• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta,China

    2014-04-12 08:24:00ZHAOWenjingZHANGNingandSUNJianning
    Journal of Meteorological Research 2014年3期
    關(guān)鍵詞:肛管肛瘺復(fù)雜性

    ZHAO Wenjing,ZHANG Ning,and SUN Jianning

    Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University,Nanjing210093

    Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta,China

    Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University,Nanjing210093

    Based on the NOAA’s Advanced Very High Resolution Radiometer(AVHRR)Path fi nder Atmospheres Extended(PATMOS-x)monthly mean cloud amount data,variations of annual and seasonal mean cloud amount over the Yangtze River Delta(YRD),China were examined for the period 1982–2006 by using a linear regression analysis.Both total and high-level cloud amounts peak in June and reach minimum in December,mid-level clouds have a peak during winter months and reach a minimum in summer,and lowlevel clouds vary weakly throughout the year with a weak maximum from August to October.For the annual mean cloud amount,a slightly decreasing tendency(–0.6%sky cover per decade)of total cloud amount is observed during the studying period,which is mainly due to the reduction of annual mean high-level cloud amount(–2.2%sky cover per decade).Mid-level clouds occur least(approximately 15%sky cover)and remain invariant,while the low-level cloud amount shows a signi fi cant increase during spring(1.5%sky cover per decade)and summer(3.0%sky cover per decade).Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment.For example, compared to the low-level cloud amounts over the adjacent rural areas(e.g.,cropland,large water body,and mountain areas covered by forest),those over and around urban agglomerations rise more dramatically.

    cloud amount,PATMOS-x,Yangtze River Delta

    1.Introduction

    Clouds are a crucial factor in local and regional climate change. They modulate the earth’s radiation budget and the hydrologic cycle(Randall and Tjemkes,1991).Meanwhile,di ff erent cloud types always produce di ff erent climate e ff ects and can also ref l ect di ff erent atmospheric conditions.Thus,it is important to investigate the long-term change not only in total clouds but also in di ff erent cloud types.

    In recent decades,many observational studies have focused on the analyses of clouds over China. Using surface observations,Kaiser(1998)found a decrease in the annual mean total cloudiness over China between 1951 and 1994.Li et al.(2004)studied the spatial distribution and seasonal variation of di ff erent types of clouds over China based on the ISCCP(International Satellite Cloud Climatology Project)satellite data and surface observations from 1990 to 1998. Endo and Yasunari(2006)examined the long-term trends of the low-level cloud frequencies and low-level cloud amounts over China with surface observations from 1971 to 1996.At the same time,much attention has also been paid to the relationships between the spatiotemporal variation of clouds and other climate parameters.Kaiser(2000)discussed the relationship between the total cloudiness and other meteorological variables over China,including station pressure,relative humidity,and water vapor pressure.Liang and Xia(2005)and Qian et al.(2006)pointed out that decreasing trends are found in both the cloudiness and solar radiation over China,and the cause for decreas-ingradiation overChinaisprobably increasing aerosols but not cloudiness.Warren et al. (2007) analyzed the variations of cloudiness and cloud types based on surface observations from 1971 to 1996, and discussed the anthropogenic in fl uence on clouds. They considered the e ff ect of smoke aerosols on cloud amount nonnegligible.

    Though many previous studies have focused on cloud amount or cloud frequency over all of China, this paper focuses on a speci fi c area,the Yangtze River Delta(YRD),China.YRD is the largest urban agglomeration area in China(Fig.1b),which covers an area of 110800 km2,with a population of more than 97 million.With rapid urbanization,a series of human activities have likely caused local climate change in this area,such as the urban heat island(UHI)effect(Zhang N.et al.,2010)and changes in solar radiation absorption(Zhang et al.,2004).Few investigations have tried to research long-term cloud changes over this area,although clouds are closely related to the surface energy balance,solar radiation,precipitation,and so on.This study analyzes the spatiotemporal characteristics of multi-layered cloud amounts over the YRD,by using the NOAA’s Advanced Very High Resolution Radiometer(AVHRR)Path fi nder Atmospheres Extended(PATMOS-x)monthly average cloud amount records from 1982 to 2006.

    2.Data and methods

    The NOAA-AVHRR PATMOS-x is a project to derive long-term surface and atmospheric climate records(cloud,aerosol,surface,and radiometric)from roughly 30 yr of data from NOAA’s AVHRR(including AVHRR/2 and AVHRR/3)onboard the Polar Operational Enrironmental Satellite(POES)spacecraft from 1981 to present.The POES system includes a morning satellite with equator crossing times at approximately 0700(descending orbit)and 1900(ascending orbit)local solar time(LST),and an afternoon satellite with the equator crossing times at approximately 0200(descending orbit)and 1400(ascending orbit)LST,thus providing global coverage 4 times a day.From the average of all data from afternoon and morning satellite retrievals,an approximate daily and monthly mean is calculated.Monthly averaged cloud amount data retrieved from PATMOS-x version 4 with a 0.5-degree spatial resolution are analyzed in this study,and the cloud types are de fi ned by the cloudtop pressure(Rossow and Schi ff er,1999)as shown in Table 1.Note that before 1992 there was no morning data included in PATMOS-x,so the monthly averaged cloud amounts are simply the average of the afternoon satellite records before 1992.A comparison between the data from only the afternoon satellite observationsand both morning and afternoon observations during 1992–2006(Fig.2)shows that the observations from two satellites and one afternoon satellite consist well on the variations of the annual mean data series,although there is a bias of 1%–3%sky cover in cloud amount.Similar characteristics are also found in four seasons( fi gure omitted).In order to consider a longer observation series,the whole time series of cloud amount(1982–2006)are examined and analyzed in this paper,and the di ff erences between the datasets before and after 1992 are considered as an intervention impact on the trend detection(Weatherhead et al.,1998).

    Fig.1.(a)Topographic height and the analysis area(the black rectangle enclosed area).(b)Land covers in the analysis area,from MODIS observations in 2005.The black and red rectangular areas indicate urban area and cropland area, respectively,which are also mentioned in Fig.6.NJ:Nanjing;CZ:Changzhou;WX:Wuxi;SZ:Suzhou;SH:Shanghai; HZ:Hangzhou.

    Table 1.The cloud types de fi ned by cloud-top pressure

    The Clouds from AVHRR Extended(CLAVR-x)algorithms are used to detect PATMOS-x clouds (Pavolonis and Heidinger,2004;Pavolonis et al.,2005; Heidinger and Pavolonis,2009). The global cloud amounts from CLAVR-x agree well with other established satellite-derived cloud climatologies(Thomas et al.,2004),and have been widely used in current research of cloud changes(Clement et al.,2009; Tang et al.,2012).It should be noticed that there are some limitations in passive remote sensing observations compared with the active remote sensing (Kennedy et al.,2010;Xi et al.,2010). For the CLVAR-x approaches that can estimate opaque clouds well,there is difficulty in uniquely detecting thin cirrus and small clouds(not fi lling the sensor fi eld of view)(Nieman et al.,1993;Heidinger and Pavolonis,2009).However,the approaches can detect multilayered cloud only in situations where thin and high clouds are situated over low,thick clouds(Pavolonisand Heidinger,2004). This paper focuses on the trends/tendencies of cloud amounts rather than the accurate cloud amount values when considering the uncertainties in observation methods.

    Fig.2.Annual mean cloud amounts(%sky cover)of(a)total cloud,(b)high-level cloud,(c)mid-level cloud,and(d) low-level cloud,from both morning and afternoon satellites retrievals(line with asterisks)and from only the afternoon satellite retrievals(line with triangles).

    In this study,a linear regression analysis is performed to analyze the variation in cloud.Tiao et al. (1990)and Weatherhead et al.(1998)pointed out that the precision of linear trend estimate is strongly in fl uenced by the autocorrelation of the noise and intervention in the data series,such as when an instrument is changed at a speci fi c time.Given that there is a permanent shift in the data series in 1992,we consider a trend model as follows(Weatherhead et al.,1998).

    wheret=1,2,···,T(T=25 is the number of years);Ytis the cloud amount series;Xt=1982,1983,···, 2006;ais a constant term;bis the trend;cUtis a mean level shift term accounting for the intervention impact at the speci fi c timet=T0(in this studyT0=11, corresponding toXt=1992):Ut=0(t<T0),Ut=1 (t≥T0).The noise termNtis assumed as a fi rst-order autoregressive[AR(1)]:Nt=ρNt?1+εt,whereρis the autocorrelation coefficient andεtis the white noise with mean zero and common variance.Regression coefficientsa,b,andcare estimated by the method of generalized least squares(GLS)and detailed processes and corresponding discussions were presented well in Weatherhead et al.(1998).

    A commonly used criterion is adopted to test the signi fi cance of trends:a real trend is indicated at the 95%con fi dence level when|?b/σ?b|>2,where ?bis the estimator ofbandσ?bis the uncertainty of trend estimate(standard deviation of ?b).It is found that the trend estimate and its uncertainty are strongly inlf uenced by the level shift term in the trend model. The level shift term will not only increase the uncertainty of the trend estimate but also modify its value: ?b≈?b0-c?(6τ(1-τ)/T),whereτ=(T0-1)/T,c? is the estimator ofc,and ?b0is the trend estimate in the trend model without considering the level shift term(c=0).In addition,the con fi dence level(|?b/σ?b|)is substantially reduced when including the level shift term in the trend model.

    Low-level clouds should be more sensitive to local land surface conditions than higher clouds.Thus, we focus on the time-space distributions of the lowlevel cloud amount in summer and try to examine if land-surface heterogeneity has any in fl uence on local clouds.

    3.Results

    The monthly variations of cloud amounts are illustrated in Fig.3.The total cloud amount peaks in June and then gradually decreases from summer to winter with a minimum in December.High-level clouds occur most frequently from March to October and have a similar monthly variation with total clouds. The mid-level cloud amount peaks during the winter months and reaches a minimum in summer.The variation of low-level clouds is weak and the value from August to October is slightly greater than the other months.

    Annual and seasonal changes of cloud amounts averaged over the YRD are analyzed by using the linear regression analysis(Fig.4).Here,trends are considered statistically signi fi cant when the con fi dence interval is greater than 95%;otherwise,the temporal variations are considered as tendencies(Dong et al.,2010).For the annual mean cloud amounts(Fig. 4a),the averages of total and high-,mid-,and lowlevel cloud amounts during the studying period are 63%,32%,15%,and 19%,respectively. The annual mean total clouds increased in the 1980s,peaked in the 1990s,and then dramatically decreased in 2000,with a decreasing tendency for the past 25 years;and this variation agrees well with the result of surface observations(Yuan and Tang,2007).The annual mean high-level cloud amount has a statistically signi fi cant decreasing trend of –2.2%sky cover per decade,which plays a major role in the decrease of the total cloud amount.The annual mean mid-level clouds have the lowest frequency of occurrence and are the least in-variant.The annual mean low-level cloud amount has a unique increasing tendency of 0.8%sky cover per decade.

    Fig.3.Monthly mean cloud amounts during the period 1982–2006,averaged over the Yangtze River Delta.

    Fig.4.Time series and linear trends of(a)annual and(b–e)seasonal mean cloud amount from 1982 to 2006,averaged over the Yangtze River Delta.Thick lines indicate trends with signi fi cance at the 95%con fi dence level.(b)Spring: March,April,and May(MAM);(c)Summer:June,July,and August(JJA);(d)Autumn:September,October,and November(SON);(e)Winter:December,January,and February(DJF).

    Variations of seasonal mean cloud amounts are illustrated in Figs.4b–e.High-level clouds have decreasing tendencies throughout the year while the low-level cloud amount in summer shows a continued growth,with the increasing trend of 3.0%sky cover per decade at the 95%con fi dence level(Fig.4c).

    The spatial distributions of linear trends in lowlevel cloud amount during summer are shown in Fig. 5a.The low-level cloud amount increases over the entire YRD and it is notable that the increasing trend over and around most urban areas is higher with relative maxima centers emerging west of Shanghai(SH). The lower trend values are located over Tai Lake with a water area of 2500 km2and mountain areas covered by forest(southwest of YRD).Meanwhile,this relative growth directly results in a smaller decrease of total cloud amount over most urban areas(Fig.5b:from SH to northwest of Changzhou(CZ)).Additionally, the decrease extent of the high-level cloud amount is smaller over the southwest of the YRD( fi gure omitted)and therefore,the total cloud amount also has a smaller decreasing tendency over the mountain areas (Fig.5b).

    By further exploring the low-level cloudiness variations over di ff erent land covers,we compare the differences of low-level cloud amounts in summer between urban agglomerations(black rectangular areas in Fig. 1b)and the adjacent rural areas including cropland (red rectangular areas in Fig.1b),Tai Lake,and forest,respectively(Fig.6).Because the observation resolution(0.5°)is greater than the size of most cities in this area,and the urban land cover expanded dramatically in this analysis period,it is hard to obtain observation data over a pure urban area.In our study, the urban cover fraction over each PATMOS-x grid is calculated with 1-km resolution MODIS land use data (Fig.1b),and the urban-dominant grids(which means a grid with urban cover fraction greater than 50%)are used to represent the trend for urban agglomerations. As for the cropland area,it also includes some urban land use,such as small-size towns or cities,and the urban cover fraction over the selected cropland area is less than 20%in our analysis.It is clearly evident that the low-level cloud amount increased over urban agglomerations at a faster rate than that over non-urban areas.The increasing rate over urban agglomerations is much greater than those over bodies of water and forest,and it is also greater than that over the cropland area.The trend over the cropland is close to that over the urban area.There may be two potential reasons:1)the urban-dominant grids used in our analysis usually include cropland,and vice versa;2)the selected cropland areas are near urbanagglomerations(Fig.1b)and the in fl uence of urbanization has a regional-scale impact in this area,as demonstrated by previous studies(e.g.,Zhang N.et al.,2010).Further studies with higher resolution observations and state-of-the-art numerical modeling are needed for a better explanation on this phenomenon.

    Fig.5.Trends of summer mean(a)low-level and(b)total cloud amount for 1982–2006(interval:0.4%sky cover per decade).The red contour lines indicate increasing trends and blue contour lines indicate decreasing trends.The shaded areas indicate urban areas.NJ:Nanjing;CZ:Changzhou;WX:Wuxi;SZ:Suzhou;SH:Shanghai;HZ:Hangzhou. Trends of low-level clouds are at the 95%con fi dence level for most of the study areas while trends of total clouds are not signi fi cant for any areas.

    Fig.6.Changes of low-level cloud amount in summer over(a)urban agglomeration(black rectangular areas in Fig. 1b),(b)cropland(red rectangular areas in Fig.1b),(c)Tai Lake,and(d)forest areas.Thick lines indicate trends at the 95%con fi dence level.

    4.Discussion

    The cloud process is very complex and impacted by many factors such as moisture,cloud condensation nuclei(CNN),and thermal excitation,especially when considering the adequate water vapor supply from the oceans and densely vegetated land cover in the YRD in summer.The key factors of cloud processes are related to CCN and thermal excitation.The CCN concentration increases due to the air pollutant release over urban area,and its impact on clouds is very uncertain.A large number of studies based on observations and models indicate that high concentrations of fi ne aerosol particles could increase cloud coverage by increasing the concentration of cloud droplets that not only suppress rainfall in warm cloud but also augment the cloud top albedo(Rosenfeld,1999,2000;Givati and Rosenfeld,2004;Teller and Levin,2006;Khain et al.,2008;Small et al.,2011).Other studies also fi nd that aerosols could reduce cloud cover as well:for example,hydrophilic aerosols may enhance precipitation in the ice phase and reduce the cloud cover(Lohmann, 2002);absorbing aerosols(black carbon)could heat the atmosphere by absorbing solar radiation,which results in reduced cloud formation and abbreviation of cloud lifetime(Ackerman et al.,2000;Small et al., 2011).All the previous studies show that the e ff ects of aerosols on cloud amount tend to be more on the global scale rather than regional or urban scales.

    The most probable mechanism of the low-level cloud increasing over the YRD in summer is the surface heating excitation,especially when this area is currently undergoing rapid urbanization.Urban-induced modi fi cations in natural clouds may well be due to the following causes(Cotton and Pielke,2007): 1)increases in anthropogenic aerosols e ff ects;2)the urban thermal e ff ect on low-level convection and circulation;3)increased low-level convergence downwind of the urban area caused by greater surface roughness;4)changes of low-level atmospheric moisture content.In summer,the moisture is transported from the East China Sea to the YRD under the prevailing wind (southeast wind)and the strongest UHI e ff ect also appears in summer over the YRD(Du et al.,2007;Zhang K.X.et al.,2010),which may explain why the relative growth of low-level cloudiness over urban areas is more remarkable during summer.

    Many observational studies have proved that the apparent intensity increase of UHI over the YRD refl ects the tendency of clusters of urban centers to form a large regional heat island(Chen et al.,2006;Du et al.,2007).Table 2 shows the heat island intensity of three typical cities during summer.It is found that the UHI intensity has dramatically increased since the 1990s over all the three cities,and the correlation coeffi cient between the UHI intensity of Shanghai and the low-level cloudiness over Shanghai is 0.57(p=0.003).

    Table 2.The UHI intensity(℃)of Shanghai,Hangzhou,and Nanjing during summer

    5.Conclusions

    Variations of seasonal and annual mean cloud amounts of di ff erent cloud types(including total cloud, high-level cloud,mid-level cloud,and low-level cloud) were examined and analyzed over the Yangtze River Delta(YRD),China,for the period 1982–2006 by using a linear regression analysis.For the monthly variations,both total and high-level cloud amounts peak in June and reach a minimum in December.In contrast,mid-level clouds have a peak during winter months and reach a minimum in summer while lowlevel clouds vary weakly throughout the year.The annual averages of total,high-,mid-,and low-level cloud amounts are 63%,32%,15%,and 19%,respectively. A decrease tendency in annual mean total cloud amount is found,which is mainly driven by the decreases of high-level clouds throughout the year. Mid-level cloud amounts occur least and remain invariant throughout the year,while the annual mean low-level cloud increase is mainly caused by the signi fi cantly increasing trend in low-level cloud amount during the summer.

    In particular,the spatial and temporal variations of total and low-level cloud amounts in summer were further analyzed.Trends in the low-level cloud amount during summer have conspicuous local di ff erences:low-level cloud amount over urban agglomeration areas rises much faster than that over the adjacent non-urban areas.This relative growth directly leads to a smaller decreasing tendency of the total cloud amount as observed over most urban areas (–0.4%sky cover per decade)than that over other non-urban areas(–1.2%to –4%sky cover per decade).

    In this study,we just provide the spatiotemporal characteristics of cloud amount over the YRD,and try to infer the possible urbanization thermal e ff ect on the low-level cloud.Given the complexity of the cloud physical progresses,higher resolution observations and numerical simulations will be needed to verify the urbanization e ff ect on clouds,and further quantitative research is warranted to detect more examples of these e ff ects.

    Acknowledgments.We are grateful to the anonymous reviewers for their valuable comments.

    REFERENCES

    Ackerman,A.S.,O.B.Toon,D.E.Stevens,et al.,2000: Reduction of tropical cloudiness bysoot.Science,288,1042–1047,doi:10.1126/science.288.5468.1042.

    Chen,L.X.,W.L.Li,W.Q.Zhu,et al.,2006:Seasonal trends of climate change in the Yangtze Delta and its adjacent regions and their formation mechanisms.Meteor.Atmos.Phys.,92,11–23,doi: 10.1007/s00703-004-0102-y.

    Clement,A.C.,R.Burgman,and J.R.Norris,2009: Observational and model evidence for positive lowlevel cloud feedback.Science,325,460–464,doi: 10.1126/science.1171255.

    Cotton,W.R.,and R.A.Pielke,2007:Human Impacts on Weather and Climate. Cambridge University Press,New York,330 pp.

    Dong,X.,B.Xi,K.Crosby,et al.,2010:A 10 year climatology of arctic cloud fraction and radiative forcing at Barrow,Alaska.J.Geophys.Res.,115(D17), D12124,doi:10.1029/2009JD013489.

    Du,Y.,Z.Q.Xie,Y.Zeng,et al.,2007:Impact of urban expansion on regional temperature change in the Yangtze River Delta.Journal of Geographical Sciences,17,387–398,doi:10.1007/s11442-007-0387-0. Endo,N.,and T.Yasunari,2006:Changes in low cloudiness over China between 1971 and 1996.J.Climate, 19,1204–1213,doi:10.1175/JCLI3679.1.

    Givati,A.,and D.Rosenfeld,2004:Quantifying precipitation suppression due to air pollution.J. Appl.Meteor.,43,1038–1056,doi:10.1175/1520-0450(2004)043<1038%3AQPSDTA>2.0.CO%3B2.

    Heidinger,A.K.,and M.J.Pavolonis,2009:Gazing at cirrus clouds for 25 years through a split window. Part I:Methodology.J.Appl.Meteor.Climatol., 48,1100–1116,doi:10.1175/2008JAMC1882.1.

    Kaiser,D.P.,1998:Analysis of total cloud amount over China,1951–1994.Geophys.Res.Lett.,25,3599–3602,doi:10.1029/98GL52784.

    —–,2000:Decreasing cloudiness over China:An updated analysis examining additional variables.Geophys.Res.Lett.,27,2193–2196,doi:10.1029/2000 GL011358.

    肛瘺也稱作肛管直腸瘺,為慢性感染性管道,多因肛管、直腸引發(fā)炎癥進(jìn)而造成鄰近組織破潰所致[1]。肛瘺的發(fā)病率較高,以青年人群居多,發(fā)病率為5%左右,且男性患者多于女性患者[2]。對于該疾病的治療,目前臨床以外科治療為主,去除病灶、通暢引流、保護(hù)肛門功能是治療的基本原則[3]。復(fù)雜性肛瘺因為腸管內(nèi)瘺口難以找到,導(dǎo)致術(shù)后并發(fā)癥與復(fù)發(fā)率均較高,因此探討其最佳術(shù)式非常重要[4]。本文選取84例復(fù)雜性肛瘺患者的治療情況展開對比分析。

    Kennedy,A.D.,X.Q.Dong,B.K.Xi,et al.,2010:Evaluation of the NASA GISS Single-Column Model simulated clouds using combined surface and satellite observations.J.Climate,23,5175–5192,doi: 10.1175/2010JCLI3353.1.

    Khain,A.P.,N.BenMoshe,and A.Pokrovsky,2008:Factors determining the impact of aerosols on surface precipitation from clouds:An attempt at classi fication.J.Atmos.Sci.,65,1721–1748,doi:10. 1175/2007JAS2515.1.

    Li,Y.,R.Yu,Y.Xu,et al.,2004:Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations.J.Meteor.Soc. Japan,82,761–773,doi:10.2151/jmsj.2004.761.

    Li Qiang,Zhou Suoquan,Xiang Liang,et al.,2009:The analysis on temporal-spatial characters of urban agglomeration island e ff ect in Hangzhou Bay.Bulletin of Science and Technology,25,395–418.(in Chinese)

    Liang,F.,and X.A.Xia,2005:Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000.Ann.Geophys.,23, 2425–2432,doi:10.5194/angeo-23-2425-2005.

    Lohmann,U.,2002:A glaciation indirect aerosol e ff ect caused by soot aerosols.Geophys.Res.Lett.,29, 11-1-11-4,doi:10.1029/2001GL014357.

    Nieman,S.J.,J.Schmetz,and W.P.Menzel,1993: A comparison ofseveraltechniquesto assign heights to cloud tracers.J.Appl.Meteor.,32, 1559–1568,doi:10.1175/1520-0450(1993)032<1559: ACOSTT>2.0.CO;2.

    Pavolonis,M.J.,and A.K.Heidinger,2004:Daytime cloud overlap detection from AVHRR and VIIRS.J. Appl.Meteor.,43,762–778,doi:10.1175/2099.1.

    —–, —–,and T.Uttal,2005:Daytime global cloud typing from AVHRR and VIIRS:Algorithm description, validation,and comparisons.J.Appl.Meteor.,44, 805–826,doi:10.1175/JAM2236.1.

    Qian,Y.,D.P.Kaiser,L.R.Leung,et al.,2006:More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000.Geophys.Res. Lett.,33,L01812,doi:10.1029/2005GL024586.

    Qiu Xinfa,Gu Lihua,Zeng Yan,et al.,2008:Study on urban heat island e ff ect of Nanjing.Climatic Environ.Res.,13,807–814.(in Chinese)

    Randall,D.A.,and S.Tjemkes,1991:Clouds,the earth’s radiation budget,and the hydrologic-cycle.Global and Planetary Change,90,3–9,doi:10.1016/0921-8181(91)900633.

    Rosenfeld,D.,1999:TRMM observed fi rst direct evidence of smoke from forest fi res inhibiting rainfall.Geophys.Res.Lett.,26,3105–3108,doi: 10.1029/1999GL006066.

    —–,2000:Suppression of rain and snow by urban and industrial air pollution.Science,287,1793–1796, doi:10.1126/science.287.5459.1793.

    Rossow,B.R.,and R.A.Schi ff er,1999:Advances in understanding clouds from ISCCP.Bull.Amer. Meteor.Soc.,80,2261–2287,doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    Small,J.D.,J.H.Jiang,H.Su,et al.,2011:Relationship between aerosol and cloud fraction over Australia.Geophys.Res.Lett.,38,L23802,doi: 10.1029/2011GL049404.

    Tang,Q.H.,G.Y.Leng,and P.Y.Groisman,2012: European hot summers associated with a reduction of cloudiness.J.Climate,25,3637–2644,doi: 10.1175/JCLI-D-12-00040.1.

    Teller,A.,and Z.Levin,2006:The e ff ects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model.Atmos.Chem.Phys.,6,67–80,doi:10.5194/acp-6-67-2006.

    Thomas,S.M.,A.K.Heidinger,and M.J.Pavolonis, 2004:Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies.J.Climate,17,4805–4822, doi:10.1175/JCLI-3242.1.

    Tiao,G.C.,G.C.Reinsel,D.M.Xu,et al.,1990:E ff ects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation.J. Geophys.Res.,95(D12),20507–20517.

    Warren,S.G.,R.M.Eastman,and C.J.Hahn,2007: A survey of changes in cloud cover and cloud types over land from surface observations,1971–96.J. Climate,20,717–738,doi:10.1175/JCLI4031.1.

    Weatherhead,E.C.,G.C.Reinsel,G.C.Tiao,et al., 1998:Factors a ff ecting the detection of trends:Statistical considerations and applications to environmental data.J.Geophys.Res.,103(D14),17149–17161.

    Xi,B.,X.Dong,P.Minnis,et al.,2010:A 10 year climatology of cloud cover and vertical distribution derived from both surface and GOES observations over the DOE ARM SGP Site.J.Geophys.Res., 115(D12),D12124,doi:10.1029/2009JD012800.

    Yuan Changhong and Tang Jianping,2007:Regional climatic response of Jiangsu to global warming.Journal of Nanjing University(Natural Sciences), 43,655–669.(in Chinese)

    Zhang,K.X.,R.Wang,C.C.Shen,et al.,2010: Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China.Environ.Monit.Assess.,169,101–112,doi: 10.1007/s10661-009-1154-8.

    Zhang,N.,Z.Q.Gao,X.M.Wang,et al.,2010:Modeling the impact of urban ization on the local and regional climate in Yangtze River Delta,China.Theor.Appl. Climatol.,102,331–342,doi:10.1007/s00704-010-0263-1.

    Zhang,Y.L.,B.Q.Qin,and W.M.Chen,2004:Analysis of 40 year records of solar radiation data in Shanghai,Nanjing and Hangzhou in eastern China.Theor. Appl.Climatol.,78,217–227,doi:10.1007/s00704-003-0030-7.

    :Zhao Wenjing,Zhang Ning,and Sun Jianning,2014:Spatiotemporal variations of cloud amount over the Yangtze River Delta,China.J.Meteor.Res.,28(3),371–380,

    10.1007/s13351-014-3064-0.

    (Received September 2,2013;in fi nal form February 15,2014)

    Supported by the National Basic Research and Development(973)Program of China(2010CB428501)and National Natural Science Foundation of China(41375014).

    ?Corresponding author:ningzhang@nju.edu.cn.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

    猜你喜歡
    肛管肛瘺復(fù)雜性
    當(dāng)心特殊腸癌的“幕后黑手”——肛瘺
    中老年保健(2021年8期)2021-08-24 06:22:30
    磁共振成像不同掃描序列診斷肛瘺診斷價值
    智慧健康(2021年33期)2021-03-16 05:46:34
    PFNA與DHS治療股骨近端復(fù)雜性骨折的效果對比
    簡單性與復(fù)雜性的統(tǒng)一
    科學(xué)(2020年1期)2020-08-24 08:07:56
    胎兒正常肛門、肛管和畸形改變的超聲圖像分析
    直腸癌直腸肛管經(jīng)腹會陰聯(lián)合手術(shù)的臨床效果觀察
    應(yīng)充分考慮醫(yī)院管理的復(fù)雜性
    直腸腔內(nèi)超聲和MRI在復(fù)雜性肛瘺診斷中的對比分析
    肛瘺相關(guān)性鱗癌1例
    分段貫穿結(jié)扎治療碩大內(nèi)庤58例臨床觀察
    国产精品乱码一区二三区的特点| 日韩欧美在线乱码| 精品一区二区三区av网在线观看| 欧美最黄视频在线播放免费| 波多野结衣巨乳人妻| 少妇熟女aⅴ在线视频| 国语自产精品视频在线第100页| 日韩成人在线观看一区二区三区| 综合色av麻豆| 99在线视频只有这里精品首页| 尤物成人国产欧美一区二区三区| 看十八女毛片水多多多| 国产三级在线视频| 超碰av人人做人人爽久久| 国产成人av教育| 亚洲三级黄色毛片| 99久久久亚洲精品蜜臀av| 99热只有精品国产| 精品一区二区三区视频在线| 99热精品在线国产| 中文字幕av成人在线电影| 欧美精品国产亚洲| 欧美色视频一区免费| 久久国产精品人妻蜜桃| 免费在线观看影片大全网站| 五月玫瑰六月丁香| 国产高清有码在线观看视频| 久99久视频精品免费| 久久99热6这里只有精品| 亚洲成人久久爱视频| 色综合欧美亚洲国产小说| 国产又黄又爽又无遮挡在线| 小蜜桃在线观看免费完整版高清| 午夜日韩欧美国产| 日韩国内少妇激情av| 少妇高潮的动态图| 亚洲经典国产精华液单 | 久久久久久久久大av| 国产一区二区亚洲精品在线观看| 天美传媒精品一区二区| 97热精品久久久久久| 国产麻豆成人av免费视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久亚洲中文字幕 | 一个人免费在线观看的高清视频| 最近中文字幕高清免费大全6 | 3wmmmm亚洲av在线观看| 久久6这里有精品| 亚洲av熟女| 99热这里只有是精品在线观看 | 精品久久久久久久末码| 丰满人妻熟妇乱又伦精品不卡| 国产白丝娇喘喷水9色精品| 最新中文字幕久久久久| 性色avwww在线观看| 亚洲第一电影网av| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 亚洲av电影在线进入| 热99re8久久精品国产| 看黄色毛片网站| 97碰自拍视频| 午夜福利免费观看在线| 亚洲欧美精品综合久久99| 免费看光身美女| av国产免费在线观看| 最近中文字幕高清免费大全6 | 怎么达到女性高潮| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| x7x7x7水蜜桃| 欧美精品啪啪一区二区三区| 国产精品久久久久久精品电影| 一区二区三区免费毛片| 久久久精品大字幕| 精品人妻1区二区| 18禁在线播放成人免费| 免费看日本二区| 国产精品国产高清国产av| 一区福利在线观看| 毛片女人毛片| 中文字幕高清在线视频| 少妇人妻一区二区三区视频| 最近最新免费中文字幕在线| 免费人成在线观看视频色| 在线观看av片永久免费下载| 国产黄色小视频在线观看| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 国产三级黄色录像| 色视频www国产| 特级一级黄色大片| 国产欧美日韩一区二区三| 俺也久久电影网| 中文字幕久久专区| 亚洲欧美日韩无卡精品| 国产精品久久久久久人妻精品电影| 免费黄网站久久成人精品 | 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 日本一本二区三区精品| 好男人电影高清在线观看| 久久久精品欧美日韩精品| 麻豆av噜噜一区二区三区| 国产探花极品一区二区| 亚洲激情在线av| 国产亚洲av嫩草精品影院| 久久久精品大字幕| 亚洲精品亚洲一区二区| 亚洲精品色激情综合| 色播亚洲综合网| 亚洲欧美日韩高清专用| 性欧美人与动物交配| 中文字幕久久专区| 久久国产乱子免费精品| 青草久久国产| 韩国av一区二区三区四区| 欧美在线黄色| 亚洲av免费高清在线观看| 国产精品野战在线观看| www日本黄色视频网| 国产精品久久久久久人妻精品电影| 尤物成人国产欧美一区二区三区| 大型黄色视频在线免费观看| 性插视频无遮挡在线免费观看| 观看免费一级毛片| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 校园春色视频在线观看| 亚洲电影在线观看av| 女生性感内裤真人,穿戴方法视频| 国产日本99.免费观看| 特级一级黄色大片| 宅男免费午夜| 免费在线观看亚洲国产| 欧美日韩综合久久久久久 | 午夜福利免费观看在线| 日本在线视频免费播放| 久久欧美精品欧美久久欧美| 久久午夜福利片| 高潮久久久久久久久久久不卡| 亚洲真实伦在线观看| 日日干狠狠操夜夜爽| 一本精品99久久精品77| 自拍偷自拍亚洲精品老妇| 日韩av在线大香蕉| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 看黄色毛片网站| 精品久久久久久久久亚洲 | 国产aⅴ精品一区二区三区波| 悠悠久久av| 国产精品女同一区二区软件 | 变态另类成人亚洲欧美熟女| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 每晚都被弄得嗷嗷叫到高潮| 欧美在线一区亚洲| 午夜日韩欧美国产| 亚洲av美国av| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| a级毛片a级免费在线| 特大巨黑吊av在线直播| 大型黄色视频在线免费观看| 久久久久国内视频| netflix在线观看网站| 少妇丰满av| 一本一本综合久久| 亚洲色图av天堂| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 国内精品美女久久久久久| 一级毛片久久久久久久久女| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| www.www免费av| 赤兔流量卡办理| avwww免费| 日本一二三区视频观看| 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 乱人视频在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| av天堂在线播放| 久久午夜福利片| 中文字幕高清在线视频| 88av欧美| 91麻豆av在线| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 色5月婷婷丁香| 香蕉av资源在线| 非洲黑人性xxxx精品又粗又长| 看十八女毛片水多多多| 超碰av人人做人人爽久久| 国产色爽女视频免费观看| 日韩欧美国产一区二区入口| 中国美女看黄片| 波多野结衣巨乳人妻| avwww免费| 国产美女午夜福利| 麻豆成人av在线观看| 露出奶头的视频| 国产精品永久免费网站| 91av网一区二区| 1024手机看黄色片| 99视频精品全部免费 在线| 亚洲性夜色夜夜综合| 级片在线观看| www日本黄色视频网| 日韩有码中文字幕| 日本黄色视频三级网站网址| 国产精品久久久久久人妻精品电影| 丁香六月欧美| 变态另类成人亚洲欧美熟女| 中文字幕熟女人妻在线| 午夜福利免费观看在线| 欧美又色又爽又黄视频| 久久精品综合一区二区三区| 日韩 亚洲 欧美在线| 在线播放无遮挡| www日本黄色视频网| 99国产综合亚洲精品| 国产麻豆成人av免费视频| 日本一本二区三区精品| 一区二区三区激情视频| 色吧在线观看| 国产精品久久视频播放| 亚洲第一电影网av| 国产老妇女一区| 久久中文看片网| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 老熟妇仑乱视频hdxx| or卡值多少钱| 国产亚洲欧美98| 成人国产综合亚洲| www.色视频.com| 午夜福利视频1000在线观看| 中文字幕久久专区| 国产三级中文精品| 一个人免费在线观看电影| 成人美女网站在线观看视频| 免费av毛片视频| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 免费观看的影片在线观看| 欧美精品啪啪一区二区三区| 免费大片18禁| 国产亚洲精品av在线| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| 精品人妻视频免费看| 麻豆成人午夜福利视频| 不卡一级毛片| 桃红色精品国产亚洲av| 国产精品98久久久久久宅男小说| 亚洲av熟女| 亚洲成av人片在线播放无| 97超视频在线观看视频| 欧美极品一区二区三区四区| 亚洲成人精品中文字幕电影| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 亚洲经典国产精华液单 | 少妇的逼水好多| 97超视频在线观看视频| 一本精品99久久精品77| 久久精品国产亚洲av香蕉五月| 麻豆av噜噜一区二区三区| 成人毛片a级毛片在线播放| 亚洲美女视频黄频| 人妻久久中文字幕网| 国产三级中文精品| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 欧美成人一区二区免费高清观看| 国语自产精品视频在线第100页| 深爱激情五月婷婷| 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 别揉我奶头 嗯啊视频| 2021天堂中文幕一二区在线观| 性色avwww在线观看| 欧美精品啪啪一区二区三区| 嫩草影院新地址| 18+在线观看网站| 免费高清视频大片| 久久国产精品人妻蜜桃| 丰满人妻一区二区三区视频av| 老司机午夜福利在线观看视频| 亚洲 国产 在线| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 午夜福利在线观看吧| 国产免费男女视频| 免费观看人在逋| 99精品在免费线老司机午夜| 亚洲av成人av| 夜夜躁狠狠躁天天躁| 国产91精品成人一区二区三区| 亚洲久久久久久中文字幕| 亚洲真实伦在线观看| 国产精华一区二区三区| 国产午夜福利久久久久久| 最近最新免费中文字幕在线| 亚洲av二区三区四区| 嫩草影院新地址| 中文资源天堂在线| 亚洲av一区综合| 18+在线观看网站| 国产一区二区激情短视频| 久久久精品大字幕| 久久人人精品亚洲av| 桃红色精品国产亚洲av| 久久久久久久久久成人| 黄色女人牲交| xxxwww97欧美| av福利片在线观看| 国产黄a三级三级三级人| 国产精品久久电影中文字幕| ponron亚洲| 一区二区三区四区激情视频 | 日韩免费av在线播放| 日本一二三区视频观看| 国产极品精品免费视频能看的| 日韩欧美精品免费久久 | 精品熟女少妇八av免费久了| 大型黄色视频在线免费观看| 中文字幕精品亚洲无线码一区| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 亚洲精品在线美女| 日韩亚洲欧美综合| 两个人的视频大全免费| 日韩有码中文字幕| 神马国产精品三级电影在线观看| 亚洲人成伊人成综合网2020| 亚洲乱码一区二区免费版| 99热这里只有是精品在线观看 | 欧美国产日韩亚洲一区| 香蕉av资源在线| 级片在线观看| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 亚洲国产精品999在线| 亚洲av免费高清在线观看| 久久精品国产亚洲av涩爱 | 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 免费人成在线观看视频色| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久,| 1024手机看黄色片| 老熟妇乱子伦视频在线观看| 欧美一区二区国产精品久久精品| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 国产成人影院久久av| 91狼人影院| www.999成人在线观看| 久久精品国产99精品国产亚洲性色| 日韩中文字幕欧美一区二区| 国产伦人伦偷精品视频| 国产探花在线观看一区二区| 午夜a级毛片| 午夜激情欧美在线| 麻豆成人av在线观看| 日韩欧美免费精品| 亚洲人成网站高清观看| 精品国产三级普通话版| 高清在线国产一区| 深夜精品福利| 欧美潮喷喷水| 成人特级av手机在线观看| 真人做人爱边吃奶动态| 偷拍熟女少妇极品色| 亚洲无线观看免费| 欧美zozozo另类| 婷婷亚洲欧美| 午夜老司机福利剧场| 亚洲中文字幕日韩| 最近在线观看免费完整版| 国产精品一区二区性色av| 国产人妻一区二区三区在| 中文字幕av成人在线电影| 午夜激情欧美在线| 久久国产乱子免费精品| 直男gayav资源| 我的女老师完整版在线观看| 国产色婷婷99| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜理论影院| 亚洲av第一区精品v没综合| 又黄又爽又免费观看的视频| 精品久久久久久久末码| 亚洲一区二区三区色噜噜| 在现免费观看毛片| 国产高清视频在线播放一区| 欧美色欧美亚洲另类二区| 精品久久久久久,| 成人亚洲精品av一区二区| 99久久精品热视频| 人妻丰满熟妇av一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产伦精品一区二区三区四那| 久久久久久大精品| 国内精品久久久久精免费| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 12—13女人毛片做爰片一| 欧美黑人巨大hd| 中文字幕av在线有码专区| 3wmmmm亚洲av在线观看| 亚洲五月婷婷丁香| 免费无遮挡裸体视频| 嫩草影院精品99| 国产日本99.免费观看| 免费在线观看日本一区| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 国产男靠女视频免费网站| 亚洲欧美激情综合另类| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 小蜜桃在线观看免费完整版高清| www.999成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人下体高潮全视频| 亚洲av不卡在线观看| 午夜影院日韩av| 少妇人妻精品综合一区二区 | 免费大片黄手机在线观看| 只有这里有精品99| 香蕉精品网在线| 日韩制服骚丝袜av| 一级毛片aaaaaa免费看小| 亚洲av电影在线观看一区二区三区 | 成人国产麻豆网| av在线老鸭窝| 激情 狠狠 欧美| 欧美激情久久久久久爽电影| 春色校园在线视频观看| 亚洲一区二区三区欧美精品 | 大码成人一级视频| 91精品一卡2卡3卡4卡| 国产高清有码在线观看视频| 亚洲电影在线观看av| 熟女人妻精品中文字幕| 婷婷色综合大香蕉| 日本一本二区三区精品| 搡老乐熟女国产| 岛国毛片在线播放| 毛片女人毛片| 亚洲精品久久久久久婷婷小说| 欧美 日韩 精品 国产| 亚洲av男天堂| 人人妻人人看人人澡| 国精品久久久久久国模美| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 精华霜和精华液先用哪个| 国产大屁股一区二区在线视频| 亚洲欧洲日产国产| 欧美激情久久久久久爽电影| 日韩亚洲欧美综合| av播播在线观看一区| 直男gayav资源| 国产av不卡久久| 高清视频免费观看一区二区| 精品久久久久久久末码| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品古装| 免费av毛片视频| 久久久精品免费免费高清| 国产综合精华液| 在线a可以看的网站| 亚洲国产色片| 亚洲熟女精品中文字幕| 男女那种视频在线观看| 深爱激情五月婷婷| 在线天堂最新版资源| 99热6这里只有精品| 国内揄拍国产精品人妻在线| 欧美潮喷喷水| 日日摸夜夜添夜夜爱| 欧美xxⅹ黑人| 男人狂女人下面高潮的视频| 亚州av有码| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 亚洲av国产av综合av卡| 久久精品国产亚洲av天美| 国产av不卡久久| 国产成人freesex在线| 最近手机中文字幕大全| 国产极品天堂在线| 极品少妇高潮喷水抽搐| 在线观看国产h片| 老司机影院毛片| 狂野欧美白嫩少妇大欣赏| 国产精品福利在线免费观看| 免费黄频网站在线观看国产| 18禁在线播放成人免费| 人体艺术视频欧美日本| 免费在线观看成人毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久这里有精品视频免费| 免费观看无遮挡的男女| 男的添女的下面高潮视频| 亚洲av不卡在线观看| 国产成人精品婷婷| www.av在线官网国产| 国产淫片久久久久久久久| 3wmmmm亚洲av在线观看| 欧美潮喷喷水| 一个人观看的视频www高清免费观看| av在线蜜桃| 免费看日本二区| 国产男人的电影天堂91| 九草在线视频观看| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久| 国产欧美日韩精品一区二区| 久久韩国三级中文字幕| 日韩人妻高清精品专区| 国产在线一区二区三区精| 成人特级av手机在线观看| 免费av不卡在线播放| 亚洲精品成人av观看孕妇| 亚洲国产精品专区欧美| 国产精品人妻久久久久久| 午夜老司机福利剧场| 一区二区三区精品91| 丝袜喷水一区| 午夜免费鲁丝| 边亲边吃奶的免费视频| 欧美高清性xxxxhd video| 久久久久久国产a免费观看| 亚洲成色77777| 99热6这里只有精品| 国产一区二区在线观看日韩| 国产在线一区二区三区精| 大片电影免费在线观看免费| 精品久久久久久久人妻蜜臀av| 一级二级三级毛片免费看| 精品酒店卫生间| 日韩欧美精品免费久久| 久久精品人妻少妇| 极品少妇高潮喷水抽搐| 在线观看美女被高潮喷水网站| 成年女人看的毛片在线观看| 欧美 日韩 精品 国产| 一级a做视频免费观看| 久久久久久久久久久免费av| 秋霞在线观看毛片| 亚州av有码| 成人高潮视频无遮挡免费网站| 人妻少妇偷人精品九色| 精品一区二区免费观看| 久久亚洲国产成人精品v| 高清欧美精品videossex| 日本午夜av视频| 可以在线观看毛片的网站| 好男人视频免费观看在线| 国产精品国产三级专区第一集| 久久久a久久爽久久v久久| 久久精品久久精品一区二区三区| 91久久精品电影网| 国产乱人偷精品视频| 青青草视频在线视频观看| 91精品一卡2卡3卡4卡| 一本久久精品| 日本色播在线视频| 亚洲三级黄色毛片| 男男h啪啪无遮挡| 亚洲真实伦在线观看| 精品久久久噜噜| 毛片一级片免费看久久久久| freevideosex欧美| 亚洲在线观看片| 亚洲国产精品成人综合色| 日产精品乱码卡一卡2卡三| 成人美女网站在线观看视频| 丝袜美腿在线中文| 国产亚洲5aaaaa淫片| 精品久久久噜噜| 欧美成人a在线观看| 黄片无遮挡物在线观看| 可以在线观看毛片的网站| 最后的刺客免费高清国语| 少妇人妻一区二区三区视频| a级一级毛片免费在线观看| 日韩免费高清中文字幕av| 婷婷色综合大香蕉| 亚洲精华国产精华液的使用体验| 99久久精品国产国产毛片| 又大又黄又爽视频免费| 国产伦理片在线播放av一区| 亚洲国产精品成人久久小说| 国产成人免费观看mmmm| 亚洲国产日韩一区二区| 亚洲人与动物交配视频|