• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soil Moisture E ff ects on Sand Saltation and Dust Emission Observed over the Horqin Sandy Land Area in China

    2014-04-12 08:24:12LIXiaolanandZHANGHongsheng
    Journal of Meteorological Research 2014年3期

    LI Xiaolanand ZHANG Hongsheng

    Laboratory for Climate and Ocean-Atmosphere Studies,Department of Atmospheric and Oceanic Sciences, School of Physics,Peking University,Beijing100871

    Soil Moisture E ff ects on Sand Saltation and Dust Emission Observed over the Horqin Sandy Land Area in China

    Laboratory for Climate and Ocean-Atmosphere Studies,Department of Atmospheric and Oceanic Sciences, School of Physics,Peking University,Beijing100871

    In this study,the e ff ects of soil moisture on sand saltation and dust emission over the Horqin Sandy Land area are investigated,based on observations of three dust events in 2010.The minimum friction velocity initiating the motion of surface particles,namely,the threshold friction velocity,is estimated to be 0.34, 0.40,and 0.50 m s?1under the very dry,dry,and wet soil conditions,respectively.In comparison with the observations during the dust events under the very dry and dry soil conditions,the dust emission fl ux during the wet event is smaller,but the saltation activities of sand particles(d≥ 50μm)are stronger.The size distributions of airborne dust particles(0.1 ≤d≤ 20μm)show that concentrations of the fi ner dust particles(0.1 ≤d≤ 0.3μm)have a secondary peak under dry soil conditions,while they are absent under wet soil conditions.This suggests that the surface soil particle size distribution can be changed by soil moisture.Under wet soil conditions,the particles appear to have a larger size,and hence more potential saltating particles are available.This explains the occurrence of stronger saltation processes observed under wet soil conditions.

    soil moisture,sand saltation,dust emission,Horqin Sandy Land area

    1.Introduction

    Dust emission generated by wind erosion usually occurs in many arid,semi-arid,and agricultural areas around the world(Shao,2008).Mineral aerosols participate in many physical,chemical,and biogeological processes of the earth system(Shao et al.,2011).Dust particles with diameters less than 20μm(PM20)can remain suspended in the atmosphere for a long period of time and be transported over a long distance. These particles play an important role in the climate system through their direct and indirect radiation effects(Sokolik and Toon,1996;Rosenfeld et al.,2001; Yin et al.,2002;Ahn et al.,2007).

    Saltation bombardment is well known as a major mechanism for dust emission(Gillette,1977;Gomes et al.,1990;Shao et al.,1993;Houser and Nickling,2001; Sow et al.,2009).Dust emission fl ux is calculated from streamwise saltation fl ux in most dust emission models(e.g.,Shao et al.,1993;Marticorena and Bergametti,1995;Alfaro and Gomes,2001).The processes of sand saltation and dust emission are in fl uenced by a great number of factors,such as atmospheric conditions,soil properties,land surface characteristics,and so on.The threshold friction velocity,u?t,de fi ned as the minimum friction velocity(u?)to initiate the motion of surface particles,is determined by these factors (Belly,1964;Gillette et al.,1980,2004).Soil moisture is among the most critical factors for both sand saltation and dust emission processes as it modules the inter-particle and surface-particle cohesive forces acting on the dust particles(Ishizuka et al.,2008).Most previous studies indicate that wet soil conditions tend to increase theu?tvalues,and hence suppress salta-tion and dust emission(Chepil,1945;Ishizuka et al., 2005,2008,2009;Kimura et al.,2009;Sow et al., 2009).However,the e ff ects of soil moisture on saltation and dust emission become very complex under natural soil conditions.Park et al.(2010)proposed that soil moisture has little e ff ect on dust concentration,because the residence time of moisture in surface soil is relatively short in dust source regions.Li and Zhang(2012)also found that soil moisture content at 5-cm depth did not show any obvious impact on the seasonal variation of dust concentration over the Horqin Sandy Land area of China from December 2010 to November 2011,during which the soil moisture content ranged from 0.020 to 0.150 v v?1.More attention should be paid to this controversial problem by carrying on relative fi eld observations.

    In this study,observational data obtained from a sandstorm monitoring station at the Horqin Sandy Land area in China are used to comparatively investigate the characteristics of sand saltation and dust emission processes during three dust events in 2010 under di ff erent soil moisture conditions.

    2.Data and method

    The experimental site is located at the Horqin Sandy Land area in Inner Mongolia(42°55′30.3′′N, 120°41′1.9′′E)(Fig. 1). The instruments are installed on a 20-m high monitoring tower.The micrometeorological data include wind speed at 2-,4-,16-, and 20-m heights,air temperature and relative humidity at 2-,4-,8-,and 16-m heights,wind direction at 20-m height,soil moisture content and temperature at 5-,20-,and 50-cm depths,and precipitation rate at ground surface.Dust(PM10)mass concentration at 3-and 18-m heights and saltation activities of sand particles are simultaneously measured at 10-min sample intervals.In addition,the dust mass concentration of particles at di ff erent sizes(0.1 ≤d≤ 20μm)at 3-m height is measured by a 10-stage quartz crystal microbalance(QCM)cascade impactor(PC-2HX,California Measurements,Inc.).The size cuto ffdiameters for each stage are 10,7,4,2.5,1.4,0.7,0.45,0.3,0.2, and 0.1μm,respectively.Table 1 lists the instrument speci fi cations and placements installed over the Horqin station.

    Fig.1.Geographical location of the Horqin station.

    The pro fi le data of wind speed and air temperature are used to calculate friction velocityu?,based on Monin-Obukhov similarity theory(Garratt,1992; Zhu and Zhang,2010).

    whereκ(=0.40)is von K′arm′an’s constant,Uis the wind speed,θis the potential temperature,z0is the roughness length,Lis the Obukhov length,andψmandψHare the surface layer stability correction functions for momentum and heat,respectively.Variablezais the observational height of the quantitya.Here,zu=4 m,zθ1=2 m,andzθ2=4 m.

    The value ofz0can be theoretically estimated by fi tting wind speed pro fi les under neutral atmospheric conditions and set to the measure height when wind speed equals zero.Considering it is rare to observe neutral conditions,z0can be computed by the leastsquare fi tting method for wind speed pro fi les under near-neural conditions,which are de fi ned with the following criteria:(1)the wind speed at the 4-m height is>8 m s?1(Ishizuka et al.,2008);(2)|ΔT|between2-and 4-m heights is<0.2°C;and(3)the wind directions range between 225°and 360°,which prevail for most dust events over the Horqin station.Here,z0is estimated to be 0.75 mm.This value is reasonable for a bare sandy fi eld with little vegetation(Xian et al.,2002).The values ofu?,θ?,andLare then iteratively calculated for every 10 min based on Eqs. (1)–(3)(Zhang et al.,2008).

    Table 1.Instrumental setting at the Horqin station

    Dust emission fl ux,F,can be computed by using dust concentration gradient measurements with an assumption that the particles with aerodynamic diameters<10μm are light enough to follow air movements perfectly(Gillette et al.,1972;Zhang et al.,2008;Sow et al.,2009).

    whereCis the dust(PM10)mass concentration,zc1= 3 m,andzc2=18 m.Variableψcequals toψHthat is the same as that in Eq.(2),and other variables are the same as those in Eq.(1).

    3.Results

    3.1 Local dust emission events

    Figure 2 shows the variations of daily precipitation rate and soil moisture content(SMC)at 5-cm depth in May 2010.The surface soil was dry(SMC<0.075 v v?1)before 4 May.A precipitation event with the maximum precipitation rate occurred on 5 May, and it was followed by an abrupt increase up to 0.112 v v?1in SMC.The values of SMC decreased gradually during the next few days,mainly due to the evaporation of soil moisture.The precipitation event on 18 May contributed to the wet soil conditions on 19 May. Figure 2 indicates that two dust events took place in May 2010:a severe dust storm(Event 1)under dry soil conditions(0.074<SMC<0.075 v v?1)on 2 May, and a less severe dust storm(Event 2)under wet soil conditions(0.090<SMC<0.094 v v?1)on 19 May. Another dust storm event(Event 3)on 27 November 2010 was also selected as a case under very dry soil conditions(0.031<SMC<0.033 v v?1)for further analysis.

    Figure 3 shows the variations of dust concentration at 3-m height and wind speed at 4-m height in the three dust events.Before the breakout of the severe dust storm on 2 May,the background dust concentration was smaller than 200μg m?3.As the wind speed increased,the dust concentration increased at 0800 BT(Beijing Time)and it reached the maximum of 953.1μg m?3at 0950 BT.After the wind speed decreased,the dust concentration was reduced to its background concentration at 1700 BT(Fig.3a).The other two dust events showed similar variations for lo-cal dust events that dust concentration increases(decreases)with the increase(decrease)of wind speed(Li and Zhang,2011).Event 2 continued from 1000 to 1600 BT on 19 May,with the maximum dust concentration reaching 312.3μg m?3at 1440 BT(Fig.3b). Event 3 lasted for 10 h,from 1200 to 2200 BT on 27 November,and its fi rst peak in dust concentration was 452.1μg m?3at 1340 BT(Fig.3c).

    Fig.2.Variations of daily precipitation rate and soil moisture content at 5-cm depth in May 2010.

    Fig.3.Temporal variations of dust concentration at 3-m height(solid line)and wind speed at 4-m height(dashed line) in three dust events in 2010 under di ff erent soil conditions.(a)Event 1 on 2 May,(b)Event 2 on 19 May,and(c)Event 3 on 27 November 2010.

    The start of a dust-emission period is de fi ned as the time when dust concentration begins to contin-uously increase from its background level,while the end of the period is de fi ned by the time of maximum dust concentration.Thus,the dust-emission period is 0700–1000 BT in Event 1,1000–1440 BT in Event 2, and 1200–1340 BT in Event 3.

    Figure 4 shows the saltation activities of sand particles represented by the variations of the response number(per 10 min)of a saltation detector(H11B, Sensit.Co.,USA)and the dust emission fl ux for the three dust events.Note that the negativeFvalues related to dust advection/deposition were ignored,e.g., 1200–1300 and 1700–1900 BT in Event 1(Fig.4a). The negativeFdid not in fl uence the dust-emission periods.

    The saltation activities are found to be consistent with the dust emission fl ux for the three dust events.This supports the well-known conclusion that the saltation bombardment is one of the main mechanisms for dust emission.However,it is interesting to notice that although the dust emission fl ux is basically proportional to the saltation activities in an individual dust event,the proportionality between them is di ff erent for di ff erent events,because it has changed and depends on soil moisture.For instance,the Sensit response numbers were less than 5 and the magnitude of dust fl ux was about 30μg m?2s?1in the dustemission periods of Events 1 and 3(Figs.4a and 4c); while for Event 2,the saltation activities were much stronger but the dust fl ux was smaller(F<18μg m?2s?1).Fwas very small at the beginning period (0830–1400 BT)of Event 2 and increased rapidly in the period of 1400–1500 BT after many saltating particles continuously collided with the surface(Fig.4b), which is related to the soil crust at the surface under wet soil conditions.

    3.2 Meteorological conditions

    Figure 5 displays the variations of wind direction and speci fi c humidity for the three dust events. The wind direction changed suddenly from southwest (about 225°)to northwest(about 325°)at the beginning of the dust-emission period in Event 1,corresponding to the collapse of the inversion layer,while it varied slowly in Event 2,and it had a small change at 1200 BT in Event 3.However,the northwest wind prevailed during the dust-emission periods of all thethree dust events(Fig.5a).

    Fig.4.As in Fig.3,but for the response number(solid bar)and dust emission fl ux(solid line).

    Fig.5.Temporal variations of(a)wind direction and(b)speci fi c humidity at 4-m height in the three dust events under di ff erent soil conditions.

    The speci fi c humidity,q,was largest(q>6.0 g kg?1)in Event 2 mainly due to the rainfall event.The values ofqwere small in Event 1(2.0<q<4.5 g kg?1),and they were the smallest in Event 3(q<2.0 g kg?1)(Fig.5b).

    3.3 E ff ect of soil moisture on u?t

    Figure 6 shows the relationship between the friction velocityu?and dust concentration during the dust-emission periods in the three dust events.At the beginning of the dust-emission period of each event,u?gradually increased but the values of dust concentration remained small.Whenu?exceededu?t,the dust concentration increased rapidly.Similar to other de finitions used in other studies(Gillette and Ono,2008; Sow et al.,2009;Yang et al.,2012),u?tis de fi ned as the value ofu?when the dust concentration increases by 20%for at least half an hour.Here,20%was defi ned in terms of the background dust concentration (Li and Zhang,2011).The values ofu?twere estimated to be 0.40,0.50,and 0.34 m s?1in Events 1,2, and 3,respectively.The dust concentrations were detected at much lower levels under wet conditions than under dry conditions,despite the fact that higheru?(>0.6 m s?1)was observed under the wet conditions. This result is consistent with many previous observations(Ishizuka et al.,2008),indicating that soil moisture can constrain fi ne particles from being released into the atmosphere.

    3.4 E ff ect of soil moisture on sand saltation

    Fig.6.Scatter plot of dust concentration and friction velocityu?during the dust-emission periods in the three dust events.

    Fig. 7.As in Fig.6,but for friction velocityu?and Sensit response numbers.

    Figure 7 shows the variations ofu?and the Sensit response number during the dust-emission periods of the three dust events.The strong and sustained saltation activities were observed in Event 2 under wet conditions.For most of time,whenu?had the same value, the observed Sensit response numbers were larger in Event 2 than those in Events 1 and 3.The possible reason is that dust particles adhered to sand particles or aggregated together when the soil was wetted by the rainfall event,which may provide more potential saltating particles than under dry conditions.It has been observed that the increasing soil moisture can move the peak of surface particle size distribution towards a larger size(e.g.,Mikami et al.,2005;Ishizuka et al.,2008).Unfortunately,the surface sand particle distribution was not measured for these three events.

    3.5 E ff ect of soil moisture on dust emission

    Fig.8.As in Fig.6,but for friction velocityu?and dust emission fl uxF.

    Figure 8 shows the variations of the dust emission fl uxFwithu?in the dust-emission periods for the three dust events.Althoughu?was larger under wet conditions,the dust emission was much weaker in contrast to the saltation process.This was probably because the binding forces between particles were enhanced under wet conditions,so the saltation bombardment was not strong enough to overcome these forces.Meanwhile,the higher air humidity in Event 2 had a negative impact on dust emission(Ravi et al., 2006).

    4.Conclusions and discussion

    Using the micro-meteorological data and dust observations,the e ff ects of soil moisture on the saltation and dust emission processes were studied during three local dust events in 2010 over the Horqin Sandy Land area,i.e.,Event 1 on 2 May under dry soil conditions,Event 2 on 19 May under wet conditions,and Event 3 on 27 November under very dry conditions. The results con fi rmed that the increase of soil moisture can increase the values ofu?tand largely suppress dust emission fl ux.The saltation process was in fl uenced by both wind speed and soil moisture.The saltation intensity was stronger under wet soil conditions,which suggests that soil moisture can change the surface particle size distribution and provide more potential saltating particles.

    Fig. 9. Size distributions of airborne dust concentration under dry and wet soil conditions,as measured by the QCM cascade impactor.

    Figure 9 shows the distribution of relative ratio of dust concentration in each particle sizec(Ddi)(10 size stages of 0.1–0.2,0.2–0.3,0.3–0.45,0.45–0.7,0.7–1.4,1.4–2.5,2.5–4.0,4.0–7.0,7.0–10.0,and 10.0–20.0μm) to the total PM20concentrationcwith particle diameter under dry and wet soil conditions.With consideration of the dependence of the relative ratioc(Ddi)/con the width of each size bin ΔDor ΔlogD,the width on a logarithmic coordinates dlogDwas divided(no unit).The values ofu?(about 0.6 m s?1)are close to each other for the two QCM samples during the dustemission periods.It can be found that the suspending dust particles in the atmosphere had a signi fi cant peak at 4.5–7.0μm for both events.A secondary peak for fi ne particles at 0.2–0.3μm occurred under dry soil conditions,but had not been detected under wet conditions.It indirectly supports that soil moisture can change the soil particle size distribution.

    Almost all physical processes related to wind erosion are particle-size dependent.Surface soil size distribution under natural conditions greatly depends on wind conditions,local soil properties,and landsurface characteristics(Westphal et al.,1987;Gomes et al.,1990;Alfaro et al.,1998)and is more or less in fl uenced by dust particles transported from other regions(Zhang et al.,1998;Maring et al.,2003).The three dust events in this study have similar surface roughness length and wind speed,but very di ff erent soil moisture conditions.Soil moisture is assumed to have signi fi cant impacts on the size distribution of the surface soil particles.Our observations provide some facts and reasonable explanations,and more attentions should be paid to the size-dependent observations in the future.

    REFERENCES

    Ahn,H.,S.-U.Park,and L.Chang,2007:E ff ect of direct radiative forcing of Asian dust on the meteorological fi elds in East Asia during an Asian dust event period.J.Appl.Meteor.Climatol.,46,1655–1681, doi:10.1175/JAM2551.1.

    Alfaro,S.C.,A.Gaudichet,L.Gomes,et al.,1998:Mineral aerosol production by wind erosion:Aerosol particle sizes and binding energies.Geophys.Res. Lett.,25,991–994,doi:10.1029/98GL00502.

    —–,and L.Gomes,2001:Modeling mineral aerosol production by wind erosion,emission intensities and aerosol size distributions in source areas.J.Geophys.Res.,106,18075–18084,doi: 10.1029/2000JD900339.

    Belly,P.Y.,1964:Sand Movement by Wind.Tech.Rep. 1,US Army Coastal Engineering Research Center, 80 pp.

    Chepil,W.S.,1945:Dynamics of wind erosion:1.Nature of movement of soil by wind.Soil Sci.,60, 305–320.

    Garratt,J.R.,1992:The Atmospheric Boundary Layer. Cambridge University Press,52–53.

    Gillette,D.A.,1977:Fine particulate emissions due to wind erosion.Trans.ASAE,20,890–897.

    —–,I.H.Bli ff ord,and C.R.Fenster,1972:Measurements of aerosol size distributions and fl uxes of aerosols on land subject to wind erosion.J.Appl. Meteor.,11,977–987.

    —–,J.Adams,A.Endo,et al.,1980:Threshold velocities for input of soil particles into the air by desert soils.J.Geophys.Res.,85(C10),5621–5630.

    —–,D.Ono,and K.Richmond,2004:A combined modeling and measurement technique for estimating wind blown dust emissions at Owens(dry)Lake, California.J.Geophys.Res.,109,F01003,doi: 10.1029/2003JF000025.

    —–,and D.Ono,2008:Expressing sand supply limitation using a modi fi ed Owen saltation equation.Earth Surf.Process.Landforms,33,1806–1813.

    Gomes,L.,G.Bergametti,G.Coud′e-Gaussen,et al., 1990:Submicron desert dusts:A sandblasting process.J.Geophys.Res.,95(D9),13927–13935,doi: 10.1029/JD095iD09p13927.

    Houser,C.A.,and W.G.Nickling,2001:The emission and vertical fl ux of particulate matter<10μm from a disturbed clay-crusted surface.Sedimentology,48, 255–267.

    Ishizuka,M.,M.Mikami,Y.Yamada,et al.,2005: An observational study of soil moisture e ff ects on wind erosion at a gobi site in the Taklimakan Desert.J.Geophys.Res.,110,D18S03,doi: 10.1029/2004JD004709.

    —–, —–,J.Leys,et al.,2008:E ff ects of soil moisture and dried raindroplet crust on saltation and dust emission.J.Geophys.Res.,113,D24212,doi: 10.1029/2008JD009955.

    —–, —–,Y.Yamada,et al.,2009:Threshold friction velocities of saltation sand particles for di ff erent soil moisture conditions in the Taklimakan Desert.SOLA,5,184–187.

    Kimura,R.,L.Bai,and J.Wang,2009:Relationship among dust outbreaks,vegetation cover,and surface soil water content.Catena,77,292–296.

    Li,X.,and H.S.Zhang,2011:Research on threshold friction velocities during dust events over the Gobi Desert in Northwest China.J.Geophys.Res., 116(D20),doi:10.1029/2010JD015572.

    —–,and —–,2012:Seasonal variations in dust concentration and dust emission observed over Horqin Sandy Land area in China from December 2010 to November 2011.Atmos.Environ.,61,56–65.

    Maring,H.,D.L.Savoie,M.A.Izaguirre,et al.,2003: Mineral dust aerosol size distribution change during atmospheric transport.J.Geophys.Res.,108(D19), doi:10.1029/2002JD002536.

    Marticorena,B.,and G.Bergametti,1995:Modeling the atmospheric dust cycle:1. Design of a soilderived dust emission scheme.J.Geophys.Res., 100,16415–16430,doi:10.1029/95JD00690.

    Mikami,M.,T.Aoki,M.Ishizuka,et al.,2005:Observation of concentration distribution of desert aerosols in the south of the Taklimakan Desert,China.J. Meteor.Soc.Japan.,83,31–43.

    Park,S.-U.,M.-S.Park,and Y.Chun,2010:Asian dust events observed by a 20-m monitoring tower in Mongolia during 2009.Atmos.Environ.,44,4964–4972.

    Ravi,S.,T.M.Zobeck,T.M.Over,et al.,2006:On the e ff ect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion.Sedimentology,53,597–609.

    Rosenfeld,D.,Y.Rudich,and R.Lahav,2001:Desert dust suppressing precipitation:A possible deserti fication feedback loop.Proc.Natl.Acad.Sci.USA, 98,5975–5980.

    Shao,Y.,M.R.Raupach,and P.A.Findlater,1993:The e ff ect of saltation bombardment on the entrainment of dust by wind.J.Geophys.Res.,98,12719-12726. Shao,Y.,2008:Physics and Modelling of Wind Erosion. Atmospheric and Oceanographic Sciences Library, Vol.37,Kluwer Academic Publishing,Dordrecht, preface 1,V.

    —–,M.R.Raupach,and P.A.Findlater,1993:The e ff ect of saltation bombardment on the entrainment of dust by wind.J.Geophys.Res.,98,12719–12726.

    —–,M.Ishizuka,M.Mikami,et al.,2011:Parameterization of size-resolved dust emission and validation with measurements.J.Geophys.Res.,116,D08203, doi:10.1029/2010JD014527.

    Sokolik,I.N.,and O.B.Toon,1996:Direct radiative forcing by anthropogenic airborne mineral aerosols.Nature,381,681–683.

    Sow,M.,S.C.Alfaro,J.L.Rajot,et al.,2009:Size resolved dust emission fl uxes measured in Niger during 3 dust storms of the AMMA experiment.Atmos. Chem.Phys.,9,3881–3891.

    Westphal,D.L.,O.B.Toon,and T.N.Carlson, 1987: A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms.J.Geophys.Res.,92(D3),3027–3049,doi: 10.1029/JD092iD03p03027.

    Xian,X.,T.Wang,Q.Sun,et al.,2002:Field and wind-tunnelstudiesofaerodynamic roughness length.Bound.-Layer Meteor.,104,151–163,doi: 10.1023/A:1015527725443.

    Yang Xinghua,He Qing,M.Ali,et al.,2012:A fi eld experiment on dust emission by wind erosion in the Taklimakan Desert.Acta Meteor.Sinica,26,241–249.

    Yin,Y.,S.Wurzler,Z.Levin,et al.,2002:Interactions of mineral dust particles and clouds:E ff ects on precipitation and cloud optical properties.J.Geophys.Res.,107(D23),AAC 19-1–AAC 19-14,doi: 10.1029/2001JD001544.

    Zhang Hongsheng,Zhu Hao,Peng Yan,et al.,2008:Experiment on dust fl ux during dust storm periods over sand desert area.Acta Meteor.Sinica,22, 239–247.

    Zhang,X.Y.,R.Arimoto,G.H.Zhu,et al.,1998: Concentration,size-distribution and deposition of mineral aerosol over Chinese desert regions.Tellus B,50,317–330.

    Zhu Hao and Zhang Hongsheng,2010:Estimation of the threshold friction velocities over various dust storm source areas in Northwest China.Acta Meteor.Sinica,24,548–557.

    :Li Xiaolan and Zhang Hongsheng,2014:Soil moisture e ff ects on sand saltation and dust emission observed over the Horqin Sandy Land area in China.J.Meteor.Res.,28(3),444–452,

    10. 1007/s13351-014-3053-3.

    (Received July 19,2013;in fi nal form March 27,2014)

    Supported by the National(Key)Basic Research and Development(973)Program of China(2010CB428501),China Meteorological Administration Special Public Welfare Research Fund(GYHY201006014),National Natural Science Foundation of China (41075005),and Research Fund for Doctoral Program of Higher Education of China(20110001130010).

    ?Corresponding author:hsdq@pku.edu.cn.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

    亚洲精品亚洲一区二区| 特大巨黑吊av在线直播| 曰老女人黄片| 校园人妻丝袜中文字幕| 搡老乐熟女国产| 国产一区二区在线观看av| 国产精品一国产av| 亚洲精品亚洲一区二区| 制服诱惑二区| 最黄视频免费看| 国产永久视频网站| 亚洲第一区二区三区不卡| 国产成人精品在线电影| 国产精品人妻久久久久久| 欧美精品高潮呻吟av久久| 久久精品夜色国产| 欧美日韩av久久| 国产精品嫩草影院av在线观看| 99九九在线精品视频| 亚洲色图综合在线观看| 天堂8中文在线网| 男女国产视频网站| 五月玫瑰六月丁香| 国产精品秋霞免费鲁丝片| 亚洲国产av新网站| 日韩大片免费观看网站| 精品久久久久久电影网| 久久人人爽人人爽人人片va| 校园人妻丝袜中文字幕| 午夜91福利影院| 麻豆乱淫一区二区| 久久精品国产a三级三级三级| 欧美日本中文国产一区发布| √禁漫天堂资源中文www| 七月丁香在线播放| 亚洲av.av天堂| 精品久久久久久久久av| 一本久久精品| 三级国产精品片| 亚洲精品一区蜜桃| 天天影视国产精品| 久久久久国产网址| 亚洲精品自拍成人| 久久久久久久久大av| 大香蕉久久网| 久久久国产精品麻豆| 国产深夜福利视频在线观看| 大香蕉久久成人网| 日韩一本色道免费dvd| 十八禁高潮呻吟视频| 欧美亚洲日本最大视频资源| 99热6这里只有精品| 精品一区二区三区视频在线| 曰老女人黄片| 水蜜桃什么品种好| 国产黄色视频一区二区在线观看| 在线 av 中文字幕| 成年人午夜在线观看视频| 在线 av 中文字幕| 最近的中文字幕免费完整| 国产精品久久久久久精品电影小说| 国产精品熟女久久久久浪| 蜜桃久久精品国产亚洲av| 午夜视频国产福利| 国产在线免费精品| 成人亚洲欧美一区二区av| 国产熟女欧美一区二区| 欧美日韩一区二区视频在线观看视频在线| 久久精品人人爽人人爽视色| 亚洲成色77777| 黑丝袜美女国产一区| 插逼视频在线观看| 国产免费福利视频在线观看| 天天操日日干夜夜撸| 久久久亚洲精品成人影院| 日韩av在线免费看完整版不卡| 国产极品天堂在线| 久久99精品国语久久久| 国产午夜精品久久久久久一区二区三区| 免费人妻精品一区二区三区视频| av播播在线观看一区| 国产一区二区在线观看av| 各种免费的搞黄视频| 精品久久蜜臀av无| 国产亚洲欧美精品永久| 国产亚洲午夜精品一区二区久久| 精品久久国产蜜桃| 国产视频首页在线观看| 综合色丁香网| 毛片一级片免费看久久久久| 欧美日韩国产mv在线观看视频| 夜夜骑夜夜射夜夜干| 男人爽女人下面视频在线观看| 亚洲精品第二区| 麻豆乱淫一区二区| 晚上一个人看的免费电影| 国产精品麻豆人妻色哟哟久久| 国产成人午夜福利电影在线观看| 人人妻人人爽人人添夜夜欢视频| 精品酒店卫生间| 99视频精品全部免费 在线| 久久99一区二区三区| freevideosex欧美| 亚洲熟女精品中文字幕| 日本wwww免费看| 国产一区亚洲一区在线观看| 有码 亚洲区| 成人18禁高潮啪啪吃奶动态图 | 久久韩国三级中文字幕| 插阴视频在线观看视频| 五月天丁香电影| 人妻系列 视频| 亚洲国产成人一精品久久久| 夜夜爽夜夜爽视频| 成年人免费黄色播放视频| 人人妻人人澡人人爽人人夜夜| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| 观看av在线不卡| 视频区图区小说| 精品一区二区免费观看| 色吧在线观看| 伦理电影免费视频| 黄色毛片三级朝国网站| 婷婷色综合www| 韩国av在线不卡| 国产爽快片一区二区三区| 91成人精品电影| 久久毛片免费看一区二区三区| 亚洲精品美女久久av网站| 最近中文字幕2019免费版| 交换朋友夫妻互换小说| 亚洲精品日韩av片在线观看| 免费不卡的大黄色大毛片视频在线观看| 18禁在线播放成人免费| 91精品国产国语对白视频| 免费观看的影片在线观看| 久久人人爽人人片av| 国产深夜福利视频在线观看| 成年女人在线观看亚洲视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区二区日韩欧美中文字幕 | 91精品国产九色| 亚洲国产毛片av蜜桃av| 国产精品人妻久久久久久| 色94色欧美一区二区| 22中文网久久字幕| 成人国产av品久久久| 下体分泌物呈黄色| 九色亚洲精品在线播放| 99热这里只有精品一区| av专区在线播放| 亚洲精品美女久久av网站| 午夜福利在线观看免费完整高清在| 男女边摸边吃奶| 3wmmmm亚洲av在线观看| 中文精品一卡2卡3卡4更新| 日本av手机在线免费观看| 99久久综合免费| 最近2019中文字幕mv第一页| 九九爱精品视频在线观看| 国产又色又爽无遮挡免| 我的老师免费观看完整版| 欧美日韩视频精品一区| 亚洲国产精品专区欧美| 亚洲精品国产色婷婷电影| 日日爽夜夜爽网站| 美女国产高潮福利片在线看| 中文字幕亚洲精品专区| 美女中出高潮动态图| 欧美日本中文国产一区发布| 日本黄大片高清| 69精品国产乱码久久久| 大片电影免费在线观看免费| 一区二区三区四区激情视频| 丝袜脚勾引网站| 在线亚洲精品国产二区图片欧美 | 亚洲一级一片aⅴ在线观看| 久久ye,这里只有精品| 一级毛片我不卡| 一级爰片在线观看| 大陆偷拍与自拍| 亚洲色图 男人天堂 中文字幕 | 国产精品偷伦视频观看了| 精品久久久久久电影网| 色哟哟·www| 精品久久久精品久久久| 美女视频免费永久观看网站| 成年女人在线观看亚洲视频| 亚洲经典国产精华液单| 亚洲精品乱码久久久久久按摩| 精品国产一区二区久久| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲成a人片在线观看| 国产高清三级在线| 国产精品99久久久久久久久| 人妻夜夜爽99麻豆av| 亚洲国产av影院在线观看| 天美传媒精品一区二区| 国产精品嫩草影院av在线观看| 18禁动态无遮挡网站| 少妇被粗大的猛进出69影院 | 男人添女人高潮全过程视频| av有码第一页| 亚洲av国产av综合av卡| 日本vs欧美在线观看视频| 9色porny在线观看| 男人爽女人下面视频在线观看| 亚洲av在线观看美女高潮| 国产伦理片在线播放av一区| 亚洲欧美精品自产自拍| 少妇被粗大猛烈的视频| 日本猛色少妇xxxxx猛交久久| av卡一久久| 啦啦啦啦在线视频资源| 尾随美女入室| 日韩人妻高清精品专区| 成人国产av品久久久| 久久99精品国语久久久| 国产男人的电影天堂91| 亚洲高清免费不卡视频| 亚洲精品456在线播放app| 精品视频人人做人人爽| 久久久国产精品麻豆| 日本av免费视频播放| 国国产精品蜜臀av免费| 插阴视频在线观看视频| 特大巨黑吊av在线直播| 亚洲精品一二三| 人成视频在线观看免费观看| av免费在线看不卡| 国产黄片视频在线免费观看| 国产亚洲一区二区精品| 日韩在线高清观看一区二区三区| 两个人的视频大全免费| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 国产亚洲一区二区精品| h视频一区二区三区| 日本免费在线观看一区| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 在线免费观看不下载黄p国产| 欧美97在线视频| 国产精品久久久久久久电影| 国产伦精品一区二区三区视频9| 日本av手机在线免费观看| 少妇熟女欧美另类| 久久久精品免费免费高清| 欧美xxⅹ黑人| 亚洲伊人久久精品综合| 美女内射精品一级片tv| 午夜精品国产一区二区电影| 免费日韩欧美在线观看| 九色亚洲精品在线播放| 国产色婷婷99| 免费观看av网站的网址| 久久久久久伊人网av| 丝袜美足系列| 欧美成人精品欧美一级黄| 亚洲国产精品999| 汤姆久久久久久久影院中文字幕| 男女边吃奶边做爰视频| 五月天丁香电影| 国产成人精品一,二区| 大陆偷拍与自拍| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜爱| 欧美亚洲日本最大视频资源| 久久av网站| 这个男人来自地球电影免费观看 | 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 国产一区二区三区综合在线观看 | 国产精品一国产av| 成人影院久久| 亚洲欧美日韩另类电影网站| h视频一区二区三区| 边亲边吃奶的免费视频| 国产精品人妻久久久影院| 婷婷色综合www| 丁香六月天网| 插逼视频在线观看| 亚洲国产精品专区欧美| 亚洲婷婷狠狠爱综合网| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 岛国毛片在线播放| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 纯流量卡能插随身wifi吗| 黄色配什么色好看| 精品久久久久久久久亚洲| av在线播放精品| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 精品久久久久久久久亚洲| 国精品久久久久久国模美| 午夜精品国产一区二区电影| 看十八女毛片水多多多| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 精品亚洲乱码少妇综合久久| 国产高清不卡午夜福利| 亚洲伊人久久精品综合| 国语对白做爰xxxⅹ性视频网站| 在线观看人妻少妇| 狠狠婷婷综合久久久久久88av| 免费不卡的大黄色大毛片视频在线观看| 曰老女人黄片| 蜜桃在线观看..| 一级,二级,三级黄色视频| 男女高潮啪啪啪动态图| 少妇熟女欧美另类| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 啦啦啦在线观看免费高清www| 亚洲av免费高清在线观看| 男人添女人高潮全过程视频| 国产永久视频网站| 成人18禁高潮啪啪吃奶动态图 | 不卡视频在线观看欧美| 3wmmmm亚洲av在线观看| 大片免费播放器 马上看| av在线app专区| 欧美xxⅹ黑人| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 色5月婷婷丁香| 国产一区二区在线观看日韩| 亚洲欧美日韩卡通动漫| 少妇精品久久久久久久| 亚洲av日韩在线播放| av一本久久久久| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 精品一区二区免费观看| 亚洲四区av| 午夜免费男女啪啪视频观看| 在线观看免费日韩欧美大片 | 麻豆成人av视频| 最新中文字幕久久久久| 最近手机中文字幕大全| 一级毛片aaaaaa免费看小| 亚洲精品视频女| 在线观看美女被高潮喷水网站| 内地一区二区视频在线| 精品酒店卫生间| 搡女人真爽免费视频火全软件| 91精品伊人久久大香线蕉| 亚洲av在线观看美女高潮| 国产有黄有色有爽视频| 97超视频在线观看视频| 高清欧美精品videossex| 免费少妇av软件| 国产免费一级a男人的天堂| 有码 亚洲区| 99热6这里只有精品| 国产成人一区二区在线| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 亚洲经典国产精华液单| 亚洲怡红院男人天堂| 日韩免费高清中文字幕av| 青春草视频在线免费观看| 纵有疾风起免费观看全集完整版| 2018国产大陆天天弄谢| 97精品久久久久久久久久精品| 国产精品不卡视频一区二区| 久久99蜜桃精品久久| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的| 日韩在线高清观看一区二区三区| 69精品国产乱码久久久| videossex国产| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 久久久午夜欧美精品| 日本av手机在线免费观看| 蜜桃久久精品国产亚洲av| 熟女电影av网| 亚洲欧洲日产国产| 青春草国产在线视频| 精品酒店卫生间| 亚洲av.av天堂| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院 | 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 久久精品久久精品一区二区三区| 国产爽快片一区二区三区| 国产精品久久久久久久电影| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| freevideosex欧美| 卡戴珊不雅视频在线播放| 日本欧美视频一区| 在线观看免费日韩欧美大片 | .国产精品久久| √禁漫天堂资源中文www| 99热这里只有精品一区| av网站免费在线观看视频| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 人人妻人人爽人人添夜夜欢视频| 美女国产视频在线观看| 99热全是精品| 大陆偷拍与自拍| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 亚洲精品,欧美精品| 日韩欧美精品免费久久| 欧美激情 高清一区二区三区| 日日撸夜夜添| 久久99热6这里只有精品| av.在线天堂| 亚洲精品久久午夜乱码| 精品久久久噜噜| 欧美日韩精品成人综合77777| 下体分泌物呈黄色| 久久久国产精品麻豆| 狂野欧美激情性xxxx在线观看| 日日啪夜夜爽| 在线观看免费日韩欧美大片 | 全区人妻精品视频| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 制服诱惑二区| 精品一区二区三区视频在线| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 老熟女久久久| 在线观看免费日韩欧美大片 | 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 黄片无遮挡物在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 青青草视频在线视频观看| 免费人成在线观看视频色| 免费播放大片免费观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 全区人妻精品视频| 91在线精品国自产拍蜜月| 在线观看免费视频网站a站| 精品久久久久久电影网| 欧美xxxx性猛交bbbb| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 免费观看的影片在线观看| 国产在线免费精品| 久久午夜综合久久蜜桃| 中文字幕久久专区| 亚洲伊人久久精品综合| 国产精品久久久久久精品古装| 人妻夜夜爽99麻豆av| 国产亚洲最大av| 欧美97在线视频| 少妇人妻 视频| 在线观看www视频免费| 久久久久久久久久久久大奶| 人妻人人澡人人爽人人| .国产精品久久| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看| 欧美国产精品一级二级三级| 日韩电影二区| 久久久国产一区二区| av线在线观看网站| 国产精品成人在线| 久久精品国产亚洲网站| 久久久午夜欧美精品| av女优亚洲男人天堂| 国产av码专区亚洲av| 夜夜骑夜夜射夜夜干| 高清午夜精品一区二区三区| 亚洲精品国产av成人精品| 久久人妻熟女aⅴ| 五月天丁香电影| 男的添女的下面高潮视频| 亚洲国产精品成人久久小说| av.在线天堂| av国产久精品久网站免费入址| 人妻制服诱惑在线中文字幕| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| 国产精品人妻久久久影院| 97在线人人人人妻| 国产国语露脸激情在线看| 蜜桃国产av成人99| 国产极品天堂在线| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 一级毛片我不卡| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 青青草视频在线视频观看| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 亚洲av成人精品一区久久| 日韩制服骚丝袜av| 亚洲人成网站在线播| 日韩中字成人| av在线观看视频网站免费| a 毛片基地| 亚洲欧美精品自产自拍| 日韩免费高清中文字幕av| 国产av码专区亚洲av| 午夜91福利影院| 夫妻性生交免费视频一级片| 免费观看的影片在线观看| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 亚洲人成77777在线视频| 男男h啪啪无遮挡| videosex国产| 中文字幕av电影在线播放| 不卡视频在线观看欧美| 视频中文字幕在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲一级一片aⅴ在线观看| 国产深夜福利视频在线观看| 看非洲黑人一级黄片| 国产精品蜜桃在线观看| 婷婷色综合大香蕉| 亚洲精品中文字幕在线视频| 久久99精品国语久久久| 久久99热6这里只有精品| 免费人妻精品一区二区三区视频| 久久人人爽人人片av| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性bbbbbb| 91午夜精品亚洲一区二区三区| 最近2019中文字幕mv第一页| 男女啪啪激烈高潮av片| 免费黄色在线免费观看| 久久久午夜欧美精品| 一边摸一边做爽爽视频免费| 中文天堂在线官网| 九色亚洲精品在线播放| 22中文网久久字幕| 在线免费观看不下载黄p国产| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 一区二区三区精品91| 国产亚洲一区二区精品| 国产精品成人在线| 999精品在线视频| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 99热网站在线观看| 午夜福利视频在线观看免费| 精品久久蜜臀av无| 久久婷婷青草| 国产亚洲最大av| 高清视频免费观看一区二区| xxxhd国产人妻xxx| 性高湖久久久久久久久免费观看| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 亚洲综合精品二区| 午夜福利网站1000一区二区三区| 久久久久精品性色| 汤姆久久久久久久影院中文字幕| 妹子高潮喷水视频| 国产欧美日韩综合在线一区二区| 亚洲精品一区蜜桃| 日韩大片免费观看网站| 精品久久久噜噜| 亚洲欧洲日产国产| 亚洲性久久影院| 免费观看无遮挡的男女| 黑丝袜美女国产一区| 亚洲四区av| 日韩人妻高清精品专区| 国产乱来视频区| av免费观看日本| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 精品一品国产午夜福利视频| 中国国产av一级| 黄色配什么色好看| 一区二区三区乱码不卡18| 满18在线观看网站| 亚洲精品成人av观看孕妇| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品乱久久久久久| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 黄色一级大片看看| 亚洲欧美清纯卡通| 伊人亚洲综合成人网| 国产69精品久久久久777片| 人人妻人人澡人人看| 午夜影院在线不卡| 久久ye,这里只有精品| 日本黄色日本黄色录像| 大片免费播放器 马上看|