综合久久| 十八禁网站免费在线| 久久九九热精品免费| svipshipincom国产片| 亚洲欧美日韩另类电影网站| 大型黄色视频在线免费观看| 国产精品国产av在线观看| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀| 热99re8久久精品国产| 黄色毛片三级朝国网站| 手机成人av网站| 涩涩av久久男人的天堂| 999精品在线视频| 亚洲国产成人一精品久久久| 国产1区2区3区精品| 国产男女内射视频| 我的亚洲天堂| 999精品在线视频| 久久久欧美国产精品| 69av精品久久久久久 | av不卡在线播放| 国产精品国产av在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲九九香蕉| 我的亚洲天堂| 他把我摸到了高潮在线观看 | 黄色 视频免费看| 人人妻人人爽人人添夜夜欢视频| aaaaa片日本免费| 亚洲一区中文字幕在线| 纵有疾风起免费观看全集完整版| av福利片在线| 免费日韩欧美在线观看| 国产免费福利视频在线观看| 欧美大码av| 欧美 日韩 精品 国产| 日韩视频一区二区在线观看| 久久热在线av| 久久久久久人人人人人| 性少妇av在线| 一二三四在线观看免费中文在| 18禁美女被吸乳视频| 一本久久精品| 亚洲第一青青草原| 丰满迷人的少妇在线观看| 国产又爽黄色视频| www.精华液| 18禁观看日本| 99riav亚洲国产免费| 国产亚洲一区二区精品| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 午夜日韩欧美国产| 亚洲男人天堂网一区| 成人三级做爰电影| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 免费日韩欧美在线观看| 最近最新免费中文字幕在线| 不卡av一区二区三区| 天天操日日干夜夜撸| 色综合婷婷激情| 国产伦理片在线播放av一区| 日日爽夜夜爽网站| 精品久久久久久久毛片微露脸| 多毛熟女@视频| 丁香六月天网| 一级片'在线观看视频| 婷婷成人精品国产| 99香蕉大伊视频| 一边摸一边做爽爽视频免费| 国产精品免费一区二区三区在线 | 啦啦啦 在线观看视频| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 18在线观看网站| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 午夜福利,免费看| 婷婷丁香在线五月| 国产精品久久久久久精品古装| 蜜桃在线观看..| 美女扒开内裤让男人捅视频| 乱人伦中国视频| 国产成人影院久久av| 国产精品熟女久久久久浪| 亚洲国产欧美一区二区综合| 久久久久久久久免费视频了| 欧美激情极品国产一区二区三区| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| 丝袜人妻中文字幕| 国精品久久久久久国模美| 成人亚洲精品一区在线观看| 性少妇av在线| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av| 久久热在线av| 少妇精品久久久久久久| 色综合欧美亚洲国产小说| 建设人人有责人人尽责人人享有的| 国产xxxxx性猛交| 最近最新中文字幕大全免费视频| 下体分泌物呈黄色| 大香蕉久久成人网| 狠狠精品人妻久久久久久综合| 日本wwww免费看| 国产日韩欧美在线精品| 操美女的视频在线观看| 久久久久久久大尺度免费视频| aaaaa片日本免费| 国产精品免费视频内射| 国产免费福利视频在线观看| 伦理电影免费视频| 国产日韩欧美在线精品| 91大片在线观看| 久久精品aⅴ一区二区三区四区| 国产一区二区 视频在线| avwww免费| av天堂久久9| 亚洲第一av免费看| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 国产精品偷伦视频观看了| 亚洲中文日韩欧美视频| 热99久久久久精品小说推荐| 久久精品国产99精品国产亚洲性色 | 天堂中文最新版在线下载| 丝袜美足系列| 啦啦啦 在线观看视频| 黄色怎么调成土黄色| 美女高潮喷水抽搐中文字幕| 欧美中文综合在线视频| 少妇精品久久久久久久| 老司机午夜十八禁免费视频| 国产高清视频在线播放一区| 免费观看人在逋| 亚洲国产欧美网| 成人免费观看视频高清| av片东京热男人的天堂| 亚洲成人免费电影在线观看| 午夜福利在线免费观看网站| 脱女人内裤的视频| 国产精品久久久人人做人人爽| 脱女人内裤的视频| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 一级黄色大片毛片| 久久ye,这里只有精品| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 大码成人一级视频| 婷婷成人精品国产| 免费观看av网站的网址| 日日夜夜操网爽| 一区福利在线观看| 纵有疾风起免费观看全集完整版| 亚洲一区中文字幕在线| 国产午夜精品久久久久久| 少妇的丰满在线观看| 日本五十路高清| 久久午夜亚洲精品久久| 在线观看66精品国产| 视频区欧美日本亚洲| 欧美国产精品一级二级三级| 色综合欧美亚洲国产小说| 另类精品久久| 久久中文字幕人妻熟女| 欧美中文综合在线视频| 精品视频人人做人人爽| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 男女无遮挡免费网站观看| 高清毛片免费观看视频网站 | 亚洲国产av新网站| a级毛片黄视频| 91精品三级在线观看| av又黄又爽大尺度在线免费看| 亚洲专区字幕在线| 精品一区二区三卡| 国产黄频视频在线观看| av不卡在线播放| 亚洲国产欧美日韩在线播放| 老司机影院毛片| 50天的宝宝边吃奶边哭怎么回事| 他把我摸到了高潮在线观看 | 久久香蕉激情| 国产日韩一区二区三区精品不卡| 免费日韩欧美在线观看| 久久av网站| 国产97色在线日韩免费| 黄色视频在线播放观看不卡| 国产亚洲精品久久久久5区| 高清av免费在线| 国产一区二区三区视频了| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 日韩视频一区二区在线观看| 国产激情久久老熟女| 国产日韩欧美视频二区| 麻豆成人av在线观看| 亚洲国产看品久久| 亚洲av欧美aⅴ国产| 久久人人爽av亚洲精品天堂| 人人妻,人人澡人人爽秒播| 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 国产成人精品在线电影| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 国产成人啪精品午夜网站| 悠悠久久av| 一区二区三区精品91| 免费在线观看视频国产中文字幕亚洲| 国产av精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 高清视频免费观看一区二区| 国产免费视频播放在线视频| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站网址无遮挡| 久久精品91无色码中文字幕| 淫妇啪啪啪对白视频| 午夜福利视频在线观看免费| 久久精品国产亚洲av高清一级| 黄色成人免费大全| 成人亚洲精品一区在线观看| 亚洲欧洲精品一区二区精品久久久| 12—13女人毛片做爰片一| 亚洲中文av在线| 黄色毛片三级朝国网站| 欧美黑人欧美精品刺激| 国产精品电影一区二区三区 | 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| av电影中文网址| 19禁男女啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 日韩精品免费视频一区二区三区| 99热网站在线观看| 国产精品免费视频内射| 美女高潮到喷水免费观看| 9191精品国产免费久久| 热99久久久久精品小说推荐| 日本av手机在线免费观看| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| av欧美777| av一本久久久久| 久久精品aⅴ一区二区三区四区| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | www.精华液| 99国产极品粉嫩在线观看| 亚洲精品自拍成人| 国产精品亚洲一级av第二区| 国产av精品麻豆| 中文字幕av电影在线播放| 国产av精品麻豆| xxxhd国产人妻xxx| 国产精品影院久久| 欧美一级毛片孕妇| 在线亚洲精品国产二区图片欧美| 免费女性裸体啪啪无遮挡网站|