• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Marine-Atmospheric Boundary Layer Characteristics over the South China Sea During the Passage of Strong Typhoon Hagupit

    2014-04-12 08:24:08CHENGXuelingWULinSONGLiliWANGBinglanandZENGQingcun
    Journal of Meteorological Research 2014年3期

    CHENG Xueling,WU Lin,SONG Lili,WANG Binglan, and ZENG Qingcun

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Public Weather Service Center,China Meteorological Administration,Beijing100081

    3Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    Marine-Atmospheric Boundary Layer Characteristics over the South China Sea During the Passage of Strong Typhoon Hagupit

    CHENG Xueling1,WU Lin1,SONG Lili2,WANG Binglan2, and ZENG Qingcun3?

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Public Weather Service Center,China Meteorological Administration,Beijing100081

    3Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    The structures and characteristics of the marine-atmospheric boundary layer over the South China Sea during the passage of strong Typhoon Hagupit are analyzed in detail in this paper.The typhoon was generated in the western Paci fi c Ocean,and it passed across the South China Sea, fi nally landfalling in the west of Guangdong Province.The shortest distance between the typhoon center and the observation station on Zhizi Island(10 m in height)is 8.5 km.The observation data capture the whole of processes that occurred in the regions of the typhoon eye,two squall regions of the eye wall,and weak wind regions, beforeand afterthe typhoon’s passage.The results show that:(a)during the strong wind(averagevelocity≥10 ms?1)period,in the atmospheric boundary layer below 110 m,uˉ is almost independent of height, and vertical velocitywˉ is greater than 0,increasing withuˉ and reaching 2–4 m s?1in the squall regions; (b)the turbulent fl uctuations(frequency>1/60 Hz)and gusty disturbances(frequency between 1/600 and 1/60 Hz)are both strong and anisotropic,but the anisotropy of the turbulent fl uctuations is less strong; (c)uˉ can be used as the basic parameter to parameterize all the characteristics of fl uctuations;and(d)the vertical fl ux of horizontal momentum contributed by the average fl ow(uˉ·wˉ)is one order of magnitude larger than those contributed by fl uctuation fl uxesandimplying that strong wind may have seriously disturbed the sea surface through drag force and downward transport of eddy momentum and generated large breaking waves,leading to formation of a strongly coupled marine-atmospheric boundary layer.This results inwˉ>0 in the atmosphere,and some portion of the momentum in the sea may be fed back again to the atmosphere due touˉ·wˉ>0.

    Typhoon Hagupit,marine-atmospheric boundary layer,turbulent fl uctuation,gusty disturbance,air-sea interaction,South China Sea

    1.Introduction

    Oceans occupy two-thirds of the world’s surface, and the in fl uence of air-sea interaction on weather process and climate change is much more signi fi cant than that of land-atmosphere interaction(Ola et al.,2005). The disastrous weather and climate phenomena in marine areas are more severe than those in land areas. However,due to the limitation of observational conditions,it is difficult to make measurements of the marine-atmospheric boundary layer.Thus,to date, observations and studies of the marine-atmospheric boundary layer remain inadequate,especially for situations involving strong winds.Most existing work concerning the marine-atmospheric boundary layer has involved applying the results obtained in laboratory-based fl uid dynamics experiments and atmospheric boundary layer station observations.The laws governing the characteristics of the marine-atmospheric boundary layer under windy conditions have not yet been clearly revealed.Actually,strong wind occurs much more frequently above the oceanic surface than above the land surface.Driven by the strong wind,the oceanic surface current and breaking waves together with the atmospheric motion form a coupled marineatmospheric boundary layer,constituting a complicated air-sea system.

    In the past two decades,due to increased interest in tropical storms,hurricanes,and their formation and evolution,as well as the signi fi cant impact of strong winds on marine engineering and operation, atmospheric and oceanographic scientists,along with structural engineers,have made some important observations and analyses of strong marine winds,especially those associated with hurricanes and typhoons. Although such observations have largely been made on a case-by-case basis,they are still extremely valuable.Observations of this kind are mostly performed by dropsonde,aircraft,Doppler radar,and so on(e.g., Franklin et al.,2002;Powell et al.,2003;Schroeder and Douglas,2003;Knupp et al.,2005;Aberson et al., 2006;French et al.,2007;Kudryavtsev and Makin, 2007;Sanford et al.,2007;Zhang et al.,2008;Zedler et al.,2009).Some valuable directly observed data have also been obtained during typhoon landfalls and when tropical cyclones passing over islands or marine observational platforms(Sparks,2001;Xu and Zhan, 2001;Song et al.,2005,2010;Harper,2008;Cao et al., 2009;Li et al.,2010;Chen et al.,2011;Liu et al.,2011; Peng et al.,2012;Xiao et al.,2012).In particular,the works of Song et al.(2005,2010)were based on strong typhoons such as Damrey,Nuri,Chunchi,Prapiroon, Hagupit,and so on.They focused on studying the engineering problems faced by structures such as buildings,bridges,and wind power installations.

    Using the data of Song et al.(2005,2010),in this paper we focus on the marine-atmospheric boundary layer characteristics,such as those concerning turbulence and wind gusts,and their parameterization. We will employ our own specially developed method, which has already been successfully applied to the previous studies of the boundary layer during strong winds related to sand storms and cold surges(Zeng, 2006;Cheng et al.,2007;Zeng et al.,2010;Cheng et al.,2011,2012a,b).We divide the fl uctuations(or turbulences)into two parts,one being high-frequency turbulent fl uctuation(frequency higher than 1/60 Hz), and the other being gusty wind disturbance(frequency between 1/600 and 1/60 Hz).The two parts have different structures and play di ff erent roles,such as in the transport of heavy aerosol particles(Zeng,2006; Zeng et al.,2010;Cheng et al.,2012b).Meanwhile, by comparing with strong cold-surge cases(Cheng et al.,2014),we show that there are many common features in the marine-atmospheric boundary layer under strong winds.

    2.Data and instruments

    In China,there are many marine meteorological observational stations in the coastal areas of Guangdong Province and over the islands of the South China Sea.Certain stations play host to periods of denser and one-o ffobservational campaigns during the typhoon season to monitor the landfalling of particular typhoons of interest.The station on Zhizi Island is one such station.The data used in this study were mainly obtained from Zhizi(additional data from some other coastal meteorological stations were also used).For a detailed description of this station and its instruments, readers can refer to Liu et al.(2011)and Xiao et al. (2012).However,for convenience,a brief overview is provided as follows.

    Zhizi Island is located o ffthe coast of Bohe, Maoming City.The shortest o ff shore distance is 4.6 km,and the exposed part of the island is about 90 m long and 40 m wide(Fig.1).The observation tower on Zhizi is 100 m high atand the base altitude is 10 m above sea level.The surrounding water depth is 6–10 m.There are 6 sets of cup anemometers(NRG-Symphonie type)installed at heights of 10,20,40,60,80,and 100 m on the tower, and 3 sets of wind direction observation instruments at heights of 10,60,and 100 m.In the typhoon seasonfrom August 2008 to August 2010,there was also one ultrasonic anemometer at 60-m height(Gill-Windmaster Pro.;sampling frequency 10 Hz).

    Fig.1.Location of Zhizi Island and trajectory of Typhoon Hagupit(after Liu et al.,2011).

    3.Typhoon Hagupit and its structure and development

    Typhoon Hagupit formed on 19 September 2008 in the western Paci fi c Ocean near the Philippines. It moved westward and strengthened into a strong typhoon,and landed at 0645 BT 24 September near Chen Village,Bohe,Maoming City,Guangdong Province(Liu et al.,2011;Xiao et al.,2012).The trajectory of Hagupit is shown in Fig.1.The shortest distance between the typhoon center and Zhizi station is 8.5 km.During the typhoon’s landing,the 10-min averaged wind speed reached force 15(48.5 m s?1)at Bohe meteorological station near Zhizi,and the 3-s instant maximum gust reached 63.9 m s?1,as observed at 60-m level of the Zhizi tower.The lowest surface pressure was 956 hPa,which lasted for 8 min(Song et al.,2010;Liu et al.,2011;Xiao et al.,2012).

    There have been many detailed analyses of the 10-min averaged velocity characteristics and turbulent statistics of Hagupit(Song et al.,2010;Liu et al.,2011; Xiao et al.,2012),but the goals of these studies were to examine the typhoon’s e ff ects on engineering structures.Based on these works,we reanalyzed the original data with added quality control tests.The 10-min averaged wind velocities(uˉ,wˉ)that we reanalyzed this time were the same as those in the previous studies. However,we now employ a di ff erent method in turbulence decomposition to analyze the characteristics of fl uctuations,and hope to obtain some new results.

    Figure 2 shows the 10-min averaged horizontal wind speeduˉ recorded by the cup anemometers at 6 levels and the ultrasonic anemometer at 1 level on the tower.Figure 2 captures the whole process of Hagupit, as observed by Zhizi station from 0000 BT 22 to 2400 BT 27 September,including the region of the typhooneye,two regions of eye wall squall,and the outside fi eld of the typhoon before(24 September)and after (25 September)its landing.Figure 3 showsuˉ andwˉ observed by the ultrasonic anemometer,but only for 24 September 2008.

    Fig.2.Time series of 10-min averaged horizontal velocityat 6 levels by cup anemometers and 1 level by ultrasonic anemometer on the Zhizi tower during 22–24 September 2008.

    These two fi gures indicate that the results of the cup anemometers and the ultrasonic anemometer are consistent.There are some clear characteristics in the average fl ow(ˉu, ˉw).Firstly,in the 20–110-m layer (above sea surface), ˉuis almost independent of height (note that by adding the data of the highest velocity from Bohe station during the typhoon’s landing,we could conclude that ˉufrom sea level to 110 m is the same).Only for a very short time during the period of strongest wind(>35 m s?1)is there an exception—the di ff erence between ˉuat the highest two levels is about 10 m s?1.Secondly,at the 60-m level(70 m above the sea surface),there is upward motion( ˉw>0);speci fi cally, ˉwreaches 2–4 m s?1at the squall wall, and 0.5–1 m s?1in the typhoon eye region.The variable ˉwincreases with ˉu.Only for a very short time after the typhoon’s passage is ˉwreduced to nearly 0 m s?1.This is an important point,and why ˉwis>0 m s?1is to be discussed in the last section of this paper.It should be noted that the observed ˉwis correct,because before and after the typhoon’s passage the di ff erence in wind direction is about 180°,but the observed ˉwdoes not change sign,and it is unlikely that the inclinometer has produced any error.

    Figure 4 shows the pairs(ˉu, ˉw)and their regression.It can be seen that the accuracy of the regres-

    Fig. 3. (a)and(b)obtained by the ultrasonic anemometer at 60-m level of the Zhizi tower on 24 September 2008.

    Fig.4.Pair pointsand their regression.

    sion is high.Note that here ˉuis considered as the wind velocity at 10 m above sea surface,as suggested in the literature.

    4.Characteristics of the turbulent fl uctuations and gusty wind disturbances

    The methods by Zeng et al.(2010)and Cheng et al.(2011,2012a,2014)are employed here to analyze the characteristics of fl uctuations(u′,v′,w′)of the ultrasonic anemometer data,whereu′=u-ˉu;v′=v,=0;w′=w-ˉw,anduis along the downwind direction.The averaging interval is 10 min.We further divide the fl uctuations into two types:turbulent fl uctuations(ut,vt,wt)and gusty disturbances (ug,vg,wg).The former consists of components with frequency>1/60 Hz,and the latter with frequency between 1/600 and 1/60 Hz.The variableui(i=t,g) is along the 10-min averaged wind direction.The data are analyzed for the whole period,i.e.,22–27 September 2008,but with special attention paid to the strong wind period(≥ 10 m s?1).

    Fig.5.Gusty disturbancesugand turbulent fl uctuationsutduring 0400–0500 BT 24 September 2008.

    Figure 5 shows the gusty disturbancesugand turbulent fl uctuationsutfor the eye wall squall period (0400–0500 BT 24 September 2008),as denoted by the two vertical lines in Fig.3.It can be seen that the gusty disturbances and turbulent fl uctuations are all quite strong.By usingas the abscissa,the turbulence kinetic energy(Et)and the gusty amplitude of the horizontal component(Agh)are given in Figs. 6 and 7,respectively.Three direction components of turbulence energy(Etu,Etv,Etw)and three components of gusty amplitude(Agu,Agv,Agw)are also given in Figs.6 and 7,whereEt=Etu+Etv+Etw,and the kinetic energy of gustsEgi=(i=u,v,w).It can be seen that during the strong wind period,the anisotropy of gusty disturbances(Agu>Agv>Agw)is signi fi cant,and the turbulent fl uctuations are also anisotropic to some extent,but weaker than that of gusts.This is a common characteristic of windy atmospheric layers,no matter if they are above the land surface(Zeng et al., 2010;Cheng et al.,2011)or above the oceanic surface (Cheng et al.,2014);however,during strong typhoons, this feature is the strongest.

    The equivalent period of gusts(Tg,another useful index in practical applications)and its regression are given in Fig.8.The frequency of the gusty wind disturbance is between 1/600 and 1/60 Hz.There are di ff erent periods of gusts in the atmospheric boundary layer.The equivalent period of gusts refers to the main period of gusts by analyzing their power spectra. Note that the points in the region with ˉu<10 m s?1are scattered due to the randomness and spontaneity of gust occurrences during weak wind cases,but this does not lead to a serious problem in the practical application of the regression because gusts are weak and present only a small in fl uence on heat and mass transport in such situations.

    5.Friction velocity and vertical transport of momentum

    Fig.6.Kinetic energy of turbulent fl uctuation(Et)and its three components(Etu,Etv,Etw).The regressions are also given in solid lines.

    Figure 9 is the superposition ofugandwgduring 0400–0500 BT 24 September 2008.It shows very strong coherence at most moments:ug>0 is accompanied bywg<0,andug<0 bywg>0.Therefore, the downward vertical fl ux of momentum,contributed by gusty disturbances,is large.The vertical fl ux of momentum contributed by turbulent fl uctuations is also downward.The absolute values of both parts of the momentum fl uxes are equal toandrespectively.Figures 10a and 10b show respectively the gusty friction velocity(ug?)and turbulent friction velocity(ut?).Figures 10c and 10d also showu?(the friction velocity in the conventional sense)andum?, where (Cheng et al.,2007),um?is called the average fl ow friction velocity,and the related momentum fl ux is ˉu·ˉw,i.e.,In the case of Hagupit, fl uctuations cause downward fl uxes of momentum,but the average fl ow causes upward fl ux.The upward momentum fl ux by the average fl ow is at least one order of magnitude larger than the downward momentum fl ux by fl uctuations,although the latter is very much larger than that under weak wind conditions.It seems that the 10-min average motion is related to the transport of momentum from ocean to the atmosphere during the typhoon period. Note that in strong wind situations,ug?,ut?,u?,and evenum?can be parameterized by ˉu,as shown by the high accuracy of the regressions in Fig.10.

    The sensible heat fl ux and latent heat fl ux are not given in this paper because the heat and water vapor exchanges between the atmosphere and the sea spray and spume generated by breaking waves and entrained into the atmospheric boundary layer are special subjects of research,and will thus be discussed in future work.

    6.Summary and discussion

    Fig.7.Horizontal amplitude(Agh)and its three component amplitudes(Agu,Agv,Agw)of the gusty disturbances and associated regressions.

    Fig.8.The equivalent period of gusty disturbances(Tg) and the associated regression.

    Fig.9.Superposition ofug(black line)andwg(red line) during 0400–0500 BT 24 September 2008.

    Fig.10.Parameterized friction velocity.(a)Gusty friction velocity,(b)turbulent friction velocity,(c)friction velocity in the conventional sense,and(d)average fl ow friction velocity.

    Analyses of the marine-atmospheric boundary layer during strong Typhoon Hagupit in September 2008 and the windy atmospheric boundary layer related to a cold surge in March 2012 over the South China Sea(Cheng et al.,2014)indicate that in the marine-atmospheric boundary layer during strong winds,the characteristics of both the average fl ow (uˉ,wˉ)and fl uctuations(turbulences and gusts)possess many similarities but also some di ff erences with those during the strong wind cases over the land surface(Zeng et al.,2010;Cheng et al.,2011).The major fi ndings of the study can be summarized as follows.

    (1) In the low-latitude marine-atmospheric boundary layer,during strong wind periods associated with tropical storms,hurricanes,or cold surges, the horizontal average velocityuˉ is almost independent of height below about 100 m,and the vertical velocitywˉ is greater than 0 m s?1.This is di ff erent from land surface cases related to cold air mass outbreaks,whereuˉ increases rapidly with height,andwˉ may be negative(descending cold air).

    (2)During the strong wind periods,in the lower part of the atmospheric layer,whether over the ocean or land,gusty wind disturbances are anisotropic and coherent,and turbulent fl uctuations are also anisotropic to some extent(with vertical kinetic energy signi fi cantly less than the horizontal one)but with weak coherency.

    (3)During strong wind periods,the energies of gusts(Egi)and turbulences(Eti)(i=u,v,w),as well as the corresponding friction velocities(ug?andut?), are all much larger than those in weak-wind situations.The vertical fl uxes of momentum contributed by gusts and turbulences are all downward.They can be parameterized by using ˉuas the controlling factor in marine boundary layer cases because of the independence of ˉuto height.However,the top height of our observations is not sufficient for obtaining their vertical pro fi les.

    (4)According to our analysis of observationaldata,strong wind is accompanied by upward vertical velocity in the marine-atmospheric boundary layer, and ˉwis ≥ 0.25 m s?1when ˉuis ≥ 10 m s?1,and ˉwis ≥ 1.0 m s?1when ˉu≥ 30 m s?1.This means that the upward transport of horizontal momentum, ˉu·ˉw, is ≥ 2.5 and ≥ 30.0 m2s?2,respectively.These values are at least one order of magnitude larger than the downward fl uxes due to the fl uctuations(=0.04 and 0.6 m2s?2,respectively).This fact is important and should be further studied because strong wind occurs frequently above the marine surface.Generally speaking,we can imagine that strong wind(average atmospheric fl ow)and the superimposed fl uctuations drive oceanic surface currents and generate large breaking waves.Thus,a marine-atmosphere coupled boundary layer is formed,and on the atmospheric side,the boundary layer is di ff erent from that over the land, and some portion of the sea momentum can be fed back to the atmosphere from the ocean.This may be the reason why ˉuis independent of height.Furthermore,the sea spray and spume droplets make special exchanges of heat and mass transport between the ocean and atmosphere.

    From the reanalysis data of the ECMWF,NCEP, and GFDL(Geophysical Fluid Dynamics Laboratory), we can see that in the middle and high latitudes ˉw≥0(i.e.,ω≡dP/dt≤ 0)at 10 m over a broad area of the oceanic surface when there is a mature cyclone passing over,and ˉw≤ 0(i.e.,ω>0)occurs only in the cold frontal region near the center of the cyclone. If this can be con fi rmed by observations,it might be true that ˉw≥ 0 at 10 m occurs very often and covers most of the oceanic surface areas during strong winds.

    Another concern is about the 10-m wind.According to the Beaufort scale,when the 10-m wind is force 8(17.2–20.7 m s?1),force 10(24.5–28.4 m s?1), and force 12(hurricane;32.7–36.9 m s?1),the significant wave heights are 5.5(usual)to 7.5 m(highest), 9.0(usual)to 12.5 m(highest),and 14.0(usual)to>16.0 m(highest),respectively.Therefore,the socalled 10-m wind above the oceanic surface is actually meaningless.Fortunately, ˉuis independent of height in the strong wind situation.

    Acknowledgments.We are very grateful to the Guangdong Meteorological Bureau for providing some data.

    REFERENCES

    Aberson,S.D.,M.L.Black,R.A.Black,et al.,2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft.Bull.Amer.Meteor.Soc.,87, 1039–1055.

    Cao,S.Y.,Y.Tamura,N.Kikuchi,et al.,2009:Wind characteristics of a strong typhoon.J.Wind Eng. Indust.Aerodyn.,97,11–21.

    Chen,W.C.,L.L.Song,S.Q.Zhi,et al.,2011:Analysis on gust factor of tropical cyclone strong wind over di ff erent underlying surfaces.Sci.China(Tech. Sci.),54,2576–2586.

    Cheng,X.L.,Q.C.Zeng,and F.Hu,2011:Characteristics of gusty wind disturbances and turbulent fl uctuations in windy atmospheric boundary layer behind cold fronts.J.Geophys.Res.Atmos.,116, D06101,doi:10.1029/2010JD015081.

    —–, —–,and F.Hu,2012a:Parameterizations of some important characteristics of turbulences and gusts in the atmospheric boundary layer.J.Geophys.Res. Atmos.,117,D08113.

    —–, —–,and —–,2012b:Stochastic modeling of the e ff ect of wind gust on dust entrainment during sand storms.Chinese Sci.Bull.,57,3595–3602.

    —–,J.Huang,L.Wu,et al.,2014:Structures and characteristics of windy atmospheric boundary layer in the South China Sea region during cold surge.Adv. Atmos.Sci.(in press)

    Cheng Xueling,Zeng Qingcun,Hu Fei,et al.,2007: Gustiness and coherent structure of strong winds in the atmospheric boundary layer.Climatic Environ. Res.,12,227–243.(in Chinese)

    Franklin,J.L.,M.L.Black,and K.Valde,2002:GPS dropwindsonde wind pro fi les in hurricanes and their operational implications.Wea.Forecasting,18,32–44.

    French,J.R.,W.M.Drennan,J.A.Zhang,et al.,2007: Turbulent fl uxes in the hurricane boundary layer. Part I:Momentum fl ux.J.Atmos.Sci.,64,1089–1102.

    Haper,B.R.,2008:Wind speed time averaging conversions for tropical cyclone conditions.28th Conference on Hurricanes and Tropical Meteorology,Amer. Meteor.Soc.,Orlando,FL,No.4B1.

    Knupp,K.R.,J.Walters,and M.Biggersta ff,2005: Doppler pro fi ler and Radar observations of boundary layer variability during the landfall of tropical storm Gabrielle.J.Atmos.Sci.,63,234–251.

    Kudryavtsev,V.N.,and V.K.Makin,2007:Aerodynamic roughness of the sea surface at high winds.Boundary-Layer Meteor.,125,289–303.

    Li Qiusheng,Dai Yimin,Li Zhengnong,et al.,2010:Surface layer wind fi eld characteristics during a severe typhoon ‘Hagupit’land falling.J.Building Structures,31,54–61.(in Chinese)

    Liu Donghai,Song Lili,Li Guoping,et al.,2011:Analysis of the extreme loads on o ff shore wind turbines by strong Typhoon Hagupit.J.Trop.Meteor.,27, 317–326.(in Chinese)

    Ola,P.,G.Persson,J.E.Hare,et al.,2005:Air-sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX.Quart.J.Roy.Meteor.Soc.,131,877–912.

    Peng Zhen,Song Lili,Hu Fei,et al.,2012:Multi-scale analysis on momentum fl ux of Typhoon Chanchu during its landfall.J.Trop.Meteor.,28,61–67.(in Chinese)

    Powell,M.D.,P.J.Vickery,and T.A.Reinhold,2003: Reduced drag coefficient for high wind speeds in tropical cyclones.Nature,422,279–283.

    Sanford,T.B.,J.F.Price,J.B.Girton,et al.,2007: Highly resolved observations and simulations of the ocean response to a hurricane.Geophys.Res.Lett., 34,L13604,doi:10.1029/2007GL029679.

    Schroeder,J.L.,and S.Douglas,2003:A hurricane bonnie wind fl ow characteristics as determined from WEMITE.J.Wind Eng.Indust.Aerodyn.,91, 767–789.

    Song Lili,Mao Huiqin,Huang Haohui,et al.,2005:Analysis on boundary layer turbulent features of landfalling typhoon.Acta Meteor.Sinica,63,915–921. (in Chinese)

    —–,Pang Jiabin,Jiang Chenglin,et al.,2010:Field measurement and analysis of turbulence coherence for Typhoon Nuri at Macao Friendship Bridge.Sci. China(Tech.Sci.),53,2647–2657.

    Sparks,P.R.,2001:Wind speeds in tropical cyclones and surface-to-gradient wind-speed ratios in tropical cyclones.J.Wind Eng.Indust.Aerodyn.,89(11–12), 1047–1058.

    Xiao Yiqing,Li Lixiao,Song Lili,et al.,2012:Study on wind characteristics of Typhoon Hagupit based on o ff shore sea surface measurements.Acta Aerodyn. Sinica,30,380–387.(in Chinese)

    Xu,Y.L.,and S.Zhan,2001:Field measurements of Diwang Tower during Typhoon York.J.Wind Eng. Indust.Aerodyn.,89,73–93.

    Zedler,S.E.,P.P.Niiler,D.Stammer,et al.,2009: Ocean’s response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds.J.Geophys.Res.Oceans,114, C04016,doi:10.1029/2008JC005205.

    Zeng Qingcun,2006:Gigantic Yellow Cloud—The Dust Storm in Eastern Asia.Science Press,Beijing,228 pp.(in Chinese)

    —–,Cheng Xueling,Hu Fei,et al.,2010:Gustiness and coherent structure of strong winds and their role in the dust emission and entrainment.Adv.Atmos. Sci.,27,1–13.

    Zhang,J.A.,P.G.Black,J.R.French,et al.,2008: Firstdirectmeasurementsofenthalpy fl ux in the hurricane boundary layer:The CBLAST results.Geophys.Res.Lett.,35,L14813. doi: 10.1029/2008GL034374.

    :Cheng Xueling,Wu Lin,Song Lili,et al.,2014:Marine-atmospheric boundary layer characteristics over the South China Sea during the passage of strong Typhoon Hagupit.J.Meteor.Res., 28(3),420–429,

    10.1007/s13351-014-3279-0.

    (Received December 10,2013;in fi nal form January 8,2014)

    Supported by the National Natural Science Foundation of China(40830103 and 91215302),National(Key)Basic Research and Development(973)Program of China(2010CB951804),China Meteorological Administration Special Public Welfare Research Fund(GYHY201306057),and Strategy Guide for the Speci fi c Task of the Chinese Academy of Sciences(XDA10010403).

    ?Corresponding author:zqc@mail.iap.ac.cn.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

    最近最新中文字幕大全免费视频| 在线观看免费高清a一片| 久久精品亚洲熟妇少妇任你| 国产深夜福利视频在线观看| 美女午夜性视频免费| 人人妻,人人澡人人爽秒播| 香蕉国产在线看| 桃红色精品国产亚洲av| 久久99一区二区三区| 黄片大片在线免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美日韩福利视频一区二区| 亚洲色图 男人天堂 中文字幕| 超色免费av| 免费观看a级毛片全部| 成人黄色视频免费在线看| 麻豆国产av国片精品| 午夜老司机福利片| 国产欧美日韩一区二区精品| 色精品久久人妻99蜜桃| 91成年电影在线观看| 国产淫语在线视频| 一区福利在线观看| 高清视频免费观看一区二区| www.999成人在线观看| 男女床上黄色一级片免费看| 男女免费视频国产| 日韩大片免费观看网站| 9191精品国产免费久久| 在线亚洲精品国产二区图片欧美| 99国产精品免费福利视频| 这个男人来自地球电影免费观看| www.精华液| 激情在线观看视频在线高清 | 深夜精品福利| 久久性视频一级片| 欧美精品av麻豆av| 97人妻天天添夜夜摸| 搡老岳熟女国产| 狠狠婷婷综合久久久久久88av| 菩萨蛮人人尽说江南好唐韦庄| 免费一级毛片在线播放高清视频 | 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 亚洲 国产 在线| av有码第一页| 99久久国产精品久久久| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 捣出白浆h1v1| 日本av免费视频播放| 国产不卡一卡二| av有码第一页| 午夜老司机福利片| 美女福利国产在线| 国产深夜福利视频在线观看| 露出奶头的视频| 免费在线观看黄色视频的| 久久青草综合色| 老汉色∧v一级毛片| 日本精品一区二区三区蜜桃| 中文欧美无线码| √禁漫天堂资源中文www| 亚洲色图av天堂| 国产高清激情床上av| av网站免费在线观看视频| 国产精品免费大片| 亚洲色图av天堂| 人妻 亚洲 视频| 老鸭窝网址在线观看| 国产精品久久电影中文字幕 | 12—13女人毛片做爰片一| 黄色视频不卡| 热99re8久久精品国产| 男男h啪啪无遮挡| 成人国产一区最新在线观看| 国产免费现黄频在线看| 日本wwww免费看| 黄色毛片三级朝国网站| 国产深夜福利视频在线观看| 国产av精品麻豆| 国产区一区二久久| av不卡在线播放| 国产又爽黄色视频| 纵有疾风起免费观看全集完整版| 夫妻午夜视频| 又紧又爽又黄一区二区| 亚洲成人国产一区在线观看| 中文欧美无线码| av国产精品久久久久影院| 18禁观看日本| 亚洲av电影在线进入| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕一二三四区 | av超薄肉色丝袜交足视频| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 自线自在国产av| 黄色视频,在线免费观看| 成人国产av品久久久| 国内毛片毛片毛片毛片毛片| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 国产精品久久久久久人妻精品电影 | e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看| 久久久久久久久久久久大奶| 最新美女视频免费是黄的| 不卡一级毛片| 成人免费观看视频高清| 国产97色在线日韩免费| 老司机亚洲免费影院| 国产高清激情床上av| 久久精品亚洲av国产电影网| 日日爽夜夜爽网站| 亚洲美女黄片视频| 在线看a的网站| 高清在线国产一区| 久久久久久免费高清国产稀缺| 欧美日本中文国产一区发布| 视频区图区小说| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 久久亚洲真实| 久久久久视频综合| 操出白浆在线播放| 男女边摸边吃奶| av福利片在线| svipshipincom国产片| 色播在线永久视频| 欧美 日韩 精品 国产| 久久亚洲精品不卡| 亚洲人成77777在线视频| 黄频高清免费视频| 别揉我奶头~嗯~啊~动态视频| 精品午夜福利视频在线观看一区 | 岛国在线观看网站| 自线自在国产av| 人人妻人人爽人人添夜夜欢视频| 亚洲av第一区精品v没综合| 麻豆国产av国片精品| 亚洲avbb在线观看| 9191精品国产免费久久| 国产亚洲一区二区精品| 搡老岳熟女国产| 欧美激情高清一区二区三区| 国产亚洲午夜精品一区二区久久| 精品一区二区三区视频在线观看免费 | 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 电影成人av| 黄色a级毛片大全视频| 国产在线一区二区三区精| 一二三四社区在线视频社区8| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| av一本久久久久| 水蜜桃什么品种好| 国产又爽黄色视频| 国产亚洲精品久久久久5区| 国产成人欧美在线观看 | 成年版毛片免费区| 午夜两性在线视频| 免费在线观看完整版高清| 精品免费久久久久久久清纯 | 一区二区三区国产精品乱码| 一边摸一边做爽爽视频免费| 亚洲成人免费av在线播放| 久久人妻熟女aⅴ| 久久久久久亚洲精品国产蜜桃av| 黑人操中国人逼视频| 在线亚洲精品国产二区图片欧美| 久久久精品免费免费高清| 99riav亚洲国产免费| 正在播放国产对白刺激| 女性被躁到高潮视频| 国产一区有黄有色的免费视频| 一夜夜www| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 午夜精品国产一区二区电影| 国产一区二区三区综合在线观看| 大香蕉久久成人网| 欧美大码av| 国产精品一区二区精品视频观看| 日韩免费av在线播放| 欧美黑人精品巨大| 丝袜美腿诱惑在线| 欧美人与性动交α欧美精品济南到| 国产高清国产精品国产三级| 老司机在亚洲福利影院| 免费黄频网站在线观看国产| 国产男女超爽视频在线观看| 亚洲人成伊人成综合网2020| av国产精品久久久久影院| 国产无遮挡羞羞视频在线观看| 国产精品免费一区二区三区在线 | 国产欧美亚洲国产| 免费在线观看黄色视频的| 50天的宝宝边吃奶边哭怎么回事| 国产精品99久久99久久久不卡| 久久狼人影院| 久久久久久久精品吃奶| 久久久精品国产亚洲av高清涩受| 黄片播放在线免费| 女同久久另类99精品国产91| 午夜福利视频在线观看免费| 国产精品自产拍在线观看55亚洲 | 18禁黄网站禁片午夜丰满| 精品少妇内射三级| 蜜桃国产av成人99| 欧美黄色片欧美黄色片| 亚洲精华国产精华精| 亚洲精品国产色婷婷电影| 亚洲色图av天堂| 亚洲第一av免费看| 久久久久久久久久久久大奶| 多毛熟女@视频| 亚洲色图av天堂| 国产日韩欧美亚洲二区| 91精品三级在线观看| 99国产精品一区二区蜜桃av | 午夜久久久在线观看| 欧美激情久久久久久爽电影 | 久久精品国产亚洲av高清一级| 国产97色在线日韩免费| 国产精品久久久久成人av| 国产一区有黄有色的免费视频| 国产伦人伦偷精品视频| 性少妇av在线| 美国免费a级毛片| 精品亚洲乱码少妇综合久久| 99在线人妻在线中文字幕 | 久久毛片免费看一区二区三区| 久久人妻福利社区极品人妻图片| 国产麻豆69| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 国产免费现黄频在线看| 99久久精品国产亚洲精品| 天天躁日日躁夜夜躁夜夜| 一个人免费看片子| 亚洲av日韩在线播放| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 日韩欧美三级三区| 如日韩欧美国产精品一区二区三区| 国产一区二区 视频在线| 美女视频免费永久观看网站| 国产男女超爽视频在线观看| 精品第一国产精品| 男女无遮挡免费网站观看| 午夜老司机福利片| 日本黄色视频三级网站网址 | 一级片'在线观看视频| 好男人电影高清在线观看| 高清毛片免费观看视频网站 | av网站在线播放免费| 纯流量卡能插随身wifi吗| 国产精品 国内视频| 香蕉久久夜色| 国产午夜精品久久久久久| 伦理电影免费视频| 日本欧美视频一区| 精品一区二区三区四区五区乱码| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| xxxhd国产人妻xxx| 国产高清激情床上av| 亚洲免费av在线视频| 午夜视频精品福利| av网站免费在线观看视频| 亚洲情色 制服丝袜| 亚洲国产成人一精品久久久| 国产主播在线观看一区二区| 一级,二级,三级黄色视频| 黄片播放在线免费| 免费黄频网站在线观看国产| 大香蕉久久成人网| 国产成人精品久久二区二区免费| tube8黄色片| 视频区欧美日本亚洲| 国产欧美日韩综合在线一区二区| netflix在线观看网站| 免费少妇av软件| 亚洲av国产av综合av卡| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 51午夜福利影视在线观看| 亚洲精品国产精品久久久不卡| 国产成人免费观看mmmm| 手机成人av网站| 欧美黑人欧美精品刺激| 国产成人av教育| 精品福利观看| 日本精品一区二区三区蜜桃| 性少妇av在线| 亚洲三区欧美一区| 国产精品一区二区在线观看99| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| 高清视频免费观看一区二区| 国产成人一区二区三区免费视频网站| 久久热在线av| 天堂俺去俺来也www色官网| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看| 日日爽夜夜爽网站| 在线观看人妻少妇| a在线观看视频网站| 91精品国产国语对白视频| 亚洲国产看品久久| 视频在线观看一区二区三区| 最近最新中文字幕大全电影3 | 自线自在国产av| 久久精品国产亚洲av香蕉五月 | 黄片大片在线免费观看| 啦啦啦中文免费视频观看日本| 丁香六月天网| 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 国产在线观看jvid| 69av精品久久久久久 | 亚洲欧美色中文字幕在线| 久久人妻福利社区极品人妻图片| 国产熟女午夜一区二区三区| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免费看| 久久九九热精品免费| 国产亚洲精品一区二区www | av欧美777| tocl精华| 精品福利观看| 老司机影院毛片| 男女高潮啪啪啪动态图| 天堂俺去俺来也www色官网| 男女之事视频高清在线观看| 国产高清国产精品国产三级| 精品人妻1区二区| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 久久久久久免费高清国产稀缺| 久久中文字幕人妻熟女| 免费av中文字幕在线| 国产在视频线精品| avwww免费| 欧美乱妇无乱码| 午夜福利影视在线免费观看| 久久av网站| 亚洲国产av影院在线观看| 在线观看66精品国产| 久久国产精品大桥未久av| 91大片在线观看| 亚洲少妇的诱惑av| 十八禁人妻一区二区| 美国免费a级毛片| 欧美黑人欧美精品刺激| 一本色道久久久久久精品综合| 精品一区二区三区视频在线观看免费 | 色综合婷婷激情| 国产不卡av网站在线观看| 操美女的视频在线观看| 不卡一级毛片| 午夜福利在线免费观看网站| 日日夜夜操网爽| 精品视频人人做人人爽| 一区二区av电影网| 十八禁高潮呻吟视频| 波多野结衣一区麻豆| 色老头精品视频在线观看| 91av网站免费观看| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 夜夜骑夜夜射夜夜干| 国产精品.久久久| 亚洲成人手机| 老司机影院毛片| 女人爽到高潮嗷嗷叫在线视频| 大陆偷拍与自拍| 咕卡用的链子| 中文字幕另类日韩欧美亚洲嫩草| 热99国产精品久久久久久7| 高清黄色对白视频在线免费看| 免费日韩欧美在线观看| 欧美精品人与动牲交sv欧美| 久热爱精品视频在线9| 一级,二级,三级黄色视频| 亚洲欧美日韩另类电影网站| 久久性视频一级片| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 久久人人97超碰香蕉20202| 精品国产一区二区久久| 亚洲精品在线观看二区| 亚洲成国产人片在线观看| 国产xxxxx性猛交| 美女扒开内裤让男人捅视频| 另类亚洲欧美激情| 久久国产精品人妻蜜桃| 亚洲成av片中文字幕在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品粉嫩美女一区| av国产精品久久久久影院| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 日韩欧美三级三区| √禁漫天堂资源中文www| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品成人免费网站| 色婷婷久久久亚洲欧美| 国产在线免费精品| 久久国产精品人妻蜜桃| 午夜福利乱码中文字幕| 别揉我奶头~嗯~啊~动态视频| 我要看黄色一级片免费的| 国产伦理片在线播放av一区| 免费久久久久久久精品成人欧美视频| 亚洲 国产 在线| 超色免费av| 亚洲中文日韩欧美视频| 99国产精品免费福利视频| 在线播放国产精品三级| 国产xxxxx性猛交| 两人在一起打扑克的视频| 午夜视频精品福利| 黄频高清免费视频| 在线播放国产精品三级| 日韩视频在线欧美| 久久久久久亚洲精品国产蜜桃av| 夜夜骑夜夜射夜夜干| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 日本五十路高清| 桃红色精品国产亚洲av| 国产99久久九九免费精品| 国产成人精品在线电影| 五月天丁香电影| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 日本vs欧美在线观看视频| 免费黄频网站在线观看国产| svipshipincom国产片| 99精品欧美一区二区三区四区| 99精品在免费线老司机午夜| 91av网站免费观看| 又紧又爽又黄一区二区| 精品国产乱码久久久久久小说| 男女午夜视频在线观看| 高清av免费在线| 欧美激情 高清一区二区三区| 国精品久久久久久国模美| 国产一区二区三区在线臀色熟女 | 欧美黄色淫秽网站| 国产av一区二区精品久久| 50天的宝宝边吃奶边哭怎么回事| 国产男女超爽视频在线观看| 精品福利观看| 欧美人与性动交α欧美精品济南到| 精品人妻1区二区| 亚洲精品国产一区二区精华液| 国产伦理片在线播放av一区| 精品卡一卡二卡四卡免费| 亚洲一码二码三码区别大吗| 亚洲熟女毛片儿| 黄色片一级片一级黄色片| 一个人免费看片子| 91大片在线观看| videosex国产| 精品福利观看| 欧美日韩一级在线毛片| 国产成人系列免费观看| 久久影院123| 大香蕉久久网| 757午夜福利合集在线观看| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 国产激情久久老熟女| 99精品欧美一区二区三区四区| 亚洲午夜理论影院| 久久精品91无色码中文字幕| 天天躁夜夜躁狠狠躁躁| 亚洲avbb在线观看| 啦啦啦 在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产在线一区二区三区精| 精品欧美一区二区三区在线| 在线永久观看黄色视频| 免费在线观看日本一区| 狠狠婷婷综合久久久久久88av| 少妇 在线观看| 一进一出抽搐动态| av欧美777| 精品一区二区三区av网在线观看 | 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 国产亚洲一区二区精品| 女人精品久久久久毛片| 国产91精品成人一区二区三区 | 亚洲av欧美aⅴ国产| 老汉色∧v一级毛片| 久久久久久亚洲精品国产蜜桃av| 欧美老熟妇乱子伦牲交| 女人爽到高潮嗷嗷叫在线视频| 1024视频免费在线观看| 男人舔女人的私密视频| 免费久久久久久久精品成人欧美视频| 19禁男女啪啪无遮挡网站| 757午夜福利合集在线观看| 日本av免费视频播放| 日韩成人在线观看一区二区三区| 亚洲情色 制服丝袜| 天天添夜夜摸| 亚洲熟女毛片儿| e午夜精品久久久久久久| 在线永久观看黄色视频| netflix在线观看网站| 久久精品成人免费网站| 精品人妻1区二区| 国产人伦9x9x在线观看| 露出奶头的视频| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| av欧美777| 91精品国产国语对白视频| 母亲3免费完整高清在线观看| 12—13女人毛片做爰片一| 成人三级做爰电影| 一二三四社区在线视频社区8| 久久精品亚洲熟妇少妇任你| 久9热在线精品视频| 国产又色又爽无遮挡免费看| 日日爽夜夜爽网站| 纵有疾风起免费观看全集完整版| 在线观看人妻少妇| 91老司机精品| 亚洲国产精品一区二区三区在线| 欧美 日韩 精品 国产| 高清av免费在线| 亚洲中文av在线| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| av视频免费观看在线观看| 成人精品一区二区免费| 久久久久国内视频| videos熟女内射| 久久热在线av| 国产亚洲精品久久久久5区| 国产精品久久久久久精品古装| 精品午夜福利视频在线观看一区 | 成人18禁高潮啪啪吃奶动态图| 精品国产乱码久久久久久男人| 久久久久久免费高清国产稀缺| 大码成人一级视频| 日本黄色日本黄色录像| 成年人午夜在线观看视频| 精品国产乱码久久久久久小说| 两个人免费观看高清视频| 精品高清国产在线一区| 99riav亚洲国产免费| 精品亚洲成a人片在线观看| 久久影院123| 51午夜福利影视在线观看| 在线亚洲精品国产二区图片欧美| 黑人猛操日本美女一级片| 国产成人精品在线电影| 日本黄色视频三级网站网址 | 国产精品久久久久久精品电影小说| bbb黄色大片| 国产免费av片在线观看野外av| 天天躁日日躁夜夜躁夜夜| 国产精品偷伦视频观看了| 少妇精品久久久久久久| 一级毛片女人18水好多| 啪啪无遮挡十八禁网站| 十八禁高潮呻吟视频| 色视频在线一区二区三区| 精品福利永久在线观看| 97在线人人人人妻| 黄色怎么调成土黄色| 母亲3免费完整高清在线观看| 亚洲伊人色综图| 50天的宝宝边吃奶边哭怎么回事| 交换朋友夫妻互换小说| 精品亚洲乱码少妇综合久久| 色视频在线一区二区三区| av网站免费在线观看视频| 乱人伦中国视频| 久久久久久久久免费视频了| cao死你这个sao货| av天堂在线播放| 日本av手机在线免费观看| 国产精品 国内视频| 久久久国产欧美日韩av| 怎么达到女性高潮| 久久天躁狠狠躁夜夜2o2o| 亚洲美女黄片视频| 一级毛片女人18水好多| 久久精品91无色码中文字幕| 欧美av亚洲av综合av国产av| 国产av国产精品国产| 亚洲精华国产精华精| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人免费无遮挡视频| 又大又爽又粗| 啦啦啦免费观看视频1|